Examples 4.24. [.) Let A be a C*-algebra, x € A with x = x*. Then we can write x in a unique way as x = x4 —x_,
where x. and x_ are self-adjoint, Sp (x4),Sp (x_) C [0,00), x;x_ = 0: Define f1 : R — [0,00), t — max{0,7} and
f-:R—=1[0,00),t — —min{0,¢}. Then set x; := fi(x), x_ := f_(x).

2.) Let A and x be as in 1.), and suppose that Sp (x) C [0,e0). Then there is a unique self-adjoint element a in A
with Sp (a) C [0,%0) with a*> = x: Define a := \/x.
Remark 4.25. We have f(Sp(x)) = Sp(f(x)) for f € C(Sp (x)) (or f € Co(Sp (x)).

5. POSITIVE ELEMENTS IN C*-ALGEBRAS

Definition 5.1. Let A be a C*-algebra. a € A is called positive (a > 0) if a = a* and Sp (a) C [0, o).
Remark 5.2. We have seen that every positive element a has a unique square root /a in A.

Lemma 5.3. Let A be a C*-algebra with unit 1, a € A self-adjoint, and A € C with A > ||a||. Then a > 0 if and
only if [A1 —a| < A.

Proof. a >0« Sp(a) C[0,) & x(a) =idsy () 2 0= ¥ (A1 =) = Al = x(a)ll.. <A < [[A1—a <A. O

Proposition 5.4. If a and b are positive, then a+ b is positive.

Proof. Set A :=||a||+||b||. Then A > ||a+b||. We have ||A — (a+b)|| <||||a|| —al|+]|||p|]| — b|| < A by Lemma 5.3.
]

Proposition 5.5. Let A be a C*-algebra, a € A. The following are equivalent:

(1) a=>0,
(2) There exists a self-adjoint h € A with a = h?,
(3) There exists x € A with a = x*x.

Proof. (1) = (2): h:=+/a. (2) = (3): x:=h. (3) = (1): We first show that —x*x > 0 = x = 0. If —x*x > 0, then
—xx* > 0 because Sp (x*x) U{0} = Sp (xx*) U {0} by Proposition 2.6. Write x = x; +1i-x, with x; = Re(x) and
x2 = Im(x). Then

Xx+xxt = (x%—i—i S X1Xy —1-X0X] —i—x%) + (x%—i—i S XpX] —1-X1X) —i—x%) = 2x%+2x%.

So x*x = 2x% +2x3 —xx* > 0, so that Sp (x*x) = {0} = x*x =0 = x = 0. Now write x*x = u — v, where u = (x*x) .,
v = (x*x)_ and uv = vu = 0. Set y := xv. Then

—y'y = —wx'wv = —v(u—v)y =v* >0,
so that by the above, y = 0. Hence v> =0 = v =0, and x*x = u > 0. 0
Definition 5.6. For a C*-algebra A, define A, :={h € Aga- h > 0}, where Ay :={x € A: x=x"}.

Given x,y € Agy, we writex <y ify—x > 0.

Then A is a convex cone (i.e., h €A, A >0=Ah€A;hj,hp EAL = h +hy €A;). Wehave A, N(—Ay) =
{0}, A =A; — A, and A, is closed by Lemma 5.3. Moreover, “<” defines a partial order on Ay, (reflexive,
antisymmetric, transitive).

Theorem 5.7. Let A be a C*-algebra.

(a) Ay ={x*x: x€A}.
(b) Givena,b € Ag, and ¢ € A, we have a < b = c*ac < c*bc.
8



(© 0<a<b=|a| <|b].
(d) Assume that A has a unit. If 0 < a < b and a, b are invertible, then 0 < b l<al

Proof. (a) follows from Proposition 5.5.
(b): ¢*bc —c*ac = c*(b—a)c = c*(vVb—a)(vb—a)c > 0 by (a).

(c): We may assume that A has a unit 1, otherwise work in A. Then 0 < a implies

la|| =inf{A >0: A1 >a} <inf{A >0: A1 >b} =|b|.

@:a<b=l1=Valava ' <Vabva = d:=Jab ' Va=Va bVa ) ' <l1=b'=ValdVa <
Va"Wal=a. O

Remark 5.8. Given 0 <a < b in A with o > 0, we cannot in general conclude that a* < b*. (Actually, if 0 <a <b
always implies a®> < b?, then A must be commutative.)

Example 5.9. Let A = M,(C). A becomes a C*-algebra under the usual matrix operations and involution given by
Wi A\ (B T
M1 Ax A2 An)’

(1 oy 1/11
P=V\o 0)°9732\1 1)

Then p=p*, g=q* andp2 =p, q2 =gq, so p,q >0, and we have p < p+q, bm‘p2 L (p+q)2.

Now consider

Proposition 5.10. Ler0 < < 1and 0 <a <b. Then 0 < af < bP.

Proof. Leta > 0. fu(t):= - =a '(1—(1+ar)~!). Then fy(a) < fy(b) by Theorem 5.7 (d). Lett > 0. Then

/ fa(t)oc‘ﬁda:/ (1+at)‘1ta‘ﬁda:/ (1+0) ta PP da,
0 0 0

where we applied the transformation o — o in the last step. Let y:= [3°(1 + a)~'a~Pda. Note that this integral
converges only for 0 < 8 < 1. Then

B_ o1 [ -8B
P =y /Ofa(t)oc do.
Thus .
b —af =y [ (fulb)~ fal@)a Pda > 0.

6. APPROXIMATE UNITS, IDEALS, AND QUOTIENTS

Definition 6.1. Ler A be a C*-algebra. An approximate unit in A is an increasing net (uy)ycp with 0 <uy <1
such that limy uyx = x = limy xuy Vx € A.

Examples 6.2. /) Ler A = Cy(R). Define uy by setting uy =1 on [—N,N| and uy =0 on [-N — 1,N + 1], and
extend uy linearly on [—N —1,—N|U[N,N + 1]. Then (uy) is an approximate unit in A.

2) Let A= K(H), the C*-algebra of compact operators on a Hilbert space H, i.e., the closure of the *-algebra of
all finite rank operators. Let ey, es,... be an orthonormal basis for H. Let p, € A be the orthogonal projection
onto the linear span of {ey,...,ey}. Then py < p» < p3 < ..., and (p,) is an approximate unit in A.

Theorem 6.3. Let A be a C*-algebra. Then A has an approximate unit.
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Proof. Let
A:={h€eA:h>0,| k|| <1}.
First let us show that A is directed. Given a,b € A, with 0 < a < b, we have
al+a) ' =((1+a)—D)(I+a) '=1-(+a) ' <1-(14+b)""'=b(1+b)".
Now let a,b € A be arbitrary. Leta' :=a(1 —a)~!, b’ :=b(1—b)"!,sothata=d' (1+a’) ' andb=b'(1+b")"".
Then
a=d(1+d) ' <(d+b)1+d +)", b= (1+D)"' < (d+b)1+d +1)7".
Moreover, ||(d +/)(1+d +)7!| = max {1 €Sp(d'+b)} < 1. So (d+V)(1+d +b)"' € Aandis a
common upper bound for a and b. This shows that A is (upward) directed.

Now, given h > 0in A and n € N, we have /(1 +h)~1 € A, and h(1 —h(L +h)~!) < 1 (work in A if needed). This

is because

1
n

1 = 1
t<1—t(+t)l>:t1” < -Vt >0.
n 4t n

For h > 0 and g € A with h(% +h)~! < g, we have
1 _ 1
gl = 401 = 5728 < 11 = )01 < |1 (1= )] < 2,

and similarly ||k — hg|* < L)in||. Hence, for € > 0 and i > 0 there exists A9 (:= h(: +h)~!, where 1 ||n[| < &) so
that ||h — gh|| < € and ||h — hg|| < € Vg > A9. Now, given an arbitrary x € A, apply the above to 7 = x*x. Then we
obtain that ||x — gx||* = || (1 — g)x*x(1 — g)|| = | (1 — g)h(1 —g)|| < ||h— ghl|| |1 — g|| — 0 as g — oo in A. Similarly
for [|x —xg]|*. O
Remark 6.4. The same proof as for Theorem 6.3 shows that if A is an ideal in a C*-algebra B, then we can find a
net (u; ) in A satisfying the same properties as in Definition 6.1. For us, ideal always means two-sided ideal.
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