Proposition 4.5. (a) Let A be a C*-algebra with unit. Let $x \in A$ with $x^* = x$. Then r(x) = ||x||.

(b) The norm on a C*-algebra A with unit is unique.

Proof. (a) $x = x^*$ implies $x^2 = x^*x$, so that induction on *n* shows $||x^{2^n}|| = ||x||^{2^n}$. Hence $r(x) = \lim_n \sqrt[2^n]{||x^{2^n}||} = \lim_n \sqrt[2^n]{||x||^{2^n}} = ||x||$.

(b) Assume that $\|\cdot\|_1$ and $\|\cdot\|_2$ are two C*-norms on *A*. Then $\|x\|_1^2 = \|x^*x\|_1 = r(x^*x) = \|x^*x\|_2 = \|x\|_2^2$.

Remark 4.6. Let *A* and *B* be C*-algebras. Then $A \oplus B$ is a C*-algebra with coordinate-wise operations and $||(x,y)|| = \max\{||x||, ||y||\}$. More generally, given a family $(A_i)_{i \in I}$ of C*-algebras, then

$$\prod_{i\in I} A_i := \left\{ (x_i)_{i\in I} \colon x_i \in A_i \; \forall i, \sup_i \|x_i\| < \infty \right\}$$

is a C*-algebra with coordinate-wise operations and $||(x_i)|| = \sup_i ||x_i||$.

Let us now construct the unitalization of a C*-algebra. Given an algebra A, form the vectorspace $A \oplus \mathbb{C}$ and denote it by \tilde{A} , i.e., $\tilde{A} = \{(x, \lambda) : x \in A, \lambda \in \mathbb{C}\}$. \tilde{A} becomes an algebra under component-wise addition and multiplication $(x, \lambda)(y, \mu) = (xy + \lambda y + \mu x, \lambda \mu)$. Then 1 := (0, 1) is the unit of \tilde{A} . Moreover, $A \to \tilde{A}, x \mapsto (x, 0)$ is an injective algebra homomorphism, which allows us to view A as a subset of \tilde{A} . If A is a Banach algebra, then \tilde{A} becomes a Banach algebra with unit under the norm $||(x, \lambda)|| = ||x|| + |\lambda|$. An involution on A extends to an involution on \tilde{A} given by $(x, \lambda)^* = (x^*, \overline{\lambda})$.

Proposition 4.7. Let A be a C*-algebra. There is a unique norm on \tilde{A} making it into a C*-algebra.

Proof. By Proposition 4.5 (b), it suffices to show existence.

Case 1: *A* has a unit *e*. Then $\tilde{A} \to A \oplus \mathbb{C}(1-e)$, $(x,\lambda) \mapsto (\lambda e + x, \lambda(1-e))$ is a *-algebra isomorphism, with inverse $(x - \lambda e, \lambda) \leftrightarrow (x, \lambda(1-e))$. Note that $\mathbb{C}(1-e) \cong \mathbb{C}$ as *-algebras, so that we obtain $\tilde{A} \cong A \oplus \mathbb{C}$. By Remark 4.6, there is a C*-norm on $A \oplus \mathbb{C}$, hence on \tilde{A} .

Case 2: *A* has no unit. Let $\mathcal{L}(A)$ be the set of bounded linear operators on *A*. Define $\tilde{A} \to \mathcal{L}(A), x \mapsto L_x$, where $L_x(b) := xb$. Then for $x = (a, \lambda) = \lambda 1 + a \in \tilde{A}$ (recall that 1 = (0, 1)), we define

$$||x|| := ||L_x|| = \sup \{ ||(\lambda 1 + a)b|| : b \in A, ||b|| \le 1 \}.$$

 $\|\cdot\|$ has the following properties:

For all $a \in A$, $||a||_A = ||L_a|| = ||a||_{\tilde{A}}$. This is because $||a|| ||a^*|| = ||a||^2 = ||aa^*|| \le ||L_a|| ||a^*||$, so that $||a|| \le ||L_a||$; and $||L_a(z)|| = ||az|| \le ||a|| ||z||$, so that $||L_a|| \le ||a||$.

It is submultiplicative: $||L_{xy}|| = ||L_xL_y|| \le ||L_x|| ||L_y||$.

It is a norm: Let $x = \lambda 1 + a$ with $\lambda \neq 0$. Assume $||x|| = ||L_x|| = 0$. Then $L_x = 0$, so that $xz = 0 \forall z \in A$. So $\lambda z + az = 0$ $\forall z \in A \Rightarrow z = -\frac{a}{\lambda} z \forall z \in A$. Hence $-\frac{a}{\lambda}$ must be a unit in A. \nleq

So \tilde{A} is a Banach algebra with respect to $\|\cdot\|$. It remains to prove the C*-identity, or equivalently, $\|L_x\|^2 \le \|L_{x^*x}\|$. Given $x \in \tilde{A}$ and $\varepsilon > 0$, there is $a \in A$ with $\|a\| \le 1$ and $\|xa\| \ge \|L_x\| - \varepsilon$. Then

$$||L_{x^*x}|| \ge ||a^*|| ||x^*xa|| \ge ||a^*x^*xa|| = ||xa||^2 \ge (||L_x|| - \varepsilon)^2.$$

Remark 4.8. Let *A* and *B* be algebras, $\varphi : A \to B$ an algebra homomorphism. Then φ extends to $\tilde{\varphi} : \tilde{A} \to \tilde{B}$ given by $\tilde{\varphi}(\lambda 1 + x) = \lambda 1 + \varphi(x)$.

Theorem 4.9. Let *A* be a Banach algebra with involution *, such that $||x^*|| = ||x|| \forall x \in A$, and let *B* be a C*-algebra. Let $\varphi : A \to B$ be a *-homomorphism. Then $||\varphi(x)|| \le ||x|| \forall x \in A$.

Proof. As $\tilde{\varphi}$ is an algebra homomorphism, we have $\operatorname{Sp}_{\tilde{B}}(\tilde{\varphi}(a)) \subseteq \operatorname{Sp}_{\tilde{A}}(a) \quad \forall a \in \tilde{A}$. Hence

$$||x||^{2} \ge ||x^{*}x|| \ge r(x^{*}x) \ge r(\varphi(x)^{*}\varphi(x)) = ||\varphi(x)^{*}\varphi(x)|| = ||\varphi(x)||^{2}.$$

Remark 4.10. Let *A* be an algebra with unit 1, and $u \in A$ invertible. Then $\text{Sp}(u^{-1}) = \{\lambda^{-1}: \lambda \in \text{Sp}(u)\}$.

Reason: We have $0 \notin \text{Sp}(u), \text{Sp}(u^{-1})$. So let $\lambda \neq 0$. We have to show $\lambda 1 - u \in GL(A) \Rightarrow \lambda^{-1}1 - u^{-1} \in GL(A)$. But this follows from $(\lambda 1 - u)z = 1 \Rightarrow (u^{-1} - \lambda^{-1}1)z = \lambda^{-1}u^{-1}$ (which shows that $\lambda^{-1}1 - u^{-1} \in GL(A)$).

Definition 4.11. Let A be a C*-algebra. For $x \in A$, define $\operatorname{Sp}(x) := \operatorname{Sp}_A(x)$ if A has a unit, and define $\operatorname{Sp}(x) := \operatorname{Sp}_{\tilde{A}}(x)$ if A has no unit.

Remark 4.12. 1) We had the algebra homomorphism $\pi : \tilde{A} \to \mathcal{L}(A)$ given by $\pi(x)(a) = xa$. Then $\text{Sp}(x) = \text{Sp}_{\pi(\tilde{A})}\pi(x)$ whether or not *A* has a unit.

2) If *A* has no unit, then we have $0 \in \text{Sp}(x) \ \forall x \in A$.

3) If *A* has a unit, then $\operatorname{Sp}_{\tilde{A}}(x) = \operatorname{Sp}_{A}(x) \cup \{0\}$.

Theorem 4.13. Let A be a C*-algebra.

1) If A has a unit 1, and $u \in A$ is unitary, i.e., $uu^* = 1 = u^*u$, then $\operatorname{Sp}(u) \subseteq S^1 \subseteq \mathbb{C}$.

2) If $x \in A$ is self-adjoint, i.e., x satisfies $x = x^*$, then $\text{Sp}(x) \subseteq \mathbb{R}$.

3) Let $B \subseteq A$ be a sub-C*-algebra. Then for every $x \in B$, $\operatorname{Sp}_B(x) = \operatorname{Sp}_A(x)$.

4) Let $\varphi : A \to \mathbb{C}$ be an algebra homomorphism. Then $\varphi(x^*) = \overline{\varphi(x)} \ \forall x \in A$.

Proof. 1) $\lambda \in \text{Sp}(u) \Rightarrow \lambda^{-1} \in \text{Sp}(u^{-1}) = \text{Sp}(u^*)$ by Remark 4.10. $u^*u = 1 \Rightarrow ||u||^2 = ||u^*u|| = ||1|| \Rightarrow ||u|| = 1$. So we have $|\lambda| \le ||u|| = 1$ and $|\lambda^{-1}| \le ||u^*|| = 1$. This implies $\lambda \in S^1$.

2) We may assume that *A* has a unit, otherwise work in \tilde{A} . Define $u := e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!}$. Then $u^* = e^{-ix} = u^{-1}$, i.e., *u* is unitary. Let $\lambda \in \text{Sp}(x)$. Define $z := \sum_{n=1}^{\infty} \frac{i^n (x-\lambda)^{n-1}}{n!}$. $[\frac{e^{i(x-\lambda)}-1}{x-\lambda}]$ Then $e^{ix} - e^{i\lambda} = (x-\lambda)ze^{i\lambda}$ is not invertible, so that $e^{i\lambda} \in \text{Sp}(u) \subseteq S^1$ by 1). So $\lambda \in \mathbb{R}$.

3) If $x = x^*$, the claim follows from 2) and Corollary 2.8. Now let *x* be arbitrary. We may assume that $1 \in B \subseteq A$, otherwise work with $\tilde{B} \subseteq \tilde{A}$. Let $b := \lambda - x \in B$. Suppose $a = b^{-1}$ exists in *A*. We have to show that $b \in GL(B)$. $ab = ba = 1 \Rightarrow a^*b^* = b^*a^* = 1 \Rightarrow bb^*a^*a = ba = 1 \Rightarrow bb^*$ is invertible in *A*, and self-adjoint, so bb^* is invertible in *B* (see above). So *b* is invertible in *B*.

4) We always have $\varphi(y) \in \text{Sp}(y)$. So if $y \in A$ satisfies $y = y^*$, then $\varphi(y) \in \mathbb{R}$. For arbitrary x, write $x = \text{Re}(x) + i \cdot \text{Im}(x)$, where $\text{Re}(x) = \frac{x+x^*}{2}$, $\text{Im}(x) = \frac{x-x^*}{2i}$. Then Re(x), Im(x) are self-adjoint. So

$$\varphi(x^*) = \varphi(\operatorname{Re}(x) - i \cdot \operatorname{Im}(x)) = \varphi(\operatorname{Re}(x)) - i \cdot \varphi(\operatorname{Im}(x)) = \varphi(x).$$

Definition 4.14. Let A be a C*-algebra, $M \subseteq A$. We define $C^*(M)$ as the smallest sub-C*-algebra of A which contains M, called the sub-C*-algebra of A generated by M, i.e., $C^*(M) = \bigcap \{B: B \subseteq A \text{ sub-}C^*\text{-algebra}, M \subseteq B\}$.

Remark 4.15. Let P_M be the linear span of products of elements in $M \cup M^*$. In other words, P_M is the set of noncommutative polynomials in M and M^* . Then P_M is a sub-*-algebra of A, and $P_M \subseteq C^*(M)$, so that $\overline{P_M} \subseteq C^*(M)$, and by minimality, we must have $\overline{P_M} = C^*(M)$.

Remark 4.16. Let *D* be a C*-algebra, $\varphi, \psi : C^*(M) \to D^*$ -homomorphisms with $\varphi|_M = \psi|_M$. Then $\varphi = \psi$.

Definition 4.17. *Let A be a* C^* *-algebra. An element* $x \in A$ *is called normal if* $xx^* = x^*x$.

Remark 4.18. *x* is normal if and only if $C^*(x)$ is commutative.

Theorem 4.19. Let B be a commutative C*-algebra with unit. Then $\chi : B \to C(\text{Spec }B)$ is an isometric *isomorphism.

Proof. It is clear that χ is an algebra homomorphism. By Theorem 4.13, we have $\chi(x^*)(\varphi) = \varphi(x^*) = \overline{\varphi(x)} = \overline{\chi(x)(\varphi)}$. χ is isometric since $\|\chi(b)\|_{\infty}^2 = \|\overline{\chi(b)}\chi(b)\|_{\infty} = \|\chi(b^*b)\|_{\infty} = r(b^*b) = \|b^*b\| = \|b\|^2$. Moreover, χ is surjective since $\chi(B) \subseteq C(\operatorname{Spec} B)$ is a closed sub-*-algebra which separates points. So the Stone-Weierstrass Theorem implies $\chi(B) = C(\operatorname{Spec} B)$.

Definition 4.20. Let *B* be a commutative C*-algebra. We define $\operatorname{Spec} B := \operatorname{Spec} \tilde{B} \setminus \{\tilde{0}\}$, where $\tilde{0} : \tilde{B} \to \mathbb{C}$ is the extension of the zero homomorphism $0 : B \to \mathbb{C}$.

Remark 4.21. Spec *B* is locally compact. Restricting the isomorphism $\tilde{B} \cong C(\operatorname{Spec} \tilde{B})$ from Theorem 4.19 to *B*, we obtain an isomorphism $B \cong \{f \in C(\operatorname{Spec} \tilde{B}): f(\tilde{0}) = 0\} \cong C_0(\operatorname{Spec} B)$.

Remark 4.22. Let *B* be a commutative C*-algebra with unit *e*. Then $\tilde{B} \cong B \oplus \mathbb{C}(1-e)$ as C*-algebras. Given $\varphi \in \operatorname{Spec} B$, we obtain $\varphi' \in \operatorname{Spec} \tilde{B}$ by setting $\varphi'(b + \lambda(1-e)) = \varphi(b)$. The map $\varphi \mapsto \varphi'$ identifies our old definition of the spectrum, i.e., $\{\varphi : B \to \mathbb{C}: \varphi \text{ homomorphism}, \varphi(e) = 1\}$, with our new definition $\operatorname{Spec} \tilde{B} \setminus \{\tilde{0}\}$.

Theorem 4.23. *Let* A *be a* C^* *-algebra and* $x \in A$ *normal.*

(a) Suppose A has a unit 1. Then $\operatorname{Spec} C^*(x, 1) \to \operatorname{Sp}(x)$, $\varphi \mapsto \varphi(x)$ is a homeomorphism.

(b) Let A be arbitrary, i.e., not necessarily with unit. Then $\operatorname{Spec} C^*(x) \to \operatorname{Sp}(x) \setminus \{0\}, \varphi \mapsto \varphi(x)$ is a homeomorphism.

Proof. (a) $\varphi \mapsto \varphi(x)$ is injective, surjective since $\text{Sp}(x) = \{\varphi(x): \varphi \in \text{Spec } C^*(x, 1)\}$, and continuous by definition of the topology on $\text{Spec } C^*(x, 1)$. As our spaces are compact, this implies that our map is a homeomorphism.

(b) We know by (a) that Spec $(C^*(x)) \to Sp(x)$, $\varphi \mapsto \varphi(x)$ is a homeomorphism, and it sends $\tilde{0}$ to 0. Our claim follows.

Functional calculus. 1.) Let *A* be a C*-algebra with unit 1, and $x \in A$ normal. Then we have an isomorphism $C^*(x,1) \cong C(\operatorname{Spec} C^*(x,1)) \cong C(\operatorname{Sp}(x))$ sending *x* to $\operatorname{id}_{\operatorname{Sp}(x)}$. We denote the inverse $C(\operatorname{Sp}(x)) \to C^*(x,1) \subseteq A$ by $f \mapsto f(x)$. This gives rise to functional calculus. We have (f+g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x), $\overline{f}(x) = f(x)^*$, and this generalizes functional calculus with polynomials or absolutely convergent power series. If $f(z) = \sum_{m,n=0}^{\infty} \lambda_{m,n} z^m \overline{z}^n$, viewed as a continuous function on \mathbb{C} or $\operatorname{Sp}(x)$, then $f(x) = \sum_{m,n=0}^{\infty} \lambda_{m,n} x^m x^{*n}$.

2.) Let *A* be a general C*-algebra, not necessarily with unit, and $x \in A$ normal. Then we have an isomorphism $C^*(x) \cong C_0(\operatorname{Sp}(x)) = \{f \in C(\operatorname{Sp}(x)): f(0) = 0\}$. Again, the inverse gives rise to functional calculus $C_0(\operatorname{Sp}(x)) \to C^*(x) \subseteq A, f \mapsto f(x)$.