Applications of Differential Geometry to
Mathematical Physics

This course is hosted and taught by members of staff of the University of Kent and will take
place at the campus in Canterbury. Andy Hone and Steffen Krusch are focussing more on the
physical applications, Gavin Brown is teaching the pure mathematics parts. Jim Shank and other
members of staff will assist during the example classes.

1 Philosophy of the course

The main aim of the course is to introduce our PhD students to important concepts in differential
geometry and provide a dictionary between physics and mathematics (gauge theory and fibre
bundles). During the course, practical examples will have priority over proofs. Connections and
overlaps between the different lectures are very much encouraged.

Since the course covers a large amount of material, printed lecture notes will be made available
and there will be four example classes during which members of staff will be available to assist.
The example classes are intended to reinforce the material and provide the opportunity to go
into more depth. Therefore, there will be a rather large selection of exercises and students are
encouraged to choose the problems according to their prior knowledge and their interests.

2 Preliminary Schedule

There will be six lectures and four example classes.

2.1 Lecture 1

This lecture gives an overview of various concepts in differential geometry and will be very much
example-led. The assumption is that many students will have been exposed to at least some of
the material.

We start by discussing manifolds and illustrate this concept by constructing charts for S? and
SU(2) = 83. Then we introduce the concept of fibre bundles starting with the trivial bundle
E = B x F. We discuss principal G bundles using G = U(1) and G = SU(2) as illustrating
examples. This will make it easier to show connections to Yang-Mills theory. We will discuss the
Hopf bundle in detail using the charts we have derived earlier to write down the relevant transition
functions.

We also introduce the idea of a vector field and define the tangent bundle (example: tangent
bundle of S?). Finally, we give an outline of the ingredients of General relativity, namely, define
a connection, metric, Levi-Civita connection, the torsion and the curvature tensor and present
Einstein’s equations.

2.2 Lecture 2

The second lecture discusses some of the mathematical concepts in more detail. Differential forms
are introduced and then used to define connections in a more formal setting. Further topics might
include line bundles, de Rham cohomology, characteristic classes or homotopy theory.

2.3 Lecture 3

This lecture gives an introduction to important concepts in physics, starting with Lagrangians
in classical mechanics, and the tangent bundle to configuration space. Examples will include the



dynamics of particles in curved space-time. Next we describe Legendre transformations and the
cotangent bundle to configuration space, Hamiltonian mechanics, symplectic geometry, canonical
coordinates (Darboux theorem) and Poisson brackets. Liouville’s theorem on finite-dimensional
integrable systems will also be presented, with examples.

2.4 Lecture 4

Here we discuss Lagrangians in field theory: scalar fields, electromagnetism and Yang-Mills theory
leading to the Standard Model of particle physics. Yang-Mills-Higgs theory with U(1) and SU(2)
gauge fields will be covered in more detail, with a dictionary between gauge theory and the theory
of fibre bundles. Zero curvature connections and integrable systems in infinite dimensions will be
treated, using sine-Gordon field theory as the main example.

2.5 Lecture 5

This lecture will introduce complex manifolds, K&dhler manifolds and discuss the interplay of, for
example, symplectic structure, complex structure and the metric. Further topics are K3-surfaces
and Calabi-Yau 3-folds, both from a local and global perspective.

2.6 Lecture 6

This lecture will discuss the application of homotopy theory to the “classification” of topological
solitons and will discuss kinks, vortices and maybe monopoles. We will also explain the moduli
space approximation, namely how the low energy dynamics of topological solitons can be approxi-
mated by geodesic motion on the (moduli) space of static minimal energy solutions. The geometry
of this moduli space plays an important role for our understanding of the dynamics of solitons. In
fact, the N-vortex moduli space has a Kéhler structure.

3 Recommended Reading
The lectures are inspired by selected chapters of the following books.

e M Nakahara, “Geometry, Topology and Physics”, Second Edition, Graduate Student Series
in Physics, Institute of Physics Publishing, 2003

e R Bott and LW Tu, “Differential Forms in Algebraic Topology”, Springer Verlag, New York,
1982

e NS Manton and PM Sutcliffe, “Topological Solitons”, Cambridge University Press, 2004

e VI Arnold, “Mathematical Methods of Classical Mechanics”, Second Edition, Graduate Texts
in Mathematics, Springer Verlag, New York, 1997

e O Babelon, D Bernard and M Talon, “Introduction to Classical Integrable Systems”, Cam-
bridge Monographs on Mathematical Physics, Cambridge University Press, 2003

e D Huybrechts, “Complex geometry”, Springer-Verlag, Berlin, 2005



