Proposition 4.5. (a) Let A be a C*-algebra with unit. Let x € A with x* = x. Then r(x) = ||x||.

(b) The norm on a C*-algebra A with unit is unique.
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= ||Ix||*". Hence r(x) = lim, 3/[x?"] =

. . . . n
Proof. (a) x = x* implies x> = x*x, so that induction on n shows sz

lim, /[l = 2]

(b) Assume that ||-||, and ||-||, are two C*-norms on A. Then ||x||? = ||x*x||, = r(x*x) = [[x*x]||, = ||x[3- O

Remark 4.6. Let A and B be C*-algebras. Then A & B is a C*-algebra with coordinate-wise operations and
I(x,y)|| = max {||x]|, |ly|| }. More generally, given a family (A;);c; of C*-algebras, then

HAi = {(x,-)ig: x; € A; Vi, sup ”le < 00}
i€l i
is a C*-algebra with coordinate-wise operations and ||(x;)|| = sup; ||xi]|-

Let us now construct the unitalization of a C*-algebra. Given an algebra A, form the vectorspace A & C and denote
itby A, i.e, A= {(x,A): x €A, A € C}. A becomes an algebra under component-wise addition and multiplication
(x,A)(y,it) = (xy +Ay+ux,Au). Then 1:= (0,1) is the unit of A. Moreover, A — A, x — (x,0) is an injective
algebra homomorphism, which allows us to view A as a subset of A. If A is a Banach algebra, then A becomes a
Banach algebra with unit under the norm ||(x,A)|| = ||x|| +|A|. An involution on A extends to an involution on A
given by (x,A)* = (x*,1).

Proposition 4.7. Let A be a C*-algebra. There is a unique norm on A making it into a C*-algebra.

Proof. By Proposition 4.5 (b), it suffices to show existence.

Case 1: Ahasaunite. ThenA —A®C(1—e), (x,A) > (Ae+x,A(1 —e)) is a *-algebra isomorphism, with inverse
(x—2Ae,A) <= (x,A(1 —e)). Note that C(1 —e) = C as *-algebras, so that we obtain A = A @ C. By Remark 4.6,
there is a C*-norm on A @ C, hence on A.

Case 2: A has no unit. Let £(A) be the set of bounded linear operators on A. Define A — L(A), x — L., where
Ly(b) :=xb. Then for x = (a,A) = A1 +a € A (recall that 1 = (0, 1)), we define

[l = l[La]| = sup{[[(A1 +a)b]|: b € A, [[b] <1}

||-|| has the following properties:

For all a € A, |lal, = ||La|l = |lal| 5. This is because ||al| |la*|| = la|* = [laa" | < | Lql|[la*]|, so that [lal] < | Lqll;
and |[La(2)[| = llaz]| < [lal[[|z]], so that [[La[| < |al|

It is submultiplicative: ||Lyy|| = ||LiLy|| < ||L|| [|Ly]]-

Itisanorm: Letx = A1+a with A # 0. Assume ||x|| = ||Ly|| =0. Then L, =0, so that xz =0Vz € A. So Az+az=0
Vz€A = z=—47zVz€A. Hence —7 must be a unitin A. }

So A is a Banach algebra with respect to ||-||. It remains to prove the C*-identity, or equivalently, ||L||* < ||Lyx|-
Given x € A and € > 0, there is a € A with ||a|| < 1 and ||xa|| > ||L.|| — €. Then
Lol > [la” || [|x"xall > fla"x"xal| = lxal|* > (||Ls]| - €)*.

0

Remark 4.8. Let A and B be algebras, ¢ : A — B an algebra homomorphism. Then ¢ extends to ¢ : A — B given
by p(Al+x) =A1+@(x).
5



Theorem 4.9. Let A be a Banach algebra with involution *, such that ||x*|| = ||x|| Vx € A, and let B be a C*-algebra.
Let ¢ : A — B be a *-homomorphism. Then ||@(x)|| < ||x|| Vx € A.

Proof. As @ is an algebra homomorphism, we have Sp 5(¢(a)) C Sp ;(a) Va € A. Hence
el > [lx“xl] > r(x"x) > r(@(x) 9 (x)) = 9(x) (x| = lp()]>.

Remark 4.10. Let A be an algebra with unit 1, and u € A invertible. Then Sp (') = {27 1 € Sp(u)}.

Reason: We have 0 ¢ Sp (u),Sp (u~!). So let A # 0. We have to show A1 —u € GL(A) = A~'1 —u~! € GL(A).
But this follows from (A1 —u)z=1= (u=! —=A~'1)z=2A"'u~! (which shows that A~'1 —u~! € GL(A)).

Definition 4.11. Let A be a C*-algebra. For x € A, define Sp (x) := Sp4(x) if A has a unit, and define Sp (x) :=
Sp i (x) if A has no unit.

Remark 4.12. 1) We had the algebra homomorphism 7 : A — L£(A) given by 7(x)(a) = xa. Then Sp(x) =
Sp x(4)7(x) whether or not A has a unit.

2) If A has no unit, then we have 0 € Sp (x) Vx € A.

3) If A has a unit, then Sp ;(x) = Sp 4 (x) U{0}.
Theorem 4.13. Let A be a C*-algebra.

1) If A has a unit 1, and u € A is unitary, i.e., uu* = 1 = u*u, then Sp (u) C S' C C.
2) If x € A is self-adjoint, i.e., x satisfies x = x*, then Sp (x) C R.
3) Let B C A be a sub-C*-algebra. Then for every x € B, Sp g(x) = Sp 4(x).

4) Let ¢ : A — C be an algebra homomorphism. Then @ (x*) = ¢(x) Vx € A.

Proof. 1) A €Sp(u) = A" e Sp(u') = Sp(u*) by Remark 4.10. u*u =1 = |jul]* = ||u*ul| = ||1]| = ||u] = 1.
So we have |A| < |lu|| =1 and |A~!| < |lu*|| = 1. This implies A € S!.

2) We may assume that A has a unit, otherwise work in A. Define u := e = ¥, n, .Thenu* =e *=u"!,ie,
. o M(=A)"1 eel@M 1, . .
u is unitary. Let A € Sp (x). Define z:= Y - L n’}) | e(xi/)l 1] Then e — e* = (x — A)ze' is not invertible,

so that e € Sp(u) C S' by 1). So A € R.

3) If x = x*, the claim follows from 2) and Corollary 2.8. Now let x be arbitrary. We may assume that 1 € B C A,
otherwise work with B C A. Let b:= A —x € B. Suppose a = b~! exists in A. We have to show that b € GL(B).
ab=ba=1= a*'b* =b*a* =1 = bb*a*a=ba =1 = bb" is invertible in A, and self-adjoint, so bb* is invertible
in B (see above). So b is invertible in B.

4) We always have ¢(y) € Sp(y). So if fye A satisfies y = y*, then @(y) € R. For arbitrary x, write x = Re(x) +1-
Im(x), where Re(x) = x+x ,Im(x) = 555 (x), Im(x) are self-adjoint. So

9(x") = p(Re(x) —i-Im(x)) = p(Re(x)) —i- p(Im(x)) = P(¥).

0

Definition 4.14. Let A be a C*-algebra, M C A. We define C*(M) as the smallest sub-C*-algebra of A which
contains M, called the sub-C*-algebra of A generated by M, i.e., C*(M) = (\{B: B C A sub-C*-algebra, M C B}.
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Remark 4.15. Let Py be the linear span of products of elements in M UM*. In other words, Py is thiset of non-
commutative polynomials in M and M*. Then Py is a sub-*-algebra of A, and Py C C*(M), so that Py C C*(M),
and by minimality, we must have Py = C*(M).

Remark 4.16. Let D be a C*-algebra, @, y : C*(M) — D *-homomorphisms with @|y; = y|y. Then ¢ = y.
Definition 4.17. Let A be a C*-algebra. An element x € A is called normal if xx* = x*x.
Remark 4.18. x is normal if and only if C*(x) is commutative.

Theorem 4.19. Let B be a commutative C*-algebra with unit. Then ) : B — C(SpecB) is an isometric *-
isomorphism.

Proof. Tt is clear that y is an algebra homomorphism By Theorem 4.13, we have x(x*)(¢) = ¢(x*) = @(x) =
x(x)(@). 7 is isometric since ||y (b)|% = H H = |lx(b*b)||., = r(b*b) = ||b*b|| = ||b||*. Moreover, x
is surjective since y(B) C C(SpecB) is a closed sub-*—algebra which separates points. So the Stone-Weierstrass
Theorem implies x(B) = C(SpecB). O

Definition 4.20. Let B be a commutative C*-algebra. We define SpecB := SpecB\ {0}, where 0: B — C is the
extension of the zero homomorphism 0 : B — C.

Remark 4.21. Spec B is locally compact. Restricting the isomorphism B = C(SpecB) from Theorem 4.19 to B, we
obtain an isomorphism B = { f € C(SpecB): f(0) =0} = Co(SpecB).

Remark 4.22. Let B be a commutative C*-algebra with unit e. Then B = B® C(1 —e) as C*-algebras. Given
¢ € Spec B, we obtain ¢’ € Spec B by setting ¢’ (b+A (1 —e)) = @(b). The map ¢ > ¢’ identifies our old definition
of the spectrum, i.e., {¢ : B — C: ¢ homomorphism, ¢(e) = 1}, with our new definition Spec B\ {0}.

Theorem 4.23. Let A be a C*-algebra and x € A normal.
(a) Suppose A has a unit 1. Then SpecC*(x,1) — Sp(x), ¢ — @(x) is a homeomorphism.

(b) Let A be arbitrary, i.e., not necessarily with unit. Then SpecC*(x) — Sp(x) \ {0}, ¢ — @(x) is a homeomor-
phism.

Proof. (a) @ — @(x) is injective, surjective since Sp (x) = {@(x): ¢ € SpecC*(x, 1)}, and continuous by definition
of the topology on SpecC*(x, 1). As our spaces are compact, this implies that our map is a homeomorphism.

(b) We know by (a) that Spec (C*(x)") — Sp(x), ¢ +— @(x) is a homeomorphism, and it sends 0 to 0. Our claim
follows. O

Functional calculus. 1.) Let A be a C*-algebra with unit 1, and x € A normal. Then we have an isomorphism
C*(x,1) = C(SpecC*(x,1)) = C(Sp(x)) sending x to idgy (). We denote the inverse C(Sp(x)) — C*(x,1) C A
by f — f(x). This gives rise to functional calculus. We have (f -+ g)(x) = f(x) +g(x), (fg)(x) = f(x)g(x),
f(x) = f(x)*, and this generalizes functional calculus with polynomials or absolutely convergent power series. If
f(z) = Xom n=0Amna2"7", viewed as a continuous function on C or Sp (x), then f(x) = Y7 ,—o Amax"x™".

2.) Let A be a general C*-algebra, not necessarily with unit, and x € A normal. Then we have an isomorphism
C*(x) 2 Co(Sp(x)) ={f € C(Sp(x)): f(0) =0}. Again, the inverse gives rise to functional calculus Cp(Sp (x)) —
C*(x) CA, f = f(x).



