
Proposition 4.5. (a) Let A be a C*-algebra with unit. Let x ∈ A with x∗ = x. Then r(x) = ‖x‖.

(b) The norm on a C*-algebra A with unit is unique.

Proof. (a) x = x∗ implies x2 = x∗x, so that induction on n shows
∥∥x2n∥∥ = ‖x‖2n

. Hence r(x) = limn
2n√‖x2n‖ =

limn
2n
√
‖x‖2n

= ‖x‖.

(b) Assume that ‖·‖1 and ‖·‖2 are two C*-norms on A. Then ‖x‖2
1 = ‖x∗x‖1 = r(x∗x) = ‖x∗x‖2 = ‖x‖

2
2. �

Remark 4.6. Let A and B be C*-algebras. Then A⊕ B is a C*-algebra with coordinate-wise operations and
‖(x,y)‖= max{‖x‖ ,‖y‖}. More generally, given a family (Ai)i∈I of C*-algebras, then

∏
i∈I

Ai :=
{
(xi)i∈I: xi ∈ Ai ∀i, sup

i
‖xi‖< ∞

}
is a C*-algebra with coordinate-wise operations and ‖(xi)‖= supi ‖xi‖.

Let us now construct the unitalization of a C*-algebra. Given an algebra A, form the vectorspace A⊕C and denote
it by Ã, i.e., Ã = {(x,λ ): x ∈ A, λ ∈ C}. Ã becomes an algebra under component-wise addition and multiplication
(x,λ )(y,µ) = (xy+λy+ µx,λ µ). Then 1 := (0,1) is the unit of Ã. Moreover, A→ Ã, x 7→ (x,0) is an injective
algebra homomorphism, which allows us to view A as a subset of Ã. If A is a Banach algebra, then Ã becomes a
Banach algebra with unit under the norm ‖(x,λ )‖ = ‖x‖+ |λ |. An involution on A extends to an involution on Ã
given by (x,λ )∗ = (x∗,λ ).

Proposition 4.7. Let A be a C*-algebra. There is a unique norm on Ã making it into a C*-algebra.

Proof. By Proposition 4.5 (b), it suffices to show existence.

Case 1: A has a unit e. Then Ã→ A⊕C(1−e), (x,λ ) 7→ (λe+x,λ (1−e)) is a *-algebra isomorphism, with inverse
(x−λe,λ )←[ (x,λ (1− e)). Note that C(1− e) ∼= C as *-algebras, so that we obtain Ã ∼= A⊕C. By Remark 4.6,
there is a C*-norm on A⊕C, hence on Ã.

Case 2: A has no unit. Let L(A) be the set of bounded linear operators on A. Define Ã→ L(A), x 7→ Lx, where
Lx(b) := xb. Then for x = (a,λ ) = λ1+a ∈ Ã (recall that 1 = (0,1)), we define

‖x‖ := ‖Lx‖= sup{‖(λ1+a)b‖ : b ∈ A, ‖b‖ ≤ 1} .
‖·‖ has the following properties:

For all a ∈ A, ‖a‖A = ‖La‖ = ‖a‖Ã. This is because ‖a‖‖a∗‖ = ‖a‖2 = ‖aa∗‖ ≤ ‖La‖‖a∗‖, so that ‖a‖ ≤ ‖La‖;
and ‖La(z)‖= ‖az‖ ≤ ‖a‖‖z‖, so that ‖La‖ ≤ ‖a‖.

It is submultiplicative: ‖Lxy‖= ‖LxLy‖ ≤ ‖Lx‖‖Ly‖.

It is a norm: Let x= λ1+a with λ 6= 0. Assume ‖x‖= ‖Lx‖= 0. Then Lx = 0, so that xz= 0 ∀z∈A. So λ z+az= 0
∀z ∈ A⇒ z =− a

λ
z ∀z ∈ A. Hence − a

λ
must be a unit in A.  

So Ã is a Banach algebra with respect to ‖·‖. It remains to prove the C*-identity, or equivalently, ‖Lx‖2 ≤ ‖Lx∗x‖.
Given x ∈ Ã and ε > 0, there is a ∈ A with ‖a‖ ≤ 1 and ‖xa‖ ≥ ‖Lx‖− ε . Then

‖Lx∗x‖ ≥ ‖a∗‖‖x∗xa‖ ≥ ‖a∗x∗xa‖= ‖xa‖2 ≥ (‖Lx‖− ε)2.

�

Remark 4.8. Let A and B be algebras, ϕ : A→ B an algebra homomorphism. Then ϕ extends to ϕ̃ : Ã→ B̃ given
by ϕ̃(λ1+ x) = λ1+ϕ(x).
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Theorem 4.9. Let A be a Banach algebra with involution *, such that ‖x∗‖= ‖x‖ ∀x∈A, and let B be a C*-algebra.
Let ϕ : A→ B be a *-homomorphism. Then ‖ϕ(x)‖ ≤ ‖x‖ ∀x ∈ A.

Proof. As ϕ̃ is an algebra homomorphism, we have Sp B̃(ϕ̃(a))⊆ Sp Ã(a) ∀a ∈ Ã. Hence

‖x‖2 ≥ ‖x∗x‖ ≥ r(x∗x)≥ r(ϕ(x)∗ϕ(x)) = ‖ϕ(x)∗ϕ(x)‖= ‖ϕ(x)‖2 .

�

Remark 4.10. Let A be an algebra with unit 1, and u ∈ A invertible. Then Sp(u−1) =
{

λ−1: λ ∈ Sp(u)
}

.

Reason: We have 0 /∈ Sp(u),Sp(u−1). So let λ 6= 0. We have to show λ1− u ∈ GL(A)⇒ λ−11− u−1 ∈ GL(A).
But this follows from (λ1−u)z = 1⇒ (u−1−λ−11)z = λ−1u−1 (which shows that λ−11−u−1 ∈ GL(A)).

Definition 4.11. Let A be a C*-algebra. For x ∈ A, define Sp(x) := Sp A(x) if A has a unit, and define Sp(x) :=
Sp Ã(x) if A has no unit.

Remark 4.12. 1) We had the algebra homomorphism π : Ã → L(A) given by π(x)(a) = xa. Then Sp(x) =
Sp

π(Ã)π(x) whether or not A has a unit.

2) If A has no unit, then we have 0 ∈ Sp(x) ∀x ∈ A.

3) If A has a unit, then Sp Ã(x) = Sp A(x)∪{0}.

Theorem 4.13. Let A be a C*-algebra.

1) If A has a unit 1, and u ∈ A is unitary, i.e., uu∗ = 1 = u∗u, then Sp(u)⊆ S1 ⊆ C.

2) If x ∈ A is self-adjoint, i.e., x satisfies x = x∗, then Sp(x)⊆ R.

3) Let B⊆ A be a sub-C*-algebra. Then for every x ∈ B, Sp B(x) = Sp A(x).

4) Let ϕ : A→ C be an algebra homomorphism. Then ϕ(x∗) = ϕ(x) ∀x ∈ A.

Proof. 1) λ ∈ Sp(u)⇒ λ−1 ∈ Sp(u−1) = Sp(u∗) by Remark 4.10. u∗u = 1⇒ ‖u‖2 = ‖u∗u‖ = ‖1‖ ⇒ ‖u‖ = 1.
So we have |λ | ≤ ‖u‖= 1 and |λ−1| ≤ ‖u∗‖= 1. This implies λ ∈ S1.

2) We may assume that A has a unit, otherwise work in Ã. Define u := eix = ∑
∞
n=0

(ix)n

n! . Then u∗ = e−ix = u−1, i.e.,

u is unitary. Let λ ∈ Sp(x). Define z := ∑
∞
n=1

in(x−λ )n−1

n! . [“ ei(x−λ )−1
x−λ

”] Then eix− eiλ = (x−λ )zeiλ is not invertible,
so that eiλ ∈ Sp(u)⊆ S1 by 1). So λ ∈ R.

3) If x = x∗, the claim follows from 2) and Corollary 2.8. Now let x be arbitrary. We may assume that 1 ∈ B ⊆ A,
otherwise work with B̃ ⊆ Ã. Let b := λ − x ∈ B. Suppose a = b−1 exists in A. We have to show that b ∈ GL(B).
ab = ba = 1⇒ a∗b∗ = b∗a∗ = 1⇒ bb∗a∗a = ba = 1⇒ bb∗ is invertible in A, and self-adjoint, so bb∗ is invertible
in B (see above). So b is invertible in B.

4) We always have ϕ(y) ∈ Sp(y). So if y ∈ A satisfies y = y∗, then ϕ(y) ∈ R. For arbitrary x, write x = Re(x)+ i ·
Im(x), where Re(x) = x+x∗

2 , Im(x) = x−x∗
2i . Then Re(x), Im(x) are self-adjoint. So

ϕ(x∗) = ϕ(Re(x)− i · Im(x)) = ϕ(Re(x))− i ·ϕ(Im(x)) = ϕ(x).

�

Definition 4.14. Let A be a C*-algebra, M ⊆ A. We define C∗(M) as the smallest sub-C*-algebra of A which
contains M, called the sub-C*-algebra of A generated by M, i.e., C∗(M) =

⋂
{B: B⊆ A sub-C∗-algebra, M ⊆ B}.
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Remark 4.15. Let PM be the linear span of products of elements in M∪M∗. In other words, PM is the set of non-
commutative polynomials in M and M∗. Then PM is a sub-*-algebra of A, and PM ⊆C∗(M), so that PM ⊆C∗(M),
and by minimality, we must have PM =C∗(M).

Remark 4.16. Let D be a C*-algebra, ϕ, ψ : C∗(M)→ D *-homomorphisms with ϕ|M = ψ|M. Then ϕ = ψ .

Definition 4.17. Let A be a C*-algebra. An element x ∈ A is called normal if xx∗ = x∗x.

Remark 4.18. x is normal if and only if C∗(x) is commutative.

Theorem 4.19. Let B be a commutative C*-algebra with unit. Then χ : B → C(SpecB) is an isometric *-
isomorphism.

Proof. It is clear that χ is an algebra homomorphism. By Theorem 4.13, we have χ(x∗)(ϕ) = ϕ(x∗) = ϕ(x) =
χ(x)(ϕ). χ is isometric since ‖χ(b)‖2

∞
=
∥∥∥χ(b)χ(b)

∥∥∥
∞

= ‖χ(b∗b)‖
∞
= r(b∗b) = ‖b∗b‖ = ‖b‖2. Moreover, χ

is surjective since χ(B) ⊆ C(SpecB) is a closed sub-*-algebra which separates points. So the Stone-Weierstrass
Theorem implies χ(B) =C(SpecB). �

Definition 4.20. Let B be a commutative C*-algebra. We define SpecB := Spec B̃ \
{

0̃
}

, where 0̃ : B̃→ C is the
extension of the zero homomorphism 0 : B→ C.

Remark 4.21. SpecB is locally compact. Restricting the isomorphism B̃∼=C(Spec B̃) from Theorem 4.19 to B, we
obtain an isomorphism B∼=

{
f ∈C(Spec B̃): f (0̃) = 0

}∼=C0(SpecB).

Remark 4.22. Let B be a commutative C*-algebra with unit e. Then B̃ ∼= B⊕C(1− e) as C*-algebras. Given
ϕ ∈ SpecB, we obtain ϕ ′ ∈ Spec B̃ by setting ϕ ′(b+λ (1−e)) = ϕ(b). The map ϕ 7→ ϕ ′ identifies our old definition
of the spectrum, i.e., {ϕ : B→ C: ϕ homomorphism, ϕ(e) = 1}, with our new definition Spec B̃\

{
0̃
}

.

Theorem 4.23. Let A be a C*-algebra and x ∈ A normal.

(a) Suppose A has a unit 1. Then SpecC∗(x,1)→ Sp(x), ϕ 7→ ϕ(x) is a homeomorphism.

(b) Let A be arbitrary, i.e., not necessarily with unit. Then SpecC∗(x)→ Sp(x) \ {0} , ϕ 7→ ϕ(x) is a homeomor-
phism.

Proof. (a) ϕ 7→ ϕ(x) is injective, surjective since Sp(x) = {ϕ(x): ϕ ∈ SpecC∗(x,1)}, and continuous by definition
of the topology on SpecC∗(x,1). As our spaces are compact, this implies that our map is a homeomorphism.

(b) We know by (a) that Spec(C∗(x)˜)→ Sp(x), ϕ 7→ ϕ(x) is a homeomorphism, and it sends 0̃ to 0. Our claim
follows. �

Functional calculus. 1.) Let A be a C*-algebra with unit 1, and x ∈ A normal. Then we have an isomorphism
C∗(x,1) ∼= C(SpecC∗(x,1)) ∼= C(Sp(x)) sending x to idSp(x). We denote the inverse C(Sp(x))→ C∗(x,1) ⊆ A
by f 7→ f (x). This gives rise to functional calculus. We have ( f + g)(x) = f (x) + g(x), ( f g)(x) = f (x)g(x),
f (x) = f (x)∗, and this generalizes functional calculus with polynomials or absolutely convergent power series. If
f (z) = ∑

∞
m,n=0 λm,nzmzn, viewed as a continuous function on C or Sp(x), then f (x) = ∑

∞
m,n=0 λm,nxmx∗n.

2.) Let A be a general C*-algebra, not necessarily with unit, and x ∈ A normal. Then we have an isomorphism
C∗(x)∼=C0(Sp(x)) = { f ∈C(Sp(x)): f (0) = 0}. Again, the inverse gives rise to functional calculus C0(Sp(x))→
C∗(x)⊆ A, f 7→ f (x).
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