operator from Theorem 4.2(ii). We estimate

$$
\begin{aligned}
& \left\|\partial_{n} v\right\|_{H^{-1 / 2}(\Gamma)}=\sup _{w \in H^{1 / 2}(\Gamma) \backslash\{0\}} \frac{\left\langle\partial_{n} v, w\right\rangle_{\Gamma}}{\|w\|_{H^{1 / 2}(\Gamma)}} \leq C \sup _{w \in H^{1 / 2}(\Gamma) \backslash\{0\}} \frac{\left\langle\partial_{n} v, w\right\rangle_{\Gamma}}{\|\mathcal{E} w\|_{H^{1}(\Omega)}} \\
& \quad=C \sup _{w \in H^{1 / 2}(\Gamma) \backslash\{0\}} \frac{\int_{\Omega} \nabla v \cdot \nabla \mathcal{E} w+\int_{\Omega} \Delta v \mathcal{E} w}{\|\mathcal{E} w\|_{H^{1}(\Omega)}} \leq C \sup _{W \in H^{1}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} \nabla v \cdot \nabla W+\int_{\Omega} \Delta v W}{\|W\|_{H^{1}(\Omega)}} \\
& \quad \leq C \sup _{W \in H^{1}(\Omega) \backslash\{0\}} \frac{\|v\|_{H^{1}(\Omega)}\|W\|_{H^{1}(\Omega)}+\|\Delta v\|_{\tilde{H}^{-1}(\Omega)}\|W\|_{H^{1}(\Omega)}}{\|W\|_{H^{1}(\Omega)}} \\
& \quad=C\left(\|v\|_{H^{1}(\Omega)}+\|\Delta v\|_{\tilde{H}^{-1}(\Omega)}\right) .
\end{aligned}
$$

Remark $4.3 \Delta v \in L_{2}(\Omega)$ implies $\Delta v \in \tilde{H}^{-1}(\Omega)$.

5 Finite element error analysis for elliptic problems

In this section we deal with the error analysis of the finite element method. Key steps in the error analysis are the Lax-Milgram lemma (Theorem 2.1), which proves the unique existence of u_{h} and its stability, and Céa's lemma (Theorem 3.2) proving

$$
\left\|u-u_{h}\right\| \leq \frac{C_{a}}{\alpha}\|u-v\| \quad \forall v \in V_{h}
$$

Here, several assumptions are needed, in particular the boundedness of a (with bound C_{a}) and its V-ellipticity (with ellipticity constant α). Therefore, to bound the error in the energy norm (or the norm of V) we only need to select an appropriate function $v \in V_{h}$ for which we are able to further estimate $\|u-v\|$. If V_{h} consists of continuous, piecewise linear functions then a standard candidate is the piecewise linear interpolant $I_{h} u \in V_{h}$ (defined below). First, in §5.1, we deal with approximation theory in a more general and abstract form. Then, in $\S 5.2$, we apply the approximation results to the finite element method.

5.1 Approximation theory

Definition 5.1 Let $\left(X,\|\cdot\|_{X}\right)$, $\left(Y,\|\cdot\|_{Y}\right)$ be normed linear spaces, and $A \in \mathcal{L}(X, Y)$, where $\mathcal{L}(X, Y)$ denotes the space of bounded linear operators $X \rightarrow Y$. Then, A is compact if and only if $\left(A x_{n}\right)_{n \in \mathbf{N}} \subset Y$ has a convergent subsequence for any bounded sequence $\left(x_{n}\right)_{n \in \mathbf{N}} \subset X$.

This can be equivalently formulated as: A is compact if and only if every bounded subset of X is mapped to a relatively compact subset of Y.

Proposition 5.1 (Rellich's embedding theorem) Let Ω be a Lipschitz domain. Then for any $t>s$, the injection $i: H^{t}(\Omega) \rightarrow H^{s}(\Omega)$ is compact.

Proposition 5.2 (Sobolev's embedding theorem) Let Ω be a Lipschitz domain in \mathbf{R}^{n}. Then, the injection $i: H^{n / 2+\varepsilon}(\Omega) \rightarrow C^{0}(\bar{\Omega})$ is continuous for all $\varepsilon>0$, that is,

$$
\sup _{x \in \Omega}|u(x)| \leq C_{\varepsilon}\|u\|_{H^{n / 2+\varepsilon}(\Omega)} \quad \text { for all } u \in H^{n / 2+\varepsilon}(\Omega)
$$

Remark 5.1 A simple argument for the influence of the dimension n is the following: Using the Fourier transform, we see for $u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ that

$$
\begin{aligned}
|u(x)| & \leq \int_{\mathbf{R}^{n}}|\hat{u}(\xi)| d \xi=\int_{\mathbf{R}^{n}}\left(1+|\xi|^{2}\right)^{-s / 2}(1+|\xi|)^{s / 2}|\hat{u}(\xi)| d \xi \\
& \leq\left(\int_{\mathbf{R}^{n}}\left(1+|\xi|^{2}\right)^{-s} d \xi\right)^{1 / 2}\|u\|_{H^{s}\left(\mathbf{R}^{n}\right)}
\end{aligned}
$$

where the last inequality follows from the Cauchy-Schwarz inequality. Thus, $\int_{\mathrm{R}^{n}}\left(1+|\xi|^{2}\right)^{-s} d \xi<$ ∞ will be sufficient. As the integrand is bounded on every bounded set, we only need to study the behaviour as $|\xi| \rightarrow \infty$. Transforming to polar coordinates and choosing some $r^{*}>0$,

$$
\int_{\mathbf{R}^{n}}\left(1+|\xi|^{2}\right)^{-s} d \xi \sim \int_{r^{*}}^{\infty} r^{-2 s} r^{n-1} d r=\int_{r^{*}}^{\infty} r^{n-2 s-1} d r
$$

The last integral is finite if and only if $n-2 s-1<-1$. This corresponds exactly to the condition $s>\frac{n}{2}$.

Lemma 5.1 Let $\Omega \subset \mathbf{R}^{2}$ be a Lipschitz domain, $t \geq 2$ integer, $s=\frac{t(t+1)}{2}$, and $\left\{z_{1}, z_{2}, \ldots, z_{s}\right\} \subset$ Ω be given points such that the interpolation operator $I: H^{t}(\Omega) \rightarrow P_{t-1}$ is well-defined. Here, P_{t-1} are the polynomials of degree up to $t-1$. Then, there exists $C \geq 0$ such that

$$
\|u-I u\|_{H^{t}(\Omega)} \leq C|u|_{H^{t}(\Omega)} \quad \text { for all } u \in H^{t}(\Omega)
$$

Proof. We first prove that $\|v\|_{H^{t}(\Omega)}$ and $\left|\left||v| \|:=|v|_{H^{t}(\Omega)}+\sum_{i=1}^{s}\right| v\left(z_{i}\right)\right|$ are equivalent norms. Then it follows that

$$
\begin{aligned}
\|u-I u\|_{H^{t}(\Omega)} & \leq C| | u-I u|\||=C\left(|u-I u|_{H^{t}(\Omega)}+\sum_{i=1}^{s}\left|u\left(z_{i}\right)-I u\left(z_{i}\right)\right|\right) \\
& =C|u-I u|_{H^{t}(\Omega)}=C|u|_{H^{t}(\Omega)},
\end{aligned}
$$

since the t th derivatives of $I u \in P_{t-1}$ vanish.

1. As $t \geq 2$ we see that the embedding $H^{t}(\Omega) \rightarrow H^{2}(\Omega)$ is continuous and by Proposition 5.2 we have that $H^{2}(\Omega) \rightarrow C^{0}(\bar{\Omega})$ is continuous. Therefore, the injection $H^{t}(\Omega) \rightarrow C^{0}(\bar{\Omega})$ is continuous. Thus, $\left|v\left(z_{i}\right)\right| \leq C\|v\|_{H^{t}(\Omega)}, i=1, \ldots, s$, and

$$
\||v|\|=|v|_{H^{t}(\Omega)}+\sum_{i=1}^{s}\left|v\left(z_{i}\right)\right| \leq(1+s C)\|v\|_{H^{t}(\Omega)} \quad \text { for all } v \in H^{t}(\Omega)
$$

2. Assume that $\|v\|_{H^{t}(\Omega)} \leq C \mid\|v\| \|$ for every $v \in H^{t}(\Omega)$ is false for any constant $C>0$. Then, there exists a sequence $\left(v_{n}\right)_{n \in \mathrm{~N}} \subset H^{t}(\Omega)$ such that $\left\|v_{n}\right\|_{H^{t}(\Omega)}=1$ and $\left\|\left\|v_{n}\right\|\right\| \leq \frac{1}{n}$ for all $n \in \mathrm{~N}$. We see that $\left(v_{n}\right)$ is bounded in $H^{t}(\Omega)$, so by Proposition 5.1 there is a subsequence of $\left(v_{n}\right)$ which converges in $H^{t-1}(\Omega)$. We assume without loss of generality that this subsequence is $\left(v_{n}\right)$. In particular, it follows that $\left(v_{n}\right)$ is a Cauchy sequence in $H^{t-1}(\Omega)$ and thus, since $\left|v_{n}\right|_{H^{t}(\Omega)} \leq\left\|\left|\left|v_{n} \|\right| \rightarrow 0\right.\right.$ for $n \rightarrow \infty$,

$$
\left\|v_{k}-v_{l}\right\|_{H^{t}(\Omega)}^{2} \leq\left\|v_{k}-v_{l}\right\|_{H^{t-1}(\Omega)}^{2}+\left(\left|v_{k}\right|_{H^{t}(\Omega)}+\left|v_{l}\right|_{H^{t}(\Omega)}\right)^{2} \rightarrow 0 \quad \text { for } k, l \rightarrow \infty .
$$

Therefore, $\left(v_{n}\right)$ is a Cauchy sequence in $H^{t}(\Omega)$ and by completeness there exists $v^{*} \in H^{t}(\Omega)$ such that $v_{n} \rightarrow v^{*}$ in $H^{t}(\Omega)$ for $n \rightarrow \infty$. By the continuity of the norms it follows from $\left\|v_{n}\right\|_{H^{t}(\Omega)}=1$ that $\left\|v^{*}\right\|_{H^{t}(\Omega)}=1$, and from $\left\|\left|v_{n}\right|\right\| \leq \frac{1}{n}$ that $\left|\left\|v^{*}\right\|\right|=0$ since, by the first part,

$$
\left\|\left|v^{*}\right|\right\| \leq\left|\left\|v^{*}-v_{n}\right\|\left\|+\left|\left\|v_{n}\right\|\|\leq C\| v^{*}-v_{n}\left\|_{H^{t}(\Omega)}+\right\|\right| v_{n} \mid\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty .\right.
$$

By definition of $|||\cdot|||$ it follows that $\left|v^{*}\right|_{H^{t}(\Omega)}=0$, that is, $v^{*} \in P_{t-1}$, and $\left|v^{*}\left(z_{i}\right)\right|=0$, $i=1, \ldots, s$. Therefore, v^{*} vanishes at $\frac{t(t+1)}{2}$ distinct points. It follows that $v^{*}=0$ and this is a contradiction to $\left\|v^{*}\right\|_{H^{t}(\Omega)}=1$.
Therefore, there exists a constant C such that $\|v\|_{H^{t}(\Omega)} \leq C\| \| v\| \|$.

Theorem 5.1 (Bramble-Hilbert Lemma) Let $\Omega \subset \mathbf{R}^{2}$ be a Lipschitz domain, and $t \geq 2$ integer. For a normed linear space Y let $L \in \mathcal{L}\left(H^{t}(\Omega), Y\right)$.

If $P_{t-1} \subset \operatorname{ker} L$ then there exists a constant $C \geq 0$ such that

$$
\|L v\|_{Y} \leq C|v|_{H^{t}(\Omega)} \quad \text { for all } v \in H^{t}(\Omega) .
$$

Proof. As L is bounded and linear there exists $D \geq 0$ such that $\|L v\|_{Y} \leq D\|v\|_{H^{t}(\Omega)}$. Let $I: H^{t}(\Omega) \rightarrow P_{t-1}$ be an interpolation operator as in Lemma 5.1. Then, $I v \in P_{t-1} \subset$ ker L for all $v \in H^{t}(\Omega)$ and

$$
\|L v\|_{Y}=\|L(v-I v)\|_{Y} \leq D\|v-I v\|_{H^{t}(\Omega)} \leq C D|v|_{H^{t}(\Omega)}
$$

by Lemma 5.1.

5.2 Finite element error estimate for elliptic problems

We deal with the case $V=H^{1}(\Omega)$ and $V_{h}=\left\{v \in V:\left.v\right|_{K} \in P_{t-1}(K) \forall K \in \mathcal{T}_{h}\right\}$ where $\mathcal{T}_{h}=\{K\}$ is a triangulation of Ω, which is assumed to be polygonal (so that it can be discretised by triangular meshes). Here, $P_{t-1}(K)$ denotes the space of polynomials of degree $t-1$ on K. The mesh needs to satisfy certain conditions. We define

$$
\begin{aligned}
h_{k} & =\text { diameter of } K=\text { length of longest side of } K, \\
\rho_{k} & =\text { diameter of the largest circle in } K, \\
h & =\max _{K \in \mathcal{I}_{h}} h_{k}
\end{aligned}
$$

and require that there exists $\beta>0$ which is independent of h such that

$$
\begin{equation*}
\frac{\rho_{k}}{h_{k}} \geq \beta \quad \forall K \in \mathcal{T}_{h} \tag{5.1}
\end{equation*}
$$

This means that the elements $K \in \mathcal{T}_{h}$ are not too thin, i.e. the interior angles of K are not too small (they are bounded from below by a positive constant). One also says that the elements of \mathcal{T}_{h}, or \mathcal{T}_{h}, are shape regular. Since we are interested in a sequence of meshes $\left\{\mathcal{T}_{h}\right\}$ such that we can study the behaviour of the finite element error $\left\|u-u_{h}\right\|$ for a sequence of mesh sizes $\{h\}$, the constant β in (5.1) must be independent of h.

We now apply the Bramble-Hilbert Lemma to prove a piecewise polynomial approximation result.

Theorem 5.2 For a Lipschitz domain $\Omega \subset \mathbf{R}^{2}$ with polygonal boundary and a given integer $t \geq 2$ let $\left\{T: T \in \mathcal{T}_{h}\right\}$ be a shape regular triangulation of Ω.

Then, for a piecewise polynomial interpolation operator I_{h} of degree $t-1$ (piecewise with respect to \mathcal{T}_{h}) there holds

$$
\left(\sum_{T \in \mathcal{T}_{h}}\left\|u-I_{h} u\right\|_{H^{m}(T)}^{2}\right)^{1 / 2} \leq C h^{t-m}|u|_{H^{t}(\Omega)} \quad \text { for all } u \in H^{t}(\Omega) \text { and all } 0 \leq m \leq t
$$

Here, the constant C is independent of h and u.
Proof. The idea of the proof is to transform to the reference element \hat{T}, make a transition from H^{m} to H^{t}, and transform back. The transformations give the required powers of h since the Bramble-Hilbert Lemma gives the transition to a semi-norm on \hat{T}.

By the assumption of shape regularity it is enough to consider the case that T_{h} is congruent to \hat{T}. Then we can assume without loss of generality that $T_{h}=h \hat{T}:=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1}, x_{2} \leq\right.$ $\left.h, x_{1}+x_{2} \leq h\right\}$. For $v \in H^{t}\left(T_{h}\right)$ we define $\hat{v} \in H^{t}(T)$ by $\hat{v}\left(x_{1}, x_{2}\right):=v\left(h x_{1}, h x_{2}\right)$. For a multi-index $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ of order $|\alpha|=\alpha_{1}+\alpha_{2}$ with non-negative integers α_{1}, α_{2} let D^{α} denote the partial derivative operator defined by

$$
D^{\alpha} v\left(x_{1}, x_{2}\right):=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}}} v\left(x_{1}, x_{2}\right) .
$$

We see that $D^{\alpha} v=h^{-\alpha} D^{\alpha} \hat{v}$ for all multi-indices α with $|\alpha| \leq t$. Thus,

$$
|v|_{H^{l}\left(T_{h}\right)}^{2}=\sum_{|\alpha|=l} \int_{T_{h}}\left(D^{\alpha} v\right)^{2} d x=\sum_{|\alpha|=l} h^{-2 l} h^{2} \int_{\hat{T}}\left(D^{\alpha} \hat{v}\right)^{2} d \xi=h^{2-2 l}|\hat{v}|_{H^{l}(\hat{T})}^{2}
$$

Since the transform \hat{I} of the interpolation operator I_{h} is again an interpolation operator, we can transform to the reference element, apply the Bramble-Hilbert Lemma and transform back to obtain

$$
\begin{aligned}
\left\|v-I_{h} v\right\|_{H^{m}\left(T_{h}\right)}^{2} & \leq C h^{2-2 m}\|\hat{v}-\hat{I} \hat{v}\|_{H^{m}(\hat{T})}^{2} \leq C h^{2-2 m}\|\hat{v}-\hat{I} \hat{v}\|_{H^{t}(\hat{T})}^{2} \\
& \leq C h^{2-2 m}|\hat{v}|_{H^{t}(\hat{T})}^{2}=C h^{2-2 m} h^{2 t-2}|v|_{H^{t}\left(T_{h}\right)}^{2}=C h^{2(t-m)}|v|_{H^{t}\left(T_{h}\right)}^{2} .
\end{aligned}
$$

Summing up this yields

$$
\sum_{T \in \mathcal{I}_{h}}\left\|v-I_{h} v\right\|_{H^{m}\left(T_{h}\right)}^{2} \leq C h^{2(t-m)} \sum_{T \in \mathcal{T}_{h}}|v|_{H^{t}\left(T_{h}\right)}^{2}=C h^{2(t-m)}|v|_{H^{t}\left(T_{h}\right)}^{2} .
$$

Remark 5.2 Note that in Theorem 5.2 we cannot write $\left\|u-I_{h} u\right\|_{H^{m}(\Omega)}$ in general since $u-I_{h} u$ might not be in $H^{m}(\Omega)$. The operator I_{h} represents only a piecewise interpolation from which, in general, no global regularity properties follow.

Let $N_{i}, i=1, \ldots, M$, be the nodes of \mathcal{T}_{h}. For a continuous function $u \in C^{0}(\bar{\Omega})$ we now consider the piecewise linear interpolant (again using the same operator symbol I_{h}) $I_{h} u \in V_{h}$ by

$$
\begin{equation*}
I_{h} u\left(N_{i}\right)=u\left(N_{i}\right), \quad i=1, \ldots, M . \tag{5.2}
\end{equation*}
$$

Note that on $K \in \mathcal{T}_{h}, I_{h} u$ is the linear interpolant of u.
Corollary 5.1 Let $\Omega \subset \mathbf{R}^{2}$ be a polygon with a quasi-uniform, regular and shape-regular mesh, and I_{h} be the piecewise linear interpolation operator (piecewise with respect to the triangulation) with respect to the vertices of the mesh.

Then,

$$
\left\|u-I_{h} u\right\|_{H^{1}(\Omega)} \leq C h|u|_{H^{2}(\Omega)} \quad \text { for all } u \in H^{2}(\Omega)
$$

Proof. As I_{h} interpolates at the vertices of the mesh, $I_{h} u$ is continuous and piecewise linear, i.e. $I_{h} u \in H^{1}(\Omega)$. An application of Theorem 5.2 proves

$$
\left\|u-I_{h} u\right\|_{H^{1}(\Omega)}^{2}=\sum_{T \in \mathcal{I}_{h}}\left\|u-I_{h} u\right\|_{H^{1}(T)}^{2} \leq C h^{2}|u|_{H^{2}(\Omega)}^{2} .
$$

Now we are in a position to present an a priori error estimate for the finite element method dealing with elliptic problems of second order. Assume that we are solving a variational problem in $V=H_{0}^{1}(\Omega)\left(\Omega \subset \mathbf{R}^{2}\right.$ is a Lipschitz continuous polygonal domain $)$,

$$
\begin{equation*}
u \in V: \quad a(u, v)=L(v) \quad \forall v \in V, \tag{5.3}
\end{equation*}
$$

where a is a continuous, V-elliptic bilinear form, and L is a continuous linear form on V. We then consider the finite element approximation u_{h} to u defined by

$$
\begin{equation*}
u_{h} \in V_{h}: \quad a\left(u_{h}, v\right)=L(v) \quad \forall v \in V_{h} . \tag{5.4}
\end{equation*}
$$

Selecting any finite-dimensional subspace $V_{h} \subset V$ there holds Céa's lemma. In particular, selecting V_{h} to be the space of continuous, piecewise linear functions defined on a mesh \mathcal{T}_{h} satisfying the shape-regularity condition (5.1) there holds (applying Céa's lemma)

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq \frac{C_{a}}{\alpha}\left\|u-I_{h} u\right\|_{H^{1}(\Omega)} \tag{5.5}
\end{equation*}
$$

Here, I_{h} is the interpolation operator defined in (5.2).
Therefore, applying the results from $\S 5.1$, in particular Corollary 5.1, we conclude that there holds the following a priori error estimate.

Theorem 5.3 (a priori error estimate)
Assume that the solution u of (5.3) satisfies $u \in H^{2}(\Omega)$ and that $u_{h} \in V_{h}$ is the finite element approximation defined by (5.4) (using piecewise linear functions on a shape regular mesh). Then there exists a constant $C>0$ which is independent of h such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C h|u|_{H^{2}(\Omega)} . \tag{5.6}
\end{equation*}
$$

This means that u_{h} converges linearly in h to u in the $H^{1}(\Omega)$-norm.

