operator from Theorem 4.2(ii). We estimate

$$\begin{split} |\partial_{n}v\|_{H^{-1/2}(\Gamma)} &= \sup_{w\in H^{1/2}(\Gamma)\backslash\{0\}} \frac{\langle \partial_{n}v,w\rangle_{\Gamma}}{\|w\|_{H^{1/2}(\Gamma)}} \leq C \sup_{w\in H^{1/2}(\Gamma)\backslash\{0\}} \frac{\langle \partial_{n}v,w\rangle_{\Gamma}}{\|\mathcal{E}w\|_{H^{1}(\Omega)}} \\ &= C \sup_{w\in H^{1/2}(\Gamma)\backslash\{0\}} \frac{\int_{\Omega} \nabla v \cdot \nabla \mathcal{E}w + \int_{\Omega} \Delta v \,\mathcal{E}w}{\|\mathcal{E}w\|_{H^{1}(\Omega)}} \leq C \sup_{W\in H^{1}(\Omega)\backslash\{0\}} \frac{\int_{\Omega} \nabla v \cdot \nabla W + \int_{\Omega} \Delta v \,W}{\|W\|_{H^{1}(\Omega)}} \\ &\leq C \sup_{W\in H^{1}(\Omega)\backslash\{0\}} \frac{\|v\|_{H^{1}(\Omega)} \|W\|_{H^{1}(\Omega)} + \|\Delta v\|_{\tilde{H}^{-1}(\Omega)} \|W\|_{H^{1}(\Omega)}}{\|W\|_{H^{1}(\Omega)}} \\ &= C \left(\|v\|_{H^{1}(\Omega)} + \|\Delta v\|_{\tilde{H}^{-1}(\Omega)} \right). \end{split}$$

Remark 4.3 $\Delta v \in L_2(\Omega)$ implies $\Delta v \in \tilde{H}^{-1}(\Omega)$.

5 Finite element error analysis for elliptic problems

In this section we deal with the error analysis of the finite element method. Key steps in the error analysis are the Lax-Milgram lemma (Theorem 2.1), which proves the unique existence of u_h and its stability, and Céa's lemma (Theorem 3.2) proving

$$\|u - u_h\| \le \frac{C_a}{\alpha} \|u - v\| \quad \forall v \in V_h.$$

Here, several assumptions are needed, in particular the boundedness of a (with bound C_a) and its V-ellipticity (with ellipticity constant α). Therefore, to bound the error in the energy norm (or the norm of V) we only need to select an appropriate function $v \in V_h$ for which we are able to further estimate ||u - v||. If V_h consists of continuous, piecewise linear functions then a standard candidate is the piecewise linear interpolant $I_h u \in V_h$ (defined below). First, in §5.1, we deal with approximation theory in a more general and abstract form. Then, in §5.2, we apply the approximation results to the finite element method.

5.1 Approximation theory

Definition 5.1 Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be normed linear spaces, and $A \in \mathcal{L}(X, Y)$, where $\mathcal{L}(X, Y)$ denotes the space of bounded linear operators $X \to Y$. Then, A is compact if and only if $(Ax_n)_{n \in \mathbb{N}} \subset Y$ has a convergent subsequence for any bounded sequence $(x_n)_{n \in \mathbb{N}} \subset X$.

This can be equivalently formulated as: A is compact if and only if every bounded subset of X is mapped to a relatively compact subset of Y.

Proposition 5.1 (Rellich's embedding theorem) Let Ω be a Lipschitz domain. Then for any t > s, the injection $i: H^t(\Omega) \to H^s(\Omega)$ is compact.

Proposition 5.2 (Sobolev's embedding theorem) Let Ω be a Lipschitz domain in \mathbb{R}^n . Then, the injection $i: H^{n/2+\varepsilon}(\Omega) \to C^0(\overline{\Omega})$ is continuous for all $\varepsilon > 0$, that is,

$$\sup_{x \in \Omega} |u(x)| \le C_{\varepsilon} ||u||_{H^{n/2+\varepsilon}(\Omega)} \quad for \ all \ u \in H^{n/2+\varepsilon}(\Omega).$$

Remark 5.1 A simple argument for the influence of the dimension n is the following: Using the Fourier transform, we see for $u \in C_0^{\infty}(\mathbb{R}^n)$ that

$$\begin{aligned} |u(x)| &\leq \int_{\mathbf{R}^n} |\hat{u}(\xi)| \, d\xi = \int_{\mathbf{R}^n} (1+|\xi|^2)^{-s/2} (1+|\xi|)^{s/2} |\hat{u}(\xi)| \, d\xi \\ &\leq \left(\int_{\mathbf{R}^n} (1+|\xi|^2)^{-s} \, d\xi\right)^{1/2} \|u\|_{H^s(\mathbf{R}^n)}, \end{aligned}$$

where the last inequality follows from the Cauchy-Schwarz inequality. Thus, $\int_{\mathbf{R}^n} (1+|\xi|^2)^{-s} d\xi < \infty$ will be sufficient. As the integrand is bounded on every bounded set, we only need to study the behaviour as $|\xi| \to \infty$. Transforming to polar coordinates and choosing some $r^* > 0$,

$$\int_{\mathbb{R}^n} (1+|\xi|^2)^{-s} \, d\xi \sim \int_{r^*}^\infty r^{-2s} r^{n-1} \, dr = \int_{r^*}^\infty r^{n-2s-1} \, dr$$

The last integral is finite if and only if n-2s-1 < -1. This corresponds exactly to the condition $s > \frac{n}{2}$.

Lemma 5.1 Let $\Omega \subset \mathbb{R}^2$ be a Lipschitz domain, $t \geq 2$ integer, $s = \frac{t(t+1)}{2}$, and $\{z_1, z_2, \ldots, z_s\} \subset \Omega$ be given points such that the interpolation operator $I: H^t(\Omega) \to P_{t-1}$ is well-defined. Here, P_{t-1} are the polynomials of degree up to t-1. Then, there exists $C \geq 0$ such that

$$||u - Iu||_{H^t(\Omega)} \le C|u|_{H^t(\Omega)}$$
 for all $u \in H^t(\Omega)$.

Proof. We first prove that $||v||_{H^t(\Omega)}$ and $|||v||| := |v|_{H^t(\Omega)} + \sum_{i=1}^s |v(z_i)|$ are equivalent norms. Then it follows that

$$\begin{aligned} \|u - Iu\|_{H^{t}(\Omega)} &\leq C |||u - Iu||| = C \left(|u - Iu|_{H^{t}(\Omega)} + \sum_{i=1}^{s} |u(z_{i}) - Iu(z_{i})| \right) \\ &= C |u - Iu|_{H^{t}(\Omega)} = C |u|_{H^{t}(\Omega)}, \end{aligned}$$

since the *t*th derivatives of $Iu \in P_{t-1}$ vanish.

1. As $t \geq 2$ we see that the embedding $H^t(\Omega) \to H^2(\Omega)$ is continuous and by Proposition 5.2 we have that $H^2(\Omega) \to C^0(\bar{\Omega})$ is continuous. Therefore, the injection $H^t(\Omega) \to C^0(\bar{\Omega})$ is continuous. Thus, $|v(z_i)| \leq C ||v||_{H^t(\Omega)}$, $i = 1, \ldots, s$, and

$$|||v||| = |v|_{H^t(\Omega)} + \sum_{i=1}^s |v(z_i)| \le (1+sC) ||v||_{H^t(\Omega)} \quad \text{for all } v \in H^t(\Omega).$$

2. Assume that $||v||_{H^t(\Omega)} \leq C |||v|||$ for every $v \in H^t(\Omega)$ is false for any constant C > 0. Then, there exists a sequence $(v_n)_{n \in \mathbb{N}} \subset H^t(\Omega)$ such that $||v_n||_{H^t(\Omega)} = 1$ and $|||v_n||| \leq \frac{1}{n}$ for all $n \in \mathbb{N}$. We see that (v_n) is bounded in $H^t(\Omega)$, so by Proposition 5.1 there is a subsequence of (v_n) which converges in $H^{t-1}(\Omega)$. We assume without loss of generality that this subsequence is (v_n) . In particular, it follows that (v_n) is a Cauchy sequence in $H^{t-1}(\Omega)$ and thus, since $|v_n|_{H^t(\Omega)} \leq |||v_n||| \to 0$ for $n \to \infty$,

$$\|v_k - v_l\|_{H^t(\Omega)}^2 \le \|v_k - v_l\|_{H^{t-1}(\Omega)}^2 + (|v_k|_{H^t(\Omega)} + |v_l|_{H^t(\Omega)})^2 \to 0 \quad \text{for } k, l \to \infty.$$

Therefore, (v_n) is a Cauchy sequence in $H^t(\Omega)$ and by completeness there exists $v^* \in H^t(\Omega)$ such that $v_n \to v^*$ in $H^t(\Omega)$ for $n \to \infty$. By the continuity of the norms it follows from $\|v_n\|_{H^t(\Omega)} = 1$ that $\|v^*\|_{H^t(\Omega)} = 1$, and from $|||v_n||| \le \frac{1}{n}$ that $|||v^*||| = 0$ since, by the first part,

$$|||v^*||| \le |||v^* - v_n||| + |||v_n||| \le C ||v^* - v_n||_{H^t(\Omega)} + |||v_n||| \to 0 \quad \text{as } n \to \infty.$$

By definition of $|||\cdot|||$ it follows that $|v^*|_{H^t(\Omega)} = 0$, that is, $v^* \in P_{t-1}$, and $|v^*(z_i)| = 0$, $i = 1, \ldots, s$. Therefore, v^* vanishes at $\frac{t(t+1)}{2}$ distinct points. It follows that $v^* = 0$ and this is a contradiction to $||v^*||_{H^t(\Omega)} = 1$.

Therefore, there exists a constant C such that $||v||_{H^t(\Omega)} \leq C |||v|||$.

Theorem 5.1 (Bramble-Hilbert Lemma) Let $\Omega \subset \mathbb{R}^2$ be a Lipschitz domain, and $t \geq 2$ integer. For a normed linear space Y let $L \in \mathcal{L}(H^t(\Omega), Y)$.

If $P_{t-1} \subset \ker L$ then there exists a constant $C \geq 0$ such that

$$||Lv||_Y \le C|v|_{H^t(\Omega)} \quad for \ all \ v \in H^t(\Omega).$$

Proof. As L is bounded and linear there exists $D \ge 0$ such that $||Lv||_Y \le D||v||_{H^t(\Omega)}$. Let $I: H^t(\Omega) \to P_{t-1}$ be an interpolation operator as in Lemma 5.1. Then, $Iv \in P_{t-1} \subset \ker L$ for all $v \in H^t(\Omega)$ and

$$||Lv||_Y = ||L(v - Iv)||_Y \le D||v - Iv||_{H^t(\Omega)} \le CD|v|_{H^t(\Omega)}$$

by Lemma 5.1.

5.2 Finite element error estimate for elliptic problems

We deal with the case $V = H^1(\Omega)$ and $V_h = \{v \in V : v|_K \in P_{t-1}(K) \forall K \in \mathcal{T}_h\}$ where $\mathcal{T}_h = \{K\}$ is a triangulation of Ω , which is assumed to be polygonal (so that it can be discretised by triangular meshes). Here, $P_{t-1}(K)$ denotes the space of polynomials of degree t - 1 on K. The mesh needs to satisfy certain conditions. We define

 $\begin{array}{lll} h_k &=& \text{diameter of } K = \text{length of longest side of } K, \\ \rho_k &=& \text{diameter of the largest circle in } K, \\ h &=& \max_{K \in \mathcal{T}_h} h_k \end{array}$

and require that there exists $\beta > 0$ which is independent of h such that

$$\frac{\rho_k}{h_k} \ge \beta \qquad \forall K \in \mathcal{T}_h. \tag{5.1}$$

This means that the elements $K \in \mathcal{T}_h$ are not too thin, i.e. the interior angles of K are not too small (they are bounded from below by a positive constant). One also says that the elements of \mathcal{T}_h , or \mathcal{T}_h , are shape regular. Since we are interested in a sequence of meshes $\{\mathcal{T}_h\}$ such that we can study the behaviour of the finite element error $||u - u_h||$ for a sequence of mesh sizes $\{h\}$, the constant β in (5.1) must be independent of h.

We now apply the Bramble-Hilbert Lemma to prove a piecewise polynomial approximation result.

Theorem 5.2 For a Lipschitz domain $\Omega \subset \mathbb{R}^2$ with polygonal boundary and a given integer $t \geq 2$ let $\{T : T \in \mathcal{T}_h\}$ be a shape regular triangulation of Ω .

Then, for a piecewise polynomial interpolation operator I_h of degree t-1 (piecewise with respect to \mathcal{T}_h) there holds

$$\left(\sum_{T\in\mathcal{T}_h}\|u-I_hu\|_{H^m(T)}^2\right)^{1/2} \le Ch^{t-m}|u|_{H^t(\Omega)} \quad \text{for all } u\in H^t(\Omega) \text{ and all } 0\le m\le t.$$

Here, the constant C is independent of h and u.

Proof. The idea of the proof is to transform to the reference element \hat{T} , make a transition from H^m to H^t , and transform back. The transformations give the required powers of h since the Bramble-Hilbert Lemma gives the transition to a semi-norm on \hat{T} .

By the assumption of shape regularity it is enough to consider the case that T_h is congruent to \hat{T} . Then we can assume without loss of generality that $T_h = h\hat{T} := \{(x_1, x_2) : 0 \le x_1, x_2 \le h, x_1 + x_2 \le h\}$. For $v \in H^t(T_h)$ we define $\hat{v} \in H^t(T)$ by $\hat{v}(x_1, x_2) := v(hx_1, hx_2)$. For a multi-index $\alpha = (\alpha_1, \alpha_2)$ of order $|\alpha| = \alpha_1 + \alpha_2$ with non-negative integers α_1, α_2 let D^{α} denote the partial derivative operator defined by

$$D^{\alpha}v(x_1, x_2) := \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2}} v(x_1, x_2).$$

We see that $D^{\alpha}v = h^{-\alpha}D^{\alpha}\hat{v}$ for all multi-indices α with $|\alpha| \leq t$. Thus,

$$|v|_{H^{l}(T_{h})}^{2} = \sum_{|\alpha|=l} \int_{T_{h}} (D^{\alpha}v)^{2} dx = \sum_{|\alpha|=l} h^{-2l} h^{2} \int_{\hat{T}} (D^{\alpha}\hat{v})^{2} d\xi = h^{2-2l} |\hat{v}|_{H^{l}(\hat{T})}^{2}.$$

Since the transform \hat{I} of the interpolation operator I_h is again an interpolation operator, we can transform to the reference element, apply the Bramble-Hilbert Lemma and transform back to obtain

$$\begin{aligned} \|v - I_h v\|_{H^m(T_h)}^2 &\leq Ch^{2-2m} \|\hat{v} - \hat{I}\hat{v}\|_{H^m(\hat{T})}^2 \leq Ch^{2-2m} \|\hat{v} - \hat{I}\hat{v}\|_{H^t(\hat{T})}^2 \\ &\leq Ch^{2-2m} |\hat{v}|_{H^t(\hat{T})}^2 = Ch^{2-2m} h^{2t-2} |v|_{H^t(T_h)}^2 = Ch^{2(t-m)} |v|_{H^t(T_h)}^2. \end{aligned}$$

Summing up this yields

$$\sum_{T \in \mathcal{T}_h} \|v - I_h v\|_{H^m(T_h)}^2 \le Ch^{2(t-m)} \sum_{T \in \mathcal{T}_h} |v|_{H^t(T_h)}^2 = Ch^{2(t-m)} |v|_{H^t(T_h)}^2.$$

Remark 5.2 Note that in Theorem 5.2 we cannot write $||u - I_h u||_{H^m(\Omega)}$ in general since $u - I_h u$ might not be in $H^m(\Omega)$. The operator I_h represents only a piecewise interpolation from which, in general, no global regularity properties follow.

Let N_i , i = 1, ..., M, be the nodes of \mathcal{T}_h . For a continuous function $u \in C^0(\overline{\Omega})$ we now consider the piecewise linear interpolant (again using the same operator symbol I_h) $I_h u \in V_h$ by

$$I_h u(N_i) = u(N_i), \qquad i = 1, \dots, M.$$
 (5.2)

Note that on $K \in \mathcal{T}_h$, $I_h u$ is the linear interpolant of u.

Corollary 5.1 Let $\Omega \subset \mathbb{R}^2$ be a polygon with a quasi-uniform, regular and shape-regular mesh, and I_h be the piecewise linear interpolation operator (piecewise with respect to the triangulation) with respect to the vertices of the mesh.

Then,

$$||u - I_h u||_{H^1(\Omega)} \le Ch|u|_{H^2(\Omega)} \quad for \ all \ u \in H^2(\Omega).$$

Proof. As I_h interpolates at the vertices of the mesh, $I_h u$ is continuous and piecewise linear, i.e. $I_h u \in H^1(\Omega)$. An application of Theorem 5.2 proves

$$||u - I_h u||_{H^1(\Omega)}^2 = \sum_{T \in \mathcal{T}_h} ||u - I_h u||_{H^1(T)}^2 \le Ch^2 |u|_{H^2(\Omega)}^2.$$

Now we are in a position to present an a priori error estimate for the finite element method dealing with elliptic problems of second order. Assume that we are solving a variational problem in $V = H_0^1(\Omega)$ ($\Omega \subset \mathbb{R}^2$ is a Lipschitz continuous polygonal domain),

$$u \in V: \quad a(u,v) = L(v) \quad \forall v \in V, \tag{5.3}$$

where a is a continuous, V-elliptic bilinear form, and L is a continuous linear form on V. We then consider the finite element approximation u_h to u defined by

$$u_h \in V_h: \quad a(u_h, v) = L(v) \quad \forall v \in V_h.$$

$$(5.4)$$

Selecting any finite-dimensional subspace $V_h \subset V$ there holds Céa's lemma. In particular, selecting V_h to be the space of continuous, piecewise linear functions defined on a mesh \mathcal{T}_h satisfying the shape-regularity condition (5.1) there holds (applying Céa's lemma)

$$\|u - u_h\|_{H^1(\Omega)} \le \frac{C_a}{\alpha} \|u - I_h u\|_{H^1(\Omega)}.$$
(5.5)

Here, I_h is the interpolation operator defined in (5.2).

Therefore, applying the results from $\S5.1$, in particular Corollary 5.1, we conclude that there holds the following *a priori error estimate*.

Theorem 5.3 (a priori error estimate)

Assume that the solution u of (5.3) satisfies $u \in H^2(\Omega)$ and that $u_h \in V_h$ is the finite element approximation defined by (5.4) (using piecewise linear functions on a shape regular mesh). Then there exists a constant C > 0 which is independent of h such that

$$||u - u_h||_{H^1(\Omega)} \le C h |u|_{H^2(\Omega)}.$$
(5.6)

This means that u_h converges linearly in h to u in the $H^1(\Omega)$ -norm.