
Corollary 6.5. Let I be a closed ideal in a C*-algebra B. Then I = I∗.

Proof. Let uλ ∈ I be an approximate unit in I. Then limλ uλ x = x⇒ limλ x∗uλ = x∗ lies in I as I is closed. �

Theorem 6.6. Let I be a closed ideal in a C*-algebra A. Then A/I is a C*-algebra with respect to the quotient
norm.

Proof. As I = I∗, we can define an involution on A/I by setting ẋ∗ := (x∗)̇. It remains to show that ‖ẋ∗ẋ‖ = ‖ẋ‖2.
Let (uλ ) be an approximate unit in I, and let x ∈ A. Then ‖ẋ‖ = limλ ‖x−uλ x‖. This is because given ε > 0, we
can find z ∈ I with ‖x+ z‖ ≤ ‖ẋ‖+ ε , and we can find λ0 ∈ Λ with ‖z−uλ z‖< ε ∀λ ≥ λ0. Hence

‖ẋ‖ ≤ ‖x−uλ x‖ ≤ ‖(1−uλ )(x+ z)‖+‖(1−uλ )z‖ ≤ ‖1−uλ‖‖x+ z‖+ ε ≤ ‖x+ z‖+ ε ≤ ‖ẋ‖+2ε ∀λ ≥ λ0.

Therefore, for all z ∈ I, we have

‖ẋ‖2 = lim
λ

‖x−uλ x‖2 = lim
λ

‖(1−uλ )x
∗x(1−uλ )‖= lim

λ

‖(1−uλ )(x
∗x+ z)(1−uλ )‖ ≤ ‖x∗x+ z‖ .

Taking the infimum over all z ∈ I, we obtain ‖ẋ‖2 ≤ ‖ẋ∗ẋ‖. This suffices to prove the C*-identity by Remark 4.4,
2). �

Remark 6.7. Assume that A is a separable C*-algebra, i.e., A has a countable dense subset. Then there is a
countable approximate unit (un)n∈N (i.e., a sequence) with u1 ≤ u2 ≤ . . . .

Proof. Let {xi: i ∈ N} ⊆ A be dense, and (uλ ) an approximate unit in A. Choose inductively λn such that λn ≥ λn−1
and ‖uλ xi− xi‖< 1

n , ‖xiuλ − xi‖< 1
n for all λ ≥ λn, 1≤ i≤ n. Then set un := uλn . �

Corollary 6.8. Let ϕ : A→ B be a *-homomorphism between two C*-algebras A and B.

(a) Let z ∈ A be normal and f ∈C0(Sp(z)). Then ϕ( f (z)) = f (ϕ(z)).
(b) If ϕ is injective, then ϕ is isometric.
(c) ϕ(A) is a C*-algebra, and ϕ(A)∼= A/ker(ϕ) as C*-algebras.

Proof. (a) Let pn be polynomials in x,x such that limn pn = f in C0(Sp(z)). Then limn pn(z) = f (z) in A. Moreover,
as Sp(ϕ(z))⊆ Sp(z), f (ϕ(z)) is well-defined and we have limn pn(ϕ(z)) = f (ϕ(z)) in B. Hence, as ϕ is continuous
by Theorem 4.9,

ϕ( f (z)) = lim
n

ϕ(pn(z)) = lim
n

pn(ϕ(z)) = f (ϕ(z)).

(b) It is enough to show that ‖ϕ(x∗x)‖= ‖x∗x‖. Assume that ϕ is not isometric, i.e., there is x ∈ A with ‖ϕ(x∗x)‖<
‖x∗x‖. Define f : R→ R by setting f ≡ 0 on (−∞,‖ϕ(x∗x)‖), f ≡ 1 on (‖x∗x‖ ,∞) and extend f linearly on
[‖ϕ(x∗x)‖),‖x∗x‖]. Then ‖ f (x∗x)‖= ‖ f‖

∞
= 1 as ‖x∗x‖ ∈ Sp(x∗x) (since r(x∗x) = ‖x∗x‖). Thus f (x∗x) 6= 0. Also,

‖ f (ϕ(x∗x))‖= 0⇒ f (ϕ(x∗x)) = 0. As ϕ( f (x∗x)) = f (ϕ(x∗x)) by (a), this shows that ϕ is not injective.

(c) Define ϕ̇ : A/ker(ϕ)→ B by setting ϕ̇(ẋ) := ϕ(x) ∀x ∈ A. This is a well-defined *-homomorphism, which
is injective, hence isometric by (b). The image of ϕ̇ is equal to ϕ(A), which therefore must be complete, hence
closed, so that it is a C*-algebra. �

7. POSITIVE LINEAR FUNCTIONALS

Definition 7.1. Let A be a C*-algebra, ϕ : A→ C a linear map (also called functional). ϕ is called positive
(written ϕ ≥ 0) if ϕ(x)≥ 0 ∀x≥ 0.

Remark 7.2. ϕ ≥ 0⇔ ϕ(x∗x)≥ 0 ∀x ∈ A. Moreover, ϕ preserves the partial order, i.e., x≤ y⇒ ϕ(x)≤ ϕ(y).
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Examples 7.3. (a) A =C[0,1]. Then for any t ∈ [0,1], ϕ( f ) = f (t) is positive. Also ϕ( f ) =
∫ 1

0 f (t)dt is positive.

(b) More generally, let A = C(X), where X is compact Hausdorff. Then positive functionals on A are in bijection
with Radon measures on X, ϕ ↔ µ , where ϕ( f ) =

∫
X f (x)dµ(x).

(c) A = Mn(C). Then the trace Mn(C)→ C, (ai j) 7→ ∑i aii is positive.

(d) Let H be a Hilbert space, A = L(H). For every ξ ∈ H, the functional ϕξ (x) := 〈xξ ,ξ 〉 is positive.

Theorem 7.4. Let A be a C*-algebra and ϕ a positive functional on A. Then ϕ is bounded.

Proof. First we show that ϕ is bounded on S = {x ∈ A: x≥ 0, ‖x‖ ≤ 1}. Suppose not, i.e., there exists (an) ⊆ S
with ϕ(an)≥ 2n. Define a := ∑n 2−nan. Then a is positive since A+ is a closed convex cone. But then we have for
every N ∈ N that ϕ(a)≥ ∑

N 2−nϕ(an)≥ N.  

So we know that |ϕ(x)| ≤C‖x‖ for all positive x ∈ A. Now take z ∈ A arbitrary. Write

z = Re(z)+ i · Im(z) = Re(z)+−Re(z)−+ i · Im(z)+− i · Im(z)−

as a linear combination of four positive elements with norm bounded by ‖z‖. Hence, by the above, we have
|ϕ(z)| ≤ 4C‖z‖. �

Proposition 7.5. Let A be a C*-algebra, ϕ a positive functional on A. Then ϕ(x∗) = ϕ(x), and |ϕ(x)|2 ≤
‖ϕ‖ϕ(x∗x) ∀x ∈ A.

Proof. The first claim follows directly by writing arbitrary elements in A as linear combinations of four positive
elements. To prove the second claim, define 〈x,y〉 := ϕ(y∗x). This is a sesquilinear form with 〈x,x〉 ≥ 0. By the
Cauchy-Schwartz inequality, we obtain |〈x,y〉|2 ≤ 〈x,x〉〈y,y〉. Also, if (uλ ) is an approximate unit, then ϕ(x∗) =
limλ ϕ(x∗uλ ) = limλ ϕ(uλ x) = ϕ(x). Hence

|ϕ(x)|2 = lim
λ

|ϕ(uλ x)|2 ≤ limsup
λ

ϕ(u2
λ
)ϕ(x∗x)≤ ‖ϕ‖ϕ(x∗x).

�

Theorem 7.6. Let A be a C*-algebra, ϕ : A→ C a continuous functional. The following are equivalent:

(1) ϕ ≥ 0,
(2) For every approximate unit (uλ ) in A, we have ‖ϕ‖= limλ ϕ(uλ ),
(3) There is an approximate unit (uλ ) in A such that ‖ϕ‖= limλ ϕ(uλ ).

Proof. (1)⇒ (2): Without loss of generality assume that ‖ϕ‖ = 1. (ϕ(uλ )) is an increasing bounded net in C, so
limλ ϕ(uλ ) = α ≤ 1. For x ∈ A with ‖x‖ ≤ 1, we have

|ϕ(x)|2 = lim
λ

|ϕ(uλ x)|2 ≤ limsup
λ

ϕ(u2
λ
)ϕ(x∗x)≤ lim

λ

ϕ(uλ )ϕ(x
∗x)≤ α ≤ 1.

As ‖ϕ‖= 1, there must exist x ∈ A with |ϕ(x)| arbitrarily close to 1, so that α = 1.

(2)⇒ (3) is obvious.

(3) ⇒ (1): Assume that 1 = ‖ϕ‖ = limλ ϕ(uλ ). We first show that given x ∈ Asa with ‖x‖ ≤ 1, we must have
ϕ(x) ∈ R. Write ϕ(x) = α + i ·β . We may assume β ≤ 0 (otherwise replace x by −x). Suppose that β < 0. Then

‖x− i ·nuλ‖2 = ‖(x+ i ·nuλ )(x− i ·nuλ )‖=
∥∥x2 +n2u2

λ
− i ·n(xuλ −uλ x)

∥∥≤ 1+n2 +n‖xuλ −uλ x‖ ,
so that

|β |2 +2|β |n+n2 = (|β |+n)2 ≤ |ϕ(x)− i ·n|2 = lim
λ

|ϕ(x− i ·nuλ )|2 ≤ lim
λ

1+n2 +n‖xuλ −uλ x‖= 1+n2.
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But this would imply |β |2 +2|β |n≤ 1 for all n ∈ N.  

Now let x≥ 0 with ‖x‖≤ 1. Then−1≤ uλ −x≤ 1, so that ‖uλ − x‖≤ 1, and hence 1−ϕ(x) = limλ ϕ(uλ −x)≤ 1.
This implies 0≤ ϕ(x). �

Corollary 7.7. Let A be a C*-algebra with unit 1 and ϕ a continuous functional on A. Then ϕ ≥ 0⇔ ϕ(1) = ‖ϕ‖.

Proof. Just take uλ = 1. �

Corollary 7.8. Let ϕ and ϕ ′ be two positive functionals on a C*-algebra A. Then ‖ϕ +ϕ ′‖= ‖ϕ‖+‖ϕ ′‖.

Proof. Given an approximate unit (uλ ), we have

‖ϕ‖+
∥∥ϕ
′∥∥= lim

λ

ϕ(uλ )+ϕ
′(uλ ) = lim

λ

(ϕ +ϕ
′)(uλ ) =

∥∥ϕ +ϕ
′∥∥ .

�

Definition 7.9. A state on a C*-algebra A is a positive functional ϕ with ‖ϕ‖= 1.

Theorem 7.10. Let A be a C*-algebra, x ∈ A normal. Then there is a state ϕ on A with |ϕ(x)|= ‖x‖.

Proof. C∗(x,1) ⊆ Ã is commutative, so by Theorem 4.19, there exists ϕ0 ∈ SpecC∗(x,1) with ϕ0(1) = 1 and
|ϕ0(x)|= ‖x‖. Using the Hahn-Banach Theorem, we can extend ϕ0 to a continuous functional ϕ̃ on Ã with ‖ϕ̃‖=
‖ϕ0‖= 1 = ϕ0(1) = ϕ̃(1). By Theorem 7.6, ϕ̃ ≥ 0. ϕ := ϕ̃|A is the desired functional on A. �
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