
CHAPTER 1

Basic homological algebra

In this chapter we will define cohomology via cochain complexes. We will restrict
to considering modules over a ring and to giving a very constructive definition. At
the end of the chapter we will look at a more axiomatic apporach. These notes do
not contain detailed proofs, although we shall go through them during the lecture.
Most of the results in this chapter are fairly standard and can be found in most
textbooks on homological algebra. These are, for example, the Springer Graduate
Text by Hilton and Stammbach [9], the old classic by Rotman [25] or the newer
and slightly more modern book by Weibel [29]. There are two very good places
with online lecture notes: Peter Kropholler’s notes on cohomology [10] and Daniel
Murfet’s collection of lecture notes [23]. Some of the proofs in this chapter follow
those of Peter Kropholler and I recommend these as reference.
(I suspect that there are still a number of typos and other inaccuracies in these
notes. So, if you find any, please let me know.)

1. Modules

In this section we will quickly review the basic definitions of modules over a ring.
In general we denote a ring by R and assume that R has a unit.

Definition 1.1. Let R be a ring. A left R-module is an abelian group (M, +)
together with a multiplication

R×M → M
(r, m) #→ rm

satisfying the following axioms:
(M1) r(m + n) = rm + rn for all r ∈ R and m, n ∈M
(M2) (r + s)m = rm + sm for all r, s ∈ R and m ∈M
(M3) (rs)m = r(sm) for all r, s ∈ R and m ∈M
(M4) 1Rm = m for all m ∈M.

We usually write MR - or M if it is clear which ring is meant. Right R-modules
are defined analogously. If R is commutative a left R-module can be made into a
right R-module by defining the multiplication by (m, r) #→ rm.

Example 1.2.
(1) Let k be a field. Then any k-vector space is a k-module.
(2) Any additive abelian group A can be viewed as a Z-module.
(3) The regular module: Left multiplication makes any ring R into an R-

module by (r, s) #→ rs. We call R the left regular module.
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Definition 1.3. Let M be an R-module. An R-submodule is an abelian sub-
group N such that for all r ∈ R,n ∈ N : rn ∈ N.

Exercise 1.4. Let V be a finite dimensional k-vector space and denote by
Endk(V ) the ring of endomorphisms. Prove that

(1) V is a left Endk(V )-module via

Endk(V )× V → V
(φ, v) #→ φ(v).

(2) V has no Endk(V )-submodules except 0 and V . Such a module is called
simple.

Definition 1.5. Let M and N be R-modules. A map α : M → N is called
R-linear or an R-module homomorphism if

• α(m + m′) = α(m) + α(m′) for all m, m′ ∈M
• α(rm) = rα(m) for all m ∈M, r ∈ R.

Let M and N be R-modules. We denote by HomR(M,N) the set of all R-linear
maps α : M → N.

Remark 1.6. HomR(M,N) is an abelian group with addition defined point-
wise. Furthermore EndR(M) = HomR(M,M) is a ring where multiplication is
defined by composition of maps.

Lemma 1.7. For every R-module M there is a natural isomorphism:

φ : HomR(R,M) !! M

defined by f #→ f(1).

Proof: Exercise. !
Naturality means that for every R-module homomorphism α : M → N the

following diagram commutes,

HomR(R,M)
φM !!

α∗

""

M

α

""
HomR(R,N)

φN !! N

where α∗(f) = α ◦ f and α ◦ φM = φN ◦ α∗.

Definition 1.8. Direct product and direct sum of modules: Let I be
an index set and for each i ∈ I let Mi be an R-module. Define a new R-module,
the direct product of the Mi, by

M =
∏

i∈I

Mi.

The elemenets m ∈ M are families (mi)i∈I , where addition is defined component
wise. The R-module structure is given by r(mi)i∈I = (rmi)i∈I .
Denote by M0 the submodule of M consisting of those families (mi)i∈I , for which
mi = 0 for all but finitely many i ∈ I. We call M0 the direct sum of the Mi, denoted
by

M0 =
⊕

i∈I

Mi.



2. EXACT SEQUENCES AND DIAGRAM CHASING 5

Remark 1.9. For every i ∈ I there are natural projections:

πi : M " Mi

(mj)j∈I #→ mi

and natural injections
ιi : Mi ↪→ M0

mi #→ (mj)j∈I ,

where

mj =

{
mi if i = j

0 otherwise.

Proposition 1.10. Let X be an R-module and let φi : X →Mi be an
R-module homomorphism for every i ∈ I. Then there exists a unique R-module
homomorphism φ : X →

∏
i∈I Mi, such that for all i ∈ I πi ◦ φ = φi. In particular,

HomR(X,
∏

i∈I

Mi) ∼=
∏

i∈I

HomR(X,Mi).

Proposition 1.11. Let Y be an R-module and let ψi : Mi → Y be an R-module
homomorphism for every i ∈ I. Then there is a unique R-module homomorphism
ψ :

⊕
i∈I Mi → Y such that for every i ∈ I, ψ ◦ ιi = ψi. In particular,

HomR(
⊕

i∈I

, Y ) ∼=
∏

i∈I

HomR(Mi, Y ).

Proof: We leave this an an exercise. Define ψ((Mi)i∈I) =
∑

i∈I ψi(mi). !

Remark 1.12. If I is a finite set, then
∏

i∈I Mi
∼=

⊕
i∈I Mi.

Exercise 1.13. Let M be an R-module and I be a set. Suppose that for each
i ∈ I, Mi is a submodule of M . Further assume:

(1) M is generated by the Mi. (i.e. Each m ∈ M can be expressed as
m =

∑
i∈I mi, where all but a finite number of the mi are zero.)

(2) For all j ∈ I let Nj be the submodule generated by all Mi with i '= j.
Then Nj ∩Mj = {0}. for all j ∈ I.

Show that
M ∼=

⊕

i∈I

Mi.

2. Exact sequences and diagram chasing

Let us begin with some notation and basic facts. Let α : M → N be an R-
module homomorphism. The kernel of α is defined to be the following subset of
M : ker(α)={m ∈ M |α(m) = 0}, and the image of α is defined to be the follwing
subset of N : im(α)={α(m) |m ∈ M}. Recall, that ker(α) = {0} ⇐⇒ α is a
monomorphism, i.e. an injective homomorphism. It is an epimorphism, i.e. a
surjective homomorphism if im(α) = N . The cokernel of α is defined to be

coker(α) = N/im(α).
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Definition 2.1. A sequence

· · · !! Mi+1
αi+1 !! Mi

αi !! Mi−1
αi−1 !! · · ·

(i ∈ Z) of linear maps is called exact at Mi if im(αi+1) = kerαi.
The sequence is called exact if it is exact at every Mi(i ∈ Z).

Exercise 2.2. Show that:
(1) 0 !! L

α !! M is exact if and only if α is a monomorphism.

(2) M
β !! N !! 0 is exact if and only if β is an epimorphism.

(3) 0 !! L
α !! M !! 0 is exact iff α is an isomomorphism.

Remark 2.3. A short exact sequence is an exact sequence of the form

0 !! L
α !! M

β !! N !! 0.

In particular, α is a monomorphism, β is an epimorphism and im(α) = ker(β).
Hence N ∼= M/α(L). Conversely, if N ∼= M/L, then there is a short exact sequence

L ↪→M " N.

Definition 2.4. A short exact sequence

0 !! L
α !! M

β !! N !! 0
(1) splits at N if there exists an R-module homomorphism τ : N → M such

that β ◦ τ = idN .
(2) splits at L if there exists an R-module homomorphism σ : M → L such

that σ ◦ α = idL.

Theorem 2.5. Let

E : 0 !! L
α !! M

β !! N !! 0
be a short exact sequence. Then the following are equivalent:

(1) E splits at L;
(2) E splits at N ;
(3) There exist R-module homomorphisms σ : M → L and τ : N → M such

that σ ◦ α = idL, β ◦ τ = idN and α ◦ σ + τ ◦ β = idM .

Furthermore, any of the above conditions implies

M ∼= L⊕N

and we say the short exact sequence E splits.

Proof: (3) ⇒ (1), (2) is trivial, (1) ⇒ (3) we’ll do in lecture and (2) ⇒ (3) is an
exercise. Now assume (3) and define

Θ : M → L⊕N
m #→ (σ(m), β(m))

and show this is an isomorphism. !
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Let us get back to the groups HomR(M,N): Let α ∈ HomR(M, N) and let ξ : N →
X be an R-module homomorphism. We then define

ξ∗ : HomR(M,N)→ HomR(M,X)

by ξ∗(α) = ξ ◦ α. In other words, HomR(M,−) is a covariant functor. Now let
ψ : Y →M be an R-module homomorphism. We define

ψ∗ : HomR(M,N)→ HomR(Y,N)

by ψ∗(α) = α ◦ ψ. We say HomR(−, N) is a contravariant functor.

Theorem 2.6. Let X and Y be R-modules and let

0 !! L
α !! M

β !! N !! 0
be a short exact sequence. Then the following sequences are exact:

(1) 0 !! HomR(Y, L)
α∗ !! HomR(Y, M)

β∗ !! HomR(Y,N)

(2) 0 !! HomR(N, X)
β∗ !! HomR(M,X) α∗ !! HomR(L,X).

Proof: We leave (1) as exercise and do (2) in class. !
We say HomR(−, X) and HomR(Y,−) are left exact functors. Neither β∗ nor α∗

have to be surjective. We’ll come back to conditions on X and Y for Hom to be an
exact functor.

Example 2.7. Consider the following short exact sequence of abelian groups:

0→ Z → Q → Q/Z → 0

and let X = Z. Then Hom(Q, Z) = 0 but Hom(Z, Z) '= 0 and the map Hom(Q, Z)→
Hom(Z, Z) is not surjective.

Let us finish this section with two important results, which we’ll come back to and
apply a little later. We shall nevertheless prove them now in great detail as the
methods used are essential to homological algebra, namely diagram chasing. But
first let us say what we mean with a commutative diagram. Consider the following
diagram of R-modules and R-module homomorphisms:

A
α !!

γ

""

B

β

""
C

δ !! D
We say this diagram commutes if β ◦ α = δ ◦ γ.
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Proposition 2.8. [The 5-Lemma]
Let

A !!

α

""

B !!

β

""

C !!

γ

""

D !!

δ

""

E

ε

""
A′ !! B′ !! C ′ !! D′ !! E′

be a commutative diagram with exact rows. Then
(1) If β, δ are monomorphisms, α is an epimorphism, then γ is a monomor-

phism.
(2) If β, δ are epimorphisms and ε is a monomorphism, then γ is an epimor-

phism.
(3) If β, δ are isomorphisms, α is an epimorphism and ε is a monomorphism,

then γ is an isomorphism.

Proof: (3) obviously follows from (1) and (2). For (1), see Peter Kropholler’s notes
[10] and part (2) is an exercise, and a very good and useful one. !

Proposition 2.9. [The Snake-Lemma] Let

A
θ !!

α

""

B
φ !!

β

""

C !!

γ

""

0

0 !! A′ θ′ !! B′ φ′ !! C ′

be a commutative diagram with exact rows. Then there is a natural exact sequence

ker(α)
θ∗ !! ker(β)

φ∗ !! ker(γ) δ !! coker(α)
θ′∗ !! coker(β)

φ′∗ !! coker(γ).

Moreover, if θ is a monomorphism and φ′ is an epimorphism, θ∗ is a monomor-
phism and φ′∗ is an epimorphism.

Before we embark of the proof of this Lemma, let us first note that both kernel and
cokernel are functorial, i.e. whenever there’s a commutative diagram

A
α !!

γ

""

B

β

""
C

δ !! D

we can insert kernels and cokernels into this diagram and have induced maps γ∗
and β∗ making the new, bigger diagram commute:

ker(α) !! !!

γ∗

""

A
α !!

γ

""

B

β

""

!! !! coker(α)

β∗
""

ker(δ) !! !! C
δ !! D !! !! coker(δ)

Proof: The main part is the construction of the connecting map δ, which we will
do in detail. The we need to prove exactness at each of 4 places. We also have to
check naturality of δ. For a very detailed account see [10]. !
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3. Projective modules

Projective modules are basically the bread and butter of homological algebra, so
let’s define them. But first, let’s do free modules:

Definition 3.1. Let F be an R-module and X be a subset of F . We say F is
free on X if for every R-module A and every map ξ : X → A there exists a unique
R-module homomorphism φ : F → A such that φ(x) = ξ(x) for all x ∈ X.

In other words F is free if there’s a unique R-module homorphism φ making the
following diagram commute:

F

φ!

""

X
##

i
##!!!!!!!

ξ $$"
""

""
""

A
A very hard look at this diagram now gives us the following lemma.

Lemma 3.2. Let F and F ′ be two modules free, on X. Then F ∼= F ′.

This gives us uniqueness, i.e. we can talk of the free module on X. The following
gives us existence and a little bit more.

Exercise 3.3. Let X be a set and consider the R-module

E =
⊕

x∈X

R.

For each x ∈ X consider the following map
sx : X → R

sx(y) =

{
1 x=y
0 otherwise

Let S = {sx |x ∈ X}. Show
(1) E is free on S.
(2) For every free module F on X there is an isomorphism Θ : E → F , such

that Θ(sx) = x for all x ∈ X.
(3) F is free on X if and only if every element f ∈ F can be written uniquely

as f =
∑

x∈X axx where ax ∈ R and all but a finite number of ax = 0.

Example 3.4.
(1) Let k be a field. Then every k-module is free. This is nothing other than

saying that every k-vector space has a basis. (For the infinite dimensional
case we need Zorn’s Lemma).

(2) A free Z-module is the same as a free abelian group.
(3) Q is not a free Z-module.

Lemma 3.5. Every R-module M is the homomorphic image of a free R-module.
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Proposition 3.6. Let P be an R-module. Then the following statements are
equivalent:

(1) HomR(P,−) is an exact functor
(2) P is a direct summand of a free module.
(3) Every epimorphism M " P splits.
(4) For every epimorphism π : A " B of R-modules and every R-module

map α;P → B there is an R-module homomorphism φ : P → A such that
π ◦ φ = α.

Definition 3.7. Every R-module satisfying the conditions of Proposition 3.6
is called a projective R-module.

Remark 3.8. Every free R-module is projective, but not every projective is
free. Take, for example R = Z/6Z ∼= Z/2Z⊕ Z/3Z and P = Z/2Z but (0, 1)P = 0,
which contradicts uniqueness of expression of elements in a free module.

Lemma 3.9. A direct sum P =
⊕

i∈I Pi is projective iff each Pi, i ∈ I is
projective.

Remark 3.10. Let k be a field and V a vector space of countable dimension.
Then there is a k-vector space isomorphism V ∼= V ⊕ V. Hence, for the ring
R = Endk(V ) we have the following chain of isomorphisms:

R = Endk(V ) = Homk(V, V ) ∼= Homk(V⊕V, V ) ∼= Homk(V, V )⊕Homk(V, V ) = R⊕R

and there are free modules on a set of n elements which are isomorphic to free
modules on a set with m elements where n '= m.

Lemma 3.11. [Eilenberg-Swindle] Let R be a ring and P be a projective
module. Then there exists a free module such that

P ⊕ F ∼= F.

Let us prove one more important result before we return to define cohomology.

Definition 3.12. Let M be an R-module. A projective resolution of M is an
exact sequence

· · · !! Pi+1
di !! Pi

di+1 !! · · · d

1
!! P1

d

0
!! P0

ε !! M !! 0,

where every Pi, i ≥ 0, i ∈ Z, is a projective module.

We also use the short notation
P∗ " M.

Lemma 3.13. [Schanuel’s Lemma] Let

K ↪→ P " M

and
K ′ ↪→ P ′ " M

be two short exact sequences such that P and P ′ are projective. Then

K ⊕ P ′ ∼= K ′ ⊕ P.

In particular, K is projective if and only if K ′ is projective.

As a direct consequence of the proof we can now prove inductively the following
result about projective resolutions (exercise):
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Proposition 3.14. Let

P∗ " M and P′
∗ " M

be two projective resolutions of M and denote by Kn = ker(Pn → Pn−1) and
K ′ = ker(P ′

n → P ′
n−1) the n-th kernels respectively. Then, for all n ≥ 0

Kn ⊕ P ′
n ⊕ Pn−1 ⊕ ... ∼= K ′

n ⊕ Pn ⊕ P ′
n−1 ⊕ ....

In particular Kn is projective iff K ′
n is projective.

Definition 3.15. Let M be an R-module. We say M has finite projective
dimension over R, pdRM < ∞, if M admits a projective resolution P∗ " M of
finite length. In particular, there exists an n ≥ 0 such that

0→ Pn → Pn−1 → · · ·→ P0 →M → 0

is a projective resulution of n. The smallest such n is called the projective dimension
of M .

Remark 3.16. The long Schanuel’s Lemma 3.14 implies that if pdRM ≤ n for
some n, then in every projective resolution Q∗ " M, the kernel
Kn−1 = ker(Qn−1 → Qn−2) is projective.
Projective modules have projective dimension equal to 0.

4. Cochain complexes

In this section we will give a first definition of the Ext-groups. We will later see a
more axiomatic approach. The approach in this section will be very hands-on.
Let d∗ : P∗ " M be a projective resolution of the R-module M and let N be an
arbitrary R-module. Apply the functor HomR(−M) to this projective resolution
and we obtain a sequence of abelian groups (careful, it’s not necessarily exact: see
Lemma 2.6):

0→ HomR(M, N)→ HomR(P0, N)→ HomR(P1, N)→ · · ·
· · ·→ HomR(Pi, N)→ HomR(Pi+1, N)→ · · ·

Exercise 4.1. Let us denote by δi = d∗i : HomR(Pi, N)→ HomR(Pi+1, N) for
all i ≥ 0 and by δ−1 : HomR(M, N) → HomR(P0, N). Show that for all i ≥ −1,
δiδi−1 = 0, i.e. composition of two consecutive maps in the above sequence is zero.

Definition 4.2. A cochain complex is a family C = (Cq, δq) of abelian groups
Cq together with homomorphisms δq : Cq → Cq+1 such that for all q ∈ Z,

δq+1δq = 0.

The kernel Zq(C) = ker(δq) ⊆ Cq is called the group of q − Cocycles.
The image Bq(C) = im(δq−1) ⊆ Cq is called the group of q − Coboundaries

Since, by definition, δq+1δq = 0, it follows that Bq ⊆ Zq ⊆ Cq and we can make
the following definition:

Definition 4.3. The quotient group

Hq(C) = Zq(C)/Bq(C)

is called the q-th cohomology group of C.
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Remark 4.4. Let C be exact at Cq. Then Bq = Zq implying Hq(C) = 0.

We can dow define cohomology of the cochain complex HomR(P∗, N) above, but
it still remains to show that it won’t change when we choose a different projective
resolution of M .

Definition 4.5. Let C = (Cq, δq) and C′ = (C ′q, δ′q) be two cochain com-
plexes. A cochain map f : C→ D is a system f = (fq)q∈Z of homomorphisms
fq : Cq → C ′q such that δ′q−1fq = fq−1δq for all q ∈ Z.

That is, we have a ladder of commutative squares:

· · · !! Cq−1
δq−1 !!

fq−1

""

Cq
δq !!

fq

""

Cq+1
δq+1 !!

fq+1

""

· · ·

· · · !! C ′q−1
δ′q−1 !! C ′q

δ′q−1 !! C ′q+1
δ′q+1 !! · · ·

and we often forget the subscripts to our maps, i.e. we just write

fδ = δf.

Definition 4.6. Let f and g : (Cq, δ)q∈Z → (C ′q, δ)′q∈Z be two cochain maps.
We say f and g are homotopic if there is a system Ψ = (Ψq)q∈Z of homomorphisms
Ψq : Cq → C ′q−1 such that for all q ∈ Z :

δ′q−1 ◦Ψq + Ψq+1 ◦ δq = fq − gq.

In particular, if we have two commutative ladders as above, we can fill in Ψ as
follows,

· · · !! Cq−1 δ !!

f

%%
g

&&

Ψ

''

Cq δ !!

f

((
g

))

Ψ

**

Cq+1 δ !!

f

%%
g

&&

Ψ

**

· · ·

· · · !! C ′q−1 δ′ !! C ′q δ′ !! C ′q+1 δ′ !!
''

Ψ

· · ·
such that, in short,

δ′Ψ + Ψδ = f − g.

Lemma 4.7.
(1) Every cochain map f : C→ C′ induces a homomorphism of abelian groups

fq
∗ = Hq(f) : Hq(C)→ Hq(C ′).

(2) Let f and g : C→ C′ be homotopic cohcain-maps. Then f∗ = g∗.

To apply this to projective resolutions, let P∗ " M be a projective resolution and
consider the deleted projective resolution

· · ·→ Pi → Pi−1 → P1 → P0 → 0.

Note that the sequence is still exact everywhere except at P0. But note also that
M = coker(P1 → P0). We denote by HomR(P∗, N) the cochain complex resulting
from applying HomR(−, N) to the deleted resolution.

Theorem 4.8. Let P∗ " M and Q∗ " M be projective resolutions of the
R-module M. Then for all n ∈ Z and all R-modules N ,

Hn(HomR(P∗, N)) ∼= Hn(HomR Q∗, N)).
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Definition 4.9. Let M and N be R-modules and P∗ " M be a projective
resolution of M . We define

Extn
R(M,N) ∼= Hn(HomR(P∗, N)).

By the above theorem 4.8, this definition is independent of the choice of projective
resolution of M . Please note, that for all n < 0, the n-th Ext-group vanishes.

Exercise 4.10. Let M and N be R-modules. Prove
(1) Ext0(M,N) ∼= HomR(M,N).
(2) For every projective R-module P and all n ≥ 1, Extn(P,N) = 0.

5. Long exact sequences in cohomology

Let C = (C, d)n∈Z and C′ = (C ′, d′)n∈Z be two cochain complexes and let f : C→ C′

be a cochain map. We say f is a monomorphism(epimorphism/isomorphism) if for
each n ∈ Z the maps fn : Cn → C ′n are monomorphisms (epimorphisms/isomorphisms).
Therefore it makes perfect sense to talk about short exact sequences of cochain com-
plexes. In particular,

C′′ ↪→ C " C′

is a short exaxt sequence of cochain complexes if, for all n ∈ Z,

C ′′n ↪→ Cn " C ′n

is a short exact sequence of abelian groups.
We could have defined these terms in a more sophisticated manner, noting that the
category of cochain complexes is an abelian category and so notions of monomor-
phisms, epimorphisms and isomorphisms have a category theoretical definition. We
would also have to prove that our naive definition agrees with this definition.

Theorem 5.1. For every short exact sequence

0 !! C′′ α !! C
β !! C′ !! 0

of cochain complexes there are natural connecting maps δ such that there is a long
exact sequence in cohomology:

· · · δ !! Hn(C ′′)
α∗ !! Hn(C)

β∗ !! Hn(C ′) δ !! Hn+1(C ′′)
α∗ !! Hn+1(C) !! · · ·

The connecting map δ : Hn(C ′)→ Hn+1(C ′′) natural means that for every commu-
tative diagram of cochain complexes with exact rows

C′′ !! !!

φ′′

""

C !! !!

φ

""

C′

φ′

""
D′′ !! !! D !! !! C′

the following diagram commutes for every n ∈ Z:

Hn(C ′) δ !!

φ′∗
""

Hn+1(C ′′)

δ′′∗
""

Hn(D′) δ !! Hn+1(D′′).
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Exercise 5.2. Let
C′′ !! !!

φ′′

""

C !! !!

φ

""

C′

φ′

""
D′′ !! !! D !! !! C′

be a commutative diagram of cochain complexes. Prove that whenever any two of
the cochain maps φ′′, φ,φ′ induce an isomorphism in cohomology, then so does the
third.

Next we would like to derive long exact sequences for ExtR(M,N). To do this we
need to build short exact sequences of projective resolutions, for which the following
lemma is an essential step.

Lemma 5.3. [Horseshoe-Lemma] Let M ′′ ↪→ M " M ′ be a short exact
sequence of R-modules and let K ′′ ↪→ P ′′ " M ′′ and K ′ ↪→ P ′ " M ′ be short
exact sequences with P ′′ and P ′ projective. Then there is a commutative diagram

0 !! K ′′ !!
""

""

K !!
""

""

K ′ !!
""

""

0

0 !! P ′′ η !!

π′′

""""

P ′′ ⊕ P
µ !!

""""

P ′ !!

π′

""""

0

0 !! M ′′ α !! M
β !! M ′ !! 0

where η(π′′) = (p′′, 0) and µ(p′′, p′) = p′ are the natural inclusion and projection
repectively.

Proof: Since P ′ is projective, there exists a λ : P ′ →M such that βλ = π′. Define

π : P ′′ ⊕ P → M
(p′′, p′) #→ απ′′(p′′) + λ(p′)

!

Corollary 5.4. Let M ′′ ↪→M " M ′ be a short exact sequence of R-modules.
Then there is a short exact sequence of projective resolutions

P′′
∗ ↪→ P∗ " P′

∗.

And now we can apply Theorem 5.1 to Ext:

Theorem 5.5. Let M ′′ ↪→ M " M ′ be a short exact sequence of R-modules.
And let N be an arbitrary R-module. Then there are long exact sequences in coho-
mology

(1)

· · ·→ Extn(N, M ′′)→ Extn(N, M)→ Extn(N, M ′)→ Extn+1(N, M ′′)→ · · ·

(2)

· · ·→ Extn(M ′, N)→ Extn(M,N)→ Extn(M ′′, N)→ Extn+1(M ′, N)→ · · ·
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Lemma 5.6. [Dimension shifting] Let K ↪→ P " M be the beginning of a
projective resolution of M and let N be an R-module. Then for all n ≥ 1,

Extn(K, N) ∼= Extn+1(M,N).

Proof: Apply Theorem 5.5 and Exercise 4.10. !

Now let us have a more detailed look at projective dimension. Recall, Definition
3.15 that a module M is said to have pdRM ≤ n if there is a projective resolution

0→ Pn → · · ·→ P1 → P0 →M → 0

of length n. We say pdRM = n if there is no projective resolution of shorter length.
Let’s summarise all we know so far:

Proposition 5.7. Let M be an R-module. Then the following statments are
equivalent:

(1) pdRM ≤ n.
(2) Exti

R(M,−) = 0 for all i > n
(3) Extn+1

R (M,−) = 0
(4) Let 0→ Kn−1 → Pn−1 → · · ·→ P1 → P0 →M → 0 be an exact sequence

with Pi projective for all 0 ≤ i ≤ n− 1. Then Kn−1 is projective.

Exercise 5.8. Let M ′′ ↪→ M " M ′ be a short exact sequence of R-modules.
Prove the following:

(1) pdM ′ ≤ sup{pdM, pdM ′′ + 1}.
(2) pdM ≤ sup{pdM ′′,pdM ′}.
(3) pdM ′′ ≤ sup{pdM, pdM ′ − 1}.

(This is an exercise in applying Theorem 5.5)

Let us finish this section with a very useful observation:

Proposition 5.9. Let M be an R-module such that pdM = n. Then there
exists a free R-module F such that

Extn(M,F ) '= 0.

6. Injective modules

Definition 6.1. Let I be an R-module. We say I is injective if for every
injective R-module homomorphism ι : A ↪→ B and every R-module homomorphism
α : A→ I there exists an R-module homomorphism β : B → I such that βι = α.

Proposition 6.2. Let I be an R-module. Then the following are equivalent:
(1) I is injective.
(2) HomR(−, I) is exact.
(3) Every injective R-module homomorphism I ↪→ B splits, where B an arbi-

trary R-module.

Proof: This is an exercise. !
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Proposition 6.3. Let I be an injective module. Then for every R-module M
and all n ≥ 1,

Extn(M, I) = 0.

Proof: Let P∗ " M be a projective resolution of M . Then HomR(P∗, I) is exact
in degree n > 0. !
The reader will have noticed that injective modules have dual properties to those
of projective modules. We have seen how to construct projective modules (3.3) and
that every module has a projective mapping onto it (3.5). Analogous results hold
but are slightly more complicated. One can show how to build injectives and that
every module maps into an injective. A thorough account of these facts can be
found in Rotman’s book [25, pages 65–71].

Exercise 6.4. Prove the following:
(1) Let {Ej | j ∈ J} be a family of injective modules, then

∏
j∈J Ej is injective.

(2) Every summand of an injective module is injective.

7. An axiomatic approach to cohomology

We have seen before that we can set up cohomology using category theoretical
language, such that Ext is just an example. Let us begin by recalling a few of the
definitions in category theory. A detailed account of all the main results we might
be needing later can be found in Hilton-Stammbach [9, Chapter II, Sections 1–6.].
A category C consists of three sets of data:

• A class of objects A, B, C, ...
• To each pair of objects A, B of C a set of morphisms C(A, B) (f : A→ B)

from A to B
• to each triple of objects A, B,C of C a law of composition C(A, B) ×

C(B, C)→ C(A, C) ((f, g) #→ g ◦ f).
satisfying the following three axioms:

(1) The sets C(A, B) and C(A′, B′) are disjoint unless A = A′ and B = B′.
(2) given f : A→ B, g : B → C and h : C → D then h(gf) = (hg)f.
(3) To each object A there is a morphism 1A : A → A such that for any

f : A→ B and g : C → A, f1A = f and 1Ag = g.

Here is a small, by no means exhaustive list of categories:
• The category S of sets and functions
• The category G of groups and group homomorphisms
• The category Ab of abelian groups and homomorphisms
• The category Top of topological spaces and continuous functions
• The category Vk of vector spaces over a field k and linear transformations
• The category R of rings and ring homomorphisms
• The category ModR of (left) R-modules and linear maps.

We now need a transformation from one category to another. This is called a
functor. A functor F : C → D is a rule associating to each object A ∈ C an object
FA ∈ D and to every morphism f ∈ C(A, B) a morphism Ff ∈ D(FA,FB) such
that

F (fg) = (Ff)(Fg), F (1A) = 1FA.
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Let us look at a few examples:

• The embedding of a subcategory C0 into C is a functor.
• Underlying every R-module M there is a set. Hence we get the forgetful

functor ModR → S.
• ModR(A, B) = HomR(A, B) can be given the structure of an abelian

group. Fix A, then we obtain a functor HomR(A,−) : ModR → Ab by
HomR(A,−)(B) = HomR(A, B).

• Similarly, we have functors Extn
R(A,−) : ModR → Ab.

A quick check shows that HomR(−, A) is not a functor, but we can repair this
easily. For every category C define the opposite category Copp, which has the same
objects as C but the morhisms sets are defined to be Copp(A, B) = C(B, A). Now
we can see, that both HomR(−, A) and Extn

R(−, A) are functors from the opposite
category Modopp

R to Ab. We also say these are contravariant functors from ModR

to Ab.
Let us finally come to the notion of a natural transformation. Naturality is an
important concept we already have spent some time explaining before:
Let F and G be two functors C→ D. Then a natural transformation t : F → G is
a rule assigning to each object A ∈ C a morphism tA : FA→ GA such that for any
morphism f : A→ B in C the following diagram commutes:

FA
tA !!

Ff

""

GA

Gf

""
FB

tB !! GB.

We have seen a natural transformation in Lemma 1.7: For every R-module M there
is a natural isomorphism: φ : HomR(R,M)→M defined by f #→ f(1). The map φ
is a natural transformation from HomR(R,−) to the identity functor.

From now on let R and S denote two rings and we consider the two categories
ModR and ModS . In most of our applications S = Z and ModS = Ab.

Definition 7.1. A cohomological functor from ModR to ModS is a family
(Un)n∈Z of functors Un : ModR → ModS together with natural connecting maps
δ : Un(M ′)→ Un+1(M ′′) for each short exact sequence M” ↪→M " M ′ and each
n ∈ Z such that the following axiom holds:

AXIOM (Long exact sequence)
For each short exact sequence 0 !! M ′′ ι !! M

π !! M ′ !! 0 there is a
long exact sequence

· · · δ !! Un(M ′′)
ι∗ !! Un(M)

π∗ !! Un(M ′) δ !! Un+1(M ′′)
ι∗ !! · · ·

We also require the following optional axiom

AXIOM (Coeffaceability)
Un is zero for all n < 0 and Un(I) = 0 for all injective R-modules and all n ≥ 1.
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It is extremely important to understand the significance of the maps δ to be natural.
Let

M ′′ !! ι !!

φ′′

""

M
π !! !!

φ

""

M ′

φ′

""
N ′′ !! η !! N

ρ !! !! N ′

be a commutative diagram of R-modules with exact rows. Then the naturality of
δ ensures we get a commutative ladder

· · · δ !! Un(M ′′)
ι∗ !!

φ′′∗
""

Un(M)
π∗ !!

φ∗

""

Un(M ′) δ !!

φ′∗
""

Un+1(M ′′)
ι∗ !!

φ′′∗
""

· · ·

· · · δ !! Un(N ′′)
η∗ !! Un(M)

ρ∗ !! Un(M ′) δ !! Un+1(M ′′)
η∗ !! · · ·

Commutativity of the squares not involving δ follows directly from functoriality of
each Un.

Example 7.2. Ext∗(M,−) is a coeffaceable cohomological functor from ModR

to Ab. We have shown the long exact sequence axiom in Theorem 5.5 and coefface-
ability follows from Proposition 6.3.

Theorem 7.3. Let U∗ and V ∗ be two cohomological functors from ModR to
ModS such that U∗ is coeffaceable. Then any natural map ν0 : U0 → V 0 extends
uniquely to a natural map ν∗ : U∗ → V ∗

Exercise 7.4. Use Theorem 7.3 to show that the definition of Ext∗(M,−) is
independent of the choice of projective resolution of M . Hint: Use the fact that
H0(Hom(P∗, N)) ∼= HomR(M,N) for any projective resolution P∗ " M.

Exercise 7.5. Use Theorem 7.3 to show that composition of maps

HomR(B, C)×HomR(A, B)→ HomR(A, C)

extends to a biadditive product, the Yoneda product

Extn
R(B, C)× Extm(A, B)→ Extm+n

R (A, C).

8. Chain complexes

A chain complex (C∗, d) of R-modules is a family (Cn)n∈Z of R-modules together
with maps d : Cn → Cn−1 such that composition of two consecutive maps is zero, i.e.
dd = 0. We write Zn = ker(Cn → Cn−1) for the n-cycles and Bn = im(Cn+1 → Cn)
for the n-cycles and the n-th homology of C∗ is defined to be

Hn(C∗) = Zn/Bn.

Alternatively, we may say that a chain complex (C∗, d) of R-modules is a family
(Cn)n∈Z of R-modules together with maps d : Cn → Cn−1 such that (Ĉn)n∈Z =
(C−n)n∈Z is a cochain complex and Hn(C∗) = H−n(Ĉ∗). All theorems we have
established for cohomology work for homology without requiring seperate proof. In
particular, every short exact sequence of chain complexes

C′′
∗ ↪→ C∗ " C′

∗

gives rise to a long exact sequence in homology with natural connecting maps:

· · ·→ Hn(C ′′)→ Hn(C)→ Hn(C ′)→ Hn−1(C ′′)→ Hn−1(C)→ · · · .


