
Examples 4.24. 1.) Let A be a C*-algebra, x ∈ A with x = x∗. Then we can write x in a unique way as x = x+−x−,
where x+ and x− are self-adjoint, Sp(x+),Sp(x−)⊆ [0,∞), x+x− = 0: Define f+ : R→ [0,∞), t 7→max{0, t} and
f− : R→ [0,∞), t 7→ −min{0, t}. Then set x+ := f+(x), x− := f−(x).

2.) Let A and x be as in 1.), and suppose that Sp(x) ⊆ [0,∞). Then there is a unique self-adjoint element a in A
with Sp(a)⊆ [0,∞) with a2 = x: Define a :=

√
x.

Remark 4.25. We have f (Sp(x)) = Sp( f (x)) for f ∈C(Sp(x)) (or f ∈C0(Sp(x)).

5. POSITIVE ELEMENTS IN C*-ALGEBRAS

Definition 5.1. Let A be a C*-algebra. a ∈ A is called positive (a≥ 0) if a = a∗ and Sp(a)⊆ [0,∞).

Remark 5.2. We have seen that every positive element a has a unique square root
√

a in A.

Lemma 5.3. Let A be a C*-algebra with unit 1, a ∈ A self-adjoint, and λ ∈ C with λ ≥ ‖a‖. Then a ≥ 0 if and
only if ‖λ1−a‖ ≤ λ .

Proof. a≥ 0⇔ Sp(a)⊆ [0,∞)⇔ χ(a)= idSp(a)≥ 0⇔‖χ(λ1−a)‖
∞
= ‖λ1−χ(a)‖

∞
≤ λ ⇔‖λ1−a‖≤ λ . �

Proposition 5.4. If a and b are positive, then a+b is positive.

Proof. Set λ := ‖a‖+‖b‖. Then λ ≥‖a+b‖. We have ‖λ − (a+b)‖≤‖‖a‖−a‖+‖‖b‖−b‖≤ λ by Lemma 5.3.
�

Proposition 5.5. Let A be a C*-algebra, a ∈ A. The following are equivalent:

(1) a≥ 0,
(2) There exists a self-adjoint h ∈ A with a = h2,
(3) There exists x ∈ A with a = x∗x.

Proof. (1)⇒ (2): h :=
√

a. (2)⇒ (3): x := h. (3)⇒ (1): We first show that −x∗x≥ 0⇒ x = 0. If −x∗x≥ 0, then
−xx∗ ≥ 0 because Sp(x∗x)∪{0} = Sp(xx∗)∪{0} by Proposition 2.6. Write x = x1 + i · x2 with x1 = Re(x) and
x2 = Im(x). Then

x∗x+ xx∗ = (x2
1 + i · x1x2− i · x2x1 + x2

2)+(x2
1 + i · x2x1− i · x1x2 + x2

2) = 2x2
1 +2x2

2.

So x∗x = 2x2
1+2x2

2−xx∗ ≥ 0, so that Sp(x∗x) = {0}⇒ x∗x = 0⇒ x = 0. Now write x∗x = u−v, where u = (x∗x)+,
v = (x∗x)− and uv = vu = 0. Set y := xv. Then

−y∗y =−vx∗xv =−v(u− v)v = v3 ≥ 0,

so that by the above, y = 0. Hence v3 = 0⇒ v = 0, and x∗x = u≥ 0. �

Definition 5.6. For a C*-algebra A, define A+ := {h ∈ Asa: h≥ 0}, where Asa := {x ∈ A: x = x∗}.

Given x,y ∈ Asa, we write x≤ y if y− x≥ 0.

Then A+ is a convex cone (i.e., h ∈ A+, λ ≥ 0⇒ λh ∈ A+; h1,h2 ∈ A+⇒ h1 +h2 ∈ A+). We have A+∩ (−A+) =
{0}, Asa = A+−A+ and A+ is closed by Lemma 5.3. Moreover, “≤” defines a partial order on Asa (reflexive,
antisymmetric, transitive).

Theorem 5.7. Let A be a C*-algebra.

(a) A+ = {x∗x: x ∈ A}.
(b) Given a,b ∈ Asa and c ∈ A, we have a≤ b⇒ c∗ac≤ c∗bc.
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(c) 0≤ a≤ b⇒ ‖a‖ ≤ ‖b‖.
(d) Assume that A has a unit. If 0≤ a≤ b and a, b are invertible, then 0≤ b−1 ≤ a−1.

Proof. (a) follows from Proposition 5.5.

(b): c∗bc− c∗ac = c∗(b−a)c = c∗(
√

b−a)(
√

b−a)c≥ 0 by (a).

(c): We may assume that A has a unit 1, otherwise work in Ã. Then 0≤ a implies

‖a‖= inf{λ ≥ 0: λ1≥ a} ≤ inf{λ ≥ 0: λ1≥ b}= ‖b‖ .

(d): a≤ b⇒ 1=
√

a−1a
√

a−1≤
√

a−1b
√

a−1⇒ d :=
√

ab−1√a= (
√

a−1b
√

a−1)−1≤ 1⇒ b−1 =
√

a−1d
√

a−1≤√
a−1
√

a−1 = a−1. �

Remark 5.8. Given 0≤ a≤ b in A with α > 0, we cannot in general conclude that aα ≤ bα . (Actually, if 0≤ a≤ b
always implies a2 ≤ b2, then A must be commutative.)

Example 5.9. Let A = M2(C). A becomes a C*-algebra under the usual matrix operations and involution given by(
λ11 λ12
λ21 λ22

)∗
=

(
λ11 λ21

λ12 λ22

)
.

Now consider

p =

(
1 0
0 0

)
, q =

1
2

(
1 1
1 1

)
.

Then p = p∗, q = q∗ and p2 = p, q2 = q, so p,q≥ 0, and we have p≤ p+q, but p2 6≤ (p+q)2.

Proposition 5.10. Let 0≤ β ≤ 1 and 0≤ a≤ b. Then 0≤ aβ ≤ bβ .

Proof. Let α > 0. fα(t) := t
1+αt = α−1(1− (1+αt)−1). Then fα(a)≤ fα(b) by Theorem 5.7 (d). Let t ≥ 0. Then∫

∞

0
fα(t)α−β dα =

∫
∞

0
(1+αt)−1tα−β dα =

∫
∞

0
(1+α)−1tα−β tβ t−1dα,

where we applied the transformation tα → α in the last step. Let γ :=
∫

∞

0 (1+α)−1α−β dα . Note that this integral
converges only for 0≤ β ≤ 1. Then

tβ = γ
−1
∫

∞

0
fα(t)α−β dα.

Thus
bβ −aβ = γ

−1
∫

∞

0
( fα(b)− fα(a))α−β dα ≥ 0.

�

6. APPROXIMATE UNITS, IDEALS, AND QUOTIENTS

Definition 6.1. Let A be a C*-algebra. An approximate unit in A is an increasing net (uλ )λ∈Λ with 0 ≤ uλ ≤ 1
such that limλ uλ x = x = limλ xuλ ∀x ∈ A.

Examples 6.2. 1) Let A = C0(R). Define uN by setting uN ≡ 1 on [−N,N] and uN ≡ 0 on [−N− 1,N + 1]c, and
extend uN linearly on [−N−1,−N]∪ [N,N +1]. Then (uN) is an approximate unit in A.

2) Let A = K(H), the C*-algebra of compact operators on a Hilbert space H, i.e., the closure of the *-algebra of
all finite rank operators. Let e1,e2, . . . be an orthonormal basis for H. Let pn ∈ A be the orthogonal projection
onto the linear span of {e1, . . . ,en}. Then p1 ≤ p2 ≤ p3 ≤ . . . , and (pn) is an approximate unit in A.

Theorem 6.3. Let A be a C*-algebra. Then A has an approximate unit.
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Proof. Let
Λ := {h ∈ A: h≥ 0, ‖h‖< 1} .

First let us show that Λ is directed. Given a,b ∈ A+ with 0≤ a≤ b, we have

a(1+a)−1 = ((1+a)−1)(1+a)−1 = 1− (1+a)−1 ≤ 1− (1+b)−1 = b(1+b)−1.

Now let a,b ∈ Λ be arbitrary. Let a′ := a(1−a)−1, b′ := b(1−b)−1, so that a = a′(1+a′)−1 and b = b′(1+b′)−1.
Then

a = a′(1+a′)−1 ≤ (a′+b′)(1+a′+b′)−1, b = b′(1+b′)−1 ≤ (a′+b′)(1+a′+b′)−1.

Moreover,
∥∥(a′+b′)(1+a′+b′)−1

∥∥ = max
{ t

1+t : t ∈ Sp(a′+b′)
}
< 1. So (a′+ b′)(1+ a′+ b′)−1 ∈ Λ and is a

common upper bound for a and b. This shows that Λ is (upward) directed.

Now, given h≥ 0 in A and n ∈ N, we have h(1
n +h)−1 ∈ Λ, and h(1−h(1

n +h)−1)≤ 1
n (work in Ã if needed). This

is because

t
(

1− t(
1
n
+ t)−1

)
= t

1
n

1
n + t

≤ 1
n
∀t ≥ 0.

For h≥ 0 and g ∈ Λ with h(1
n +h)−1 ≤ g, we have

‖h−gh‖2 =
∥∥h(1−g)2h

∥∥≤ ‖h(1−g)h‖ ≤
∥∥∥∥h
(

1−h(
1
n
+h)−1

)
h
∥∥∥∥≤ 1

n
‖h‖ ,

and similarly ‖h−hg‖2 ≤ 1
n ‖h‖. Hence, for ε > 0 and h ≥ 0 there exists λ0 (:= h(1

n +h)−1, where 1
n ‖h‖ < ε) so

that ‖h−gh‖< ε and ‖h−hg‖< ε ∀g≥ λ0. Now, given an arbitrary x ∈ A, apply the above to h = x∗x. Then we
obtain that ‖x−gx‖2 = ‖(1−g)x∗x(1−g)‖= ‖(1−g)h(1−g)‖ ≤ ‖h−gh‖‖1−g‖→ 0 as g→∞ in Λ. Similarly
for ‖x− xg‖2. �

Remark 6.4. The same proof as for Theorem 6.3 shows that if A is an ideal in a C*-algebra B, then we can find a
net (uλ ) in A satisfying the same properties as in Definition 6.1. For us, ideal always means two-sided ideal.
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