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1. INTRODUCTION

This course is an introduction to C*-algebras, which belongs to the mathematical area of operator algebras. Ba-
sically, the goal is to study operators on Hilbert spaces, but not each single operator at a time in an isolated way.
Instead, the idea is to look at collections of operators, so that we allow for interactions, and then study the structures
obtained in this way. These structures are what we call operator algebras.

So what is the motivation to study operator algebras? Here is what the founding fathers, Murray and von Neumann,
wrote in one of the first papers on operator algebras:

Murray and Von Neumann, On rings of operators, Annals of Math. (2) 37 (1936), no. 1, 116–229.

All these predictions turned out to be true. Even today, there are strong interactions between operator algebras and
operator theory, quantum physics, and the theory of unitary group representations. Actually, much more turned
out to be true, as there are also very interesting connections between operator algebras and topology, geometry or
dynamical systems.

In this course, we will develop the basics of a particular class of operator algebras, so-called C*-algebras. Our
goal is to prove two main structural results. The first one tells us how commutative C*-algebras look like. This
result provides the justification why we often view C*-algebra theory as non-commutative topology. The second
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result gives a description of general C*-algebras. It justifies why we can think of C*-algebras as operator algebras,
and it also explains the name “C*-algebras”. Along the way, we will also get to know more about the structure of
C*-algebras and learn techniques how to work with them.

We refer the reader to [1, 2, 3, 4] for more detailed treatments of the subject.
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2. BANACH ALGEBRAS

Definition 2.1. An algebra is a vector space with an associative bilinear multiplication.

A normed algebra A is an algebra with norm ‖·‖, such that ‖xy‖ ≤ ‖x‖‖y‖ for all x,y ∈ A.

A Banach algebra is a complete, normed algebra.

From now on, all algebras will be over C.

The completion of a normed algebra is a Banach algebra.

Example 2.2. Let G be a discrete group. Then `1(G) := { f : G→ C: ∑x∈G| f (x)|< ∞} is a Banach space with
respect to ‖ f‖1 := ∑x∈G| f (x)|. Define the convolution ( f ∗ g)(s) = ∑t∈G f (t)g(t−1s). With the convolution as
multiplication, `1(G) becomes a Banach algebra.

Proposition 2.3. Let A be a Banach algebra with unit 1. Then

1.) For x ∈ A, ‖x‖< 1⇒ 1− x is invertible. More generally, ‖x‖< λ ⇒ λ − x is invertible.
2.) GL(A) is open and GL(A)→ GL(A), x 7→ x−1 is continuous.

Here λ − x stands for λ1− x, and GL(A) is the set of invertible elements in A.

Proof. 1.) (1− x)−1 = ∑
∞
n=0 xn, and we have λ − x = λ (1−λ−1x).

2.) Let x ∈GL(A), y ∈ A, ‖x− y‖< 1
‖x−1‖ . Then y = x− (x−y) = x(1−x−1(x−y)), and 1−x−1(x−y) is invertible

by 1.). The formula for (1− x−1(x− y))−1 from 1.) shows continuity. �

Definition 2.4. Let A be an algebra with unit 1. For x ∈ A, define the spectrum of x as

Sp(x) := {λ ∈ C: λ − x /∈ GL(A)} .

Proposition 2.5. Let A be a Banach algebra with unit. For x∈A, Sp(x) is closed, and Sp(x)⊆{λ ∈ C: |λ | ≤ ‖x‖}.

Proof. C\Sp(x) is the pre-image of GL(A) under λ 7→ λ −x. The second statement follows from Proposition 2.3,
1.). �

Proposition 2.6. Let A be an algebra with unit. For x,y ∈ A, we have Sp(xy)∪{0}= Sp(yx)∪{0}.
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Proof. Let 0 6= λ ∈ C. We want to show that λ − xy ∈ GL(A) ⇔ λ − yx ∈ GL(A). We may assume λ = 1
(otherwise divide by λ ), and it is enough to show⇒ by symmetry. If 1− xy is invertible, then there exists u ∈ A
with u(xy−1) = (xy−1)u = 1 (where 1 is the unit in A). Set w := yux−1. Then

(yx−1)w = yxyux− yux− yx+1 = y(xy−1)ux− yx+1 = 1,
w(yx−1) = yuxyx− yux− yx+1 = yu(xy−1)x− yx+1 = 1.

�

Proposition 2.7. Let B be a Banach algebra with unit 1, 1 ∈ A ⊆ B a closed subalgebra. For x ∈ A, we have
Sp B(x)⊆ Sp A(x). Moreover, if λ ∈ ∂Sp A(x), then λ ∈ Sp B(x).

Proof. The first claim follows from GL(A) ⊆ GL(B). For the second claim, suppose λ ∈ ∂Sp A(x). Then there is
a sequence (λn)n in (Sp A(x))

c such that limn λn = λ . Assume that λ /∈ Sp B(x). Then (λ − x)−1 exists in B. But
(λn−x)−1 converges to (λ−x)−1 in B by Proposition 2.3, 2.), so that (λ−x)−1 lies in A because A is closed.  �

Corollary 2.8. In the situation of the proposition above, Sp A(x)⊆ R implies Sp A(x) = Sp B(x).

Theorem 2.9. Let A be a Banach algebra with unit 1. For x ∈ A, we have Sp(x) 6= /0. If we define r(x) :=
max{|λ |: λ ∈ Sp(x)}, then r(x) = limn

n
√
‖xn‖.

Proof. We have that λ − x is invertible if |λ | > r(x). If (λ − x)−1 exists for all λ ∈ C, then λ 7→ (λ − x)−1

would be holomorphic. But we have limλ→∞(λ − x)−1 = 0. Hence, by Liouville’s Theorem, this would imply that
(λ − x)−1 ≡ 0.  

We have λ − x = λ (1− x
λ
), so that (λ − x)−1 = λ−1

∑
∞
n=0(

x
λ
)n for all |λ | > r(x). Now convergence of ∑

∞
n=0(

x
λ
)n

implies that
∥∥( x

λ
)n
∥∥ ≤ 1 for all but finitely many n, so that limsupn

n
√
‖xn‖ ≤ |λ |. So r(x) ≥ limsupn

n
√
‖xn‖. But

for λ ∈ Sp(x), we have λ n ∈ Sp(xn) because λ n−xn = (λ−x)∑
n−1
k=0 λ kxn−1−k, and thus |λ n| ≤ ‖xn‖, which implies

r(x)≤ liminfn
n
√
‖xn‖. �

3. COMMUTATIVE BANACH ALGEBRAS

Theorem 3.1 (Gelfand-Mazur). Let A be a Banach algebra with unit, and suppose that A is a field. Then A = C.

Proof. For x ∈ A, let λ ∈ Sp(x) 6= /0. Then λ − x is not invertible, which implies λ − x = 0, so that x = λ ∈ C. �

Definition 3.2. Let A be a commutative Banach algebra with unit. Define

SpecA := {ϕ : A→ C unital algebra homomorphism} .

Proposition 3.3. Let A be a commutative Banach algebra with unit. Then there is a one-to-one correspondence
between {maximal ideals of A} and SpecA given by kerϕ ←[ ϕ and I 7→ (ϕ : A � A/I = C).

Remark 3.4. SpecA is a compact space with respect to the topology of point-wise convergence (limα ϕα = ϕ if
and only if limα ϕα(x) = ϕ(x) for all x ∈ A).

Example 3.5. Let A = C(X), where X is a topological space which is compact Hausdorff. Then A, together with
‖·‖

∞
, is a commutative Banach algebra with unit. In this case, X → SpecA, x 7→ evx is a homeomorphism. Here

evx( f ) = f (x) for all f ∈C(X).

Remark 3.6. Let A be a commutative Banach algebra with unit. For x ∈ A, we have Sp(x) = {ϕ(x): ϕ ∈ SpecA}.
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4. C*-ALGEBRAS

Definition 4.1. Let A be an algebra. An involution * on A is a map A→ A, x 7→ x∗ such that

(i) * is antilinear ((λx+µy)∗ = λx∗+µy∗),
(ii) * is antimultiplicative ((xy)∗ = y∗x∗),

(iii) * is involutive ((x∗)∗ = x).

Definition 4.2. A C*-algebra is a Banachalgebra A with an involution * such that ‖x∗x‖= ‖x‖2 for all x ∈ A.

Examples 4.3. 1) Let H be a Hilbert space, L(H) the set of all bounded linear operators H → H. Then L(H)
is an algebra under point-wise addition, and composition as multiplication. Together with the operator norm
(‖x‖= supξ∈H,‖ξ‖≤1 ‖xξ‖), L(H) becomes a Banach algebra. An involution is given by sending x to its adjoint x∗

(〈xξ ,η〉= 〈ξ ,x∗η〉). In this way, L(H) becomes a C*-algebra. We have

‖x‖2 = sup
ξ

‖xξ‖2 = sup
ξ

〈xξ ,xξ 〉= sup
ξ

〈x∗xξ ,ξ 〉 ≤ ‖x∗x‖ ,

and we always have ‖x∗x‖ ≤ ‖x∗‖‖x‖. So we get ‖x‖= ‖x∗‖ and thus ‖x∗x‖= ‖x‖2.

2) Every closed subalgebra of a C*-algebra, which is invariant under the involution, is itself a C*-algebra.

3) Let X be a locally compact Hausdorff space. Define

C0(X) := { f → C: f continuous, f vanishes at ∞} ,
where f vanishes at ∞ means ∀ε > 0 ∃K ⊆ X compact such that | f (t)| < ε ∀t /∈ K. Then C0(X), together with
point-wise addition, multiplication, involution (complex conjugation), and ‖·‖

∞
is a C*-algebra.

Remark 4.4. 1) Let A be a C*-algebra. Then ‖x∗‖= ‖x‖ for all x ∈ A. If A has a unit 1, then 1∗ = 1 and ‖1‖= 1.

2) The condition ‖x∗x‖= ‖x‖2 (C*-identity) can be replaced by ‖x‖2 ≤ ‖x∗x‖.
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