Corollary 6.5. Let I be a closed ideal in a C*-algebra B. Then $I = I^*$.

Proof. Let $u_{\lambda} \in I$ be an approximate unit in *I*. Then $\lim_{\lambda} u_{\lambda} x = x \Rightarrow \lim_{\lambda} x^* u_{\lambda} = x^*$ lies in *I* as *I* is closed.

Theorem 6.6. Let I be a closed ideal in a C^* -algebra A. Then A/I is a C^* -algebra with respect to the quotient norm.

Proof. As $I = I^*$, we can define an involution on A/I by setting $\dot{x}^* := (x^*)$. It remains to show that $\|\dot{x}^*\dot{x}\| = \|\dot{x}\|^2$. Let (u_{λ}) be an approximate unit in I, and let $x \in A$. Then $\|\dot{x}\| = \lim_{\lambda} \|x - u_{\lambda}x\|$. This is because given $\varepsilon > 0$, we can find $z \in I$ with $\|x + z\| \le \|\dot{x}\| + \varepsilon$, and we can find $\lambda_0 \in \Lambda$ with $\|z - u_{\lambda}z\| < \varepsilon \ \forall \lambda \ge \lambda_0$. Hence

 $\|\dot{x}\| \leq \|x - u_{\lambda}x\| \leq \|(1 - u_{\lambda})(x + z)\| + \|(1 - u_{\lambda})z\| \leq \|1 - u_{\lambda}\| \|x + z\| + \varepsilon \leq \|x + z\| + \varepsilon \leq \|\dot{x}\| + 2\varepsilon \ \forall \lambda \geq \lambda_0.$

Therefore, for all $z \in I$, we have

$$\|\dot{x}\|^{2} = \lim_{\lambda} \|x - u_{\lambda}x\|^{2} = \lim_{\lambda} \|(1 - u_{\lambda})x^{*}x(1 - u_{\lambda})\| = \lim_{\lambda} \|(1 - u_{\lambda})(x^{*}x + z)(1 - u_{\lambda})\| \le \|x^{*}x + z\|.$$

Taking the infimum over all $z \in I$, we obtain $\|\dot{x}\|^2 \le \|\dot{x}^*\dot{x}\|$. This suffices to prove the C*-identity by Remark 4.4, 2).

Remark 6.7. Assume that A is a separable C*-algebra, i.e., A has a countable dense subset. Then there is a countable approximate unit $(u_n)_{n \in \mathbb{N}}$ (i.e., a sequence) with $u_1 \le u_2 \le \dots$

Proof. Let $\{x_i: i \in \mathbb{N}\} \subseteq A$ be dense, and (u_{λ}) an approximate unit in A. Choose inductively λ_n such that $\lambda_n \ge \lambda_{n-1}$ and $\|u_{\lambda}x_i - x_i\| < \frac{1}{n}$, $\|x_iu_{\lambda} - x_i\| < \frac{1}{n}$ for all $\lambda \ge \lambda_n$, $1 \le i \le n$. Then set $u_n := u_{\lambda_n}$.

Corollary 6.8. Let φ : $A \rightarrow B$ be a *-homomorphism between two C*-algebras A and B.

- (a) Let $z \in A$ be normal and $f \in C_0(\operatorname{Sp}(z))$. Then $\varphi(f(z)) = f(\varphi(z))$.
- (b) If φ is injective, then φ is isometric.
- (c) $\varphi(A)$ is a C*-algebra, and $\varphi(A) \cong A/\ker(\varphi)$ as C*-algebras.

Proof. (a) Let p_n be polynomials in x, \overline{x} such that $\lim_n p_n = f$ in $C_0(\operatorname{Sp}(z))$. Then $\lim_n p_n(z) = f(z)$ in A. Moreover, as $\operatorname{Sp}(\varphi(z)) \subseteq \operatorname{Sp}(z)$, $f(\varphi(z))$ is well-defined and we have $\lim_n p_n(\varphi(z)) = f(\varphi(z))$ in B. Hence, as φ is continuous by Theorem 4.9,

$$\varphi(f(z)) = \lim_{n} \varphi(p_n(z)) = \lim_{n} p_n(\varphi(z)) = f(\varphi(z)).$$

(b) It is enough to show that $\|\varphi(x^*x)\| = \|x^*x\|$. Assume that φ is not isometric, i.e., there is $x \in A$ with $\|\varphi(x^*x)\| < \|x^*x\|$. Define $f : \mathbb{R} \to \mathbb{R}$ by setting $f \equiv 0$ on $(-\infty, \|\varphi(x^*x)\|)$, $f \equiv 1$ on $(\|x^*x\|, \infty)$ and extend f linearly on $[\|\varphi(x^*x)\|), \|x^*x\|]$. Then $\|f(x^*x)\| = \|f\|_{\infty} = 1$ as $\|x^*x\| \in \operatorname{Sp}(x^*x)$ (since $r(x^*x) = \|x^*x\|$). Thus $f(x^*x) \neq 0$. Also, $\|f(\varphi(x^*x))\| = 0 \Rightarrow f(\varphi(x^*x)) = 0$. As $\varphi(f(x^*x)) = f(\varphi(x^*x))$ by (a), this shows that φ is not injective.

(c) Define $\dot{\varphi} : A/\ker(\varphi) \to B$ by setting $\dot{\varphi}(\dot{x}) := \varphi(x) \ \forall x \in A$. This is a well-defined *-homomorphism, which is injective, hence isometric by (b). The image of $\dot{\varphi}$ is equal to $\varphi(A)$, which therefore must be complete, hence closed, so that it is a C*-algebra.

7. POSITIVE LINEAR FUNCTIONALS

Definition 7.1. Let A be a C*-algebra, $\varphi : A \to \mathbb{C}$ a linear map (also called functional). φ is called positive (written $\varphi \ge 0$) if $\varphi(x) \ge 0 \forall x \ge 0$.

Remark 7.2. $\varphi \ge 0 \Leftrightarrow \varphi(x^*x) \ge 0 \forall x \in A$. Moreover, φ preserves the partial order, i.e., $x \le y \Rightarrow \varphi(x) \le \varphi(y)$.

Examples 7.3. (a) A = C[0,1]. Then for any $t \in [0,1]$, $\varphi(f) = f(t)$ is positive. Also $\varphi(f) = \int_0^1 f(t) dt$ is positive.

(b) More generally, let A = C(X), where X is compact Hausdorff. Then positive functionals on A are in bijection with Radon measures on X, $\varphi \leftrightarrow \mu$, where $\varphi(f) = \int_X f(x) d\mu(x)$.

(c) $A = M_n(\mathbb{C})$. Then the trace $M_n(\mathbb{C}) \to \mathbb{C}$, $(a_{ij}) \mapsto \sum_i a_{ii}$ is positive.

(d) Let H be a Hilbert space, $A = \mathcal{L}(H)$. For every $\xi \in H$, the functional $\varphi_{\xi}(x) := \langle x\xi, \xi \rangle$ is positive.

Theorem 7.4. Let A be a C*-algebra and φ a positive functional on A. Then φ is bounded.

Proof. First we show that φ is bounded on $S = \{x \in A : x \ge 0, \|x\| \le 1\}$. Suppose not, i.e., there exists $(a_n) \subseteq S$ with $\varphi(a_n) \ge 2^n$. Define $a := \sum_n 2^{-n} a_n$. Then *a* is positive since A_+ is a closed convex cone. But then we have for every $N \in \mathbb{N}$ that $\varphi(a) \ge \sum_{n=1}^{N} 2^{-n} \varphi(a_n) \ge N$. ξ

So we know that $|\varphi(x)| \leq C ||x||$ for all positive $x \in A$. Now take $z \in A$ arbitrary. Write

$$z = \operatorname{Re}(z) + i \cdot \operatorname{Im}(z) = \operatorname{Re}(z)_{+} - \operatorname{Re}(z)_{-} + i \cdot \operatorname{Im}(z)_{+} - i \cdot \operatorname{Im}(z)_{-}$$

as a linear combination of four positive elements with norm bounded by ||z||. Hence, by the above, we have $|\varphi(z)| \le 4C ||z||$.

Proposition 7.5. Let A be a C*-algebra, φ a positive functional on A. Then $\varphi(x^*) = \overline{\varphi(x)}$, and $|\varphi(x)|^2 \le \|\varphi\| \varphi(x^*x) \ \forall x \in A$.

Proof. The first claim follows directly by writing arbitrary elements in *A* as linear combinations of four positive elements. To prove the second claim, define $\langle x, y \rangle := \varphi(y^*x)$. This is a sesquilinear form with $\langle x, x \rangle \ge 0$. By the Cauchy-Schwartz inequality, we obtain $|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$. Also, if (u_{λ}) is an approximate unit, then $\varphi(x^*) = \lim_{\lambda} \varphi(x^*u_{\lambda}) = \lim_{\lambda} \overline{\varphi(u_{\lambda}x)} = \overline{\varphi(x)}$. Hence

$$|\varphi(x)|^2 = \lim_{\lambda} |\varphi(u_{\lambda}x)|^2 \leq \limsup_{\lambda} \varphi(u_{\lambda}^2)\varphi(x^*x) \leq ||\varphi||\varphi(x^*x).$$

Theorem 7.6. Let A be a C*-algebra, $\varphi : A \to \mathbb{C}$ a continuous functional. The following are equivalent:

- (1) $\phi \ge 0$,
- (2) For every approximate unit (u_{λ}) in A, we have $\|\varphi\| = \lim_{\lambda} \varphi(u_{\lambda})$,
- (3) *There is an approximate unit* (u_{λ}) *in A such that* $\|\varphi\| = \lim_{\lambda} \varphi(u_{\lambda})$ *.*

Proof. (1) \Rightarrow (2): Without loss of generality assume that $\|\varphi\| = 1$. $(\varphi(u_{\lambda}))$ is an increasing bounded net in \mathbb{C} , so $\lim_{\lambda} \varphi(u_{\lambda}) = \alpha \leq 1$. For $x \in A$ with $\|x\| \leq 1$, we have

$$|\varphi(x)|^2 = \lim_{\lambda} |\varphi(u_{\lambda}x)|^2 \le \limsup_{\lambda} \varphi(u_{\lambda}^2)\varphi(x^*x) \le \lim_{\lambda} \varphi(u_{\lambda})\varphi(x^*x) \le \alpha \le 1$$

As $\|\varphi\| = 1$, there must exist $x \in A$ with $|\varphi(x)|$ arbitrarily close to 1, so that $\alpha = 1$.

 $(2) \Rightarrow (3)$ is obvious.

(3) \Rightarrow (1): Assume that $1 = \|\varphi\| = \lim_{\lambda} \varphi(u_{\lambda})$. We first show that given $x \in A_{sa}$ with $\|x\| \le 1$, we must have $\varphi(x) \in \mathbb{R}$. Write $\varphi(x) = \alpha + i \cdot \beta$. We may assume $\beta \le 0$ (otherwise replace x by -x). Suppose that $\beta < 0$. Then

$$\|x-\mathbf{i}\cdot nu_{\lambda}\|^{2} = \|(x+\mathbf{i}\cdot nu_{\lambda})(x-\mathbf{i}\cdot nu_{\lambda})\| = \|x^{2}+n^{2}u_{\lambda}^{2}-\mathbf{i}\cdot n(xu_{\lambda}-u_{\lambda}x)\| \le 1+n^{2}+n\|xu_{\lambda}-u_{\lambda}x\|,$$

so that

$$|\beta|^{2} + 2|\beta|n + n^{2} = (|\beta| + n)^{2} \le |\varphi(x) - i \cdot n|^{2} = \lim_{\lambda} |\varphi(x - i \cdot nu_{\lambda})|^{2} \le \lim_{\lambda} 1 + n^{2} + n ||xu_{\lambda} - u_{\lambda}x|| = 1 + n^{2}.$$

But this would imply $|\beta|^2 + 2|\beta|n \le 1$ for all $n \in \mathbb{N}$. \notin

Now let $x \ge 0$ with $||x|| \le 1$. Then $-1 \le u_{\lambda} - x \le 1$, so that $||u_{\lambda} - x|| \le 1$, and hence $1 - \varphi(x) = \lim_{\lambda} \varphi(u_{\lambda} - x) \le 1$. This implies $0 \le \varphi(x)$.

Corollary 7.7. Let A be a C*-algebra with unit 1 and φ a continuous functional on A. Then $\varphi \ge 0 \Leftrightarrow \varphi(1) = \|\varphi\|$.

Proof. Just take $u_{\lambda} = 1$.

Corollary 7.8. Let φ and φ' be two positive functionals on a C*-algebra A. Then $\|\varphi + \varphi'\| = \|\varphi\| + \|\varphi'\|$.

Proof. Given an approximate unit (u_{λ}) , we have

$$\|\varphi\| + \|\varphi'\| = \lim_{\lambda} \varphi(u_{\lambda}) + \varphi'(u_{\lambda}) = \lim_{\lambda} (\varphi + \varphi')(u_{\lambda}) = \|\varphi + \varphi'\|.$$

Definition 7.9. A state on a C*-algebra A is a positive functional φ with $\|\varphi\| = 1$.

Theorem 7.10. Let A be a C*-algebra, $x \in A$ normal. Then there is a state φ on A with $|\varphi(x)| = ||x||$.

Proof. $C^*(x,1) \subseteq \tilde{A}$ is commutative, so by Theorem 4.19, there exists $\varphi_0 \in \operatorname{Spec} C^*(x,1)$ with $\varphi_0(1) = 1$ and $|\varphi_0(x)| = ||x||$. Using the Hahn-Banach Theorem, we can extend φ_0 to a continuous functional $\tilde{\varphi}$ on \tilde{A} with $\|\tilde{\varphi}\| = \|\varphi_0\| = 1 = \varphi_0(1) = \tilde{\varphi}(1)$. By Theorem 7.6, $\tilde{\varphi} \ge 0$. $\varphi := \tilde{\varphi}|_A$ is the desired functional on A.