Corollary 6.5. Let I be a closed ideal in a C*-algebra B. Then I = I*.

Proof. Let uy € I be an approximate unit in /. Then lim; uyx = x = limy x*u), = x* lies in [ as [ is closed. U

Theorem 6.6. Let I be a closed ideal in a C*-algebra A. Then A/I is a C*-algebra with respect to the quotient
norm.

Proof. As I =I*, we can define an involution on A/I by setting &* := (x*). It remains to show that ||x*|| = ||x[*.
Let (u; ) be an approximate unit in /, and let x € A. Then ||%|| = limy, |[|x — u, x||. This is because given € > 0, we
can find z € I with ||x+z|| < ||%|| + &, and we can find Ay € A with ||z —u;z|| < € VA > Ay. Hence

%] < [lx —upx]| < [[(T—ua)(c+2) [+ [[(T—up)zl| S ([T —wa |l x4zl + € < [lx+z] +& < |li]| +2& VA = Ao
Therefore, for all z € I, we have

e)l* = 1i/{on—u;LXHz =lim [[(1 —up)x"x(1 =) || = Hm [ (1 = u2) (x+2) (1 —ua) | < |2+ 2]

Taking the infimum over all z € I, we obtain ||x[|* < [|4*%||. This suffices to prove the C*-identity by Remark 4.4,
2). ([l

Remark 6.7. Assume that A is a separable C*-algebra, i.e., A has a countable dense subset. Then there is a
countable approximate unit (u,),cn (i-e., a sequence) with u; <up <....

Proof. Let {x;: i € N} C A be dense, and (u; ) an approximate unit in A. Choose inductively A, such that A, > 4,,_;
and |jupx; —x;|| < L, [lxiuy —x;|| < L forall A > 2,, 1 <i<n. Then setu, :=uy,. O

Corollary 6.8. Let ¢ : A — B be a *-homomorphism between two C*-algebras A and B.

(a) Let z € A be normal and f € Cy(Sp (2)). Then ¢(f(z)) = f(@(z)).
(b) If ¢ is injective, then @ is isometric.
(c) @(A) is a C*-algebra, and @(A) = A/ker (@) as C*-algebras.

hen lim, p,(z) = f(z) in A. Moreover,

Proof. (a) Let p, be polynomials in x, % such that lim,, p, = f in Co(Sp (2)). T
= f(¢(z)) in B. Hence, as ¢ is continuous

Z
as Sp(9©(z)) CSp(2), f(@(z)) is well-defined and we have lim,, p,(¢(z))
by Theorem 4.9,

¢(/(2)) =lim@(p,(2)) = lim p,(9(2)) = f(¢(2))-

(b) It is enough to show that ||@(x*x)|| = ||x*x||. Assume that ¢ is not isometric, i.e., there is x € A with || @(x*x)|| <
|lx*x||. Define f: R — R by setting f =0 on (—oo, ||@(x*x)||), f = 1 on (||x*x||,) and extend f linearly on
oG x)l), [lx*x[|]. Then [|f(x"x)[| = [ f]l.. = 1 as [lx"x]| € Sp (x"x) (since r(x"x) = [|x"x[|). Thus f(x"x) # 0. Also,
If(o(x*x))|| =0 = f(@(x*x)) =0. As @(f(x*x)) = f(@(x*x)) by (a), this shows that @ is not injective.

(c) Define ¢ : A/ker(¢@) — B by setting @(x) := ¢(x) Vx € A. This is a well-defined *-homomorphism, which
is injective, hence isometric by (b). The image of ¢ is equal to @(A), which therefore must be complete, hence
closed, so that it is a C*-algebra. O

7. POSITIVE LINEAR FUNCTIONALS

Definition 7.1. Let A be a C*-algebra, ¢ : A — C a linear map (also called functional). ¢ is called positive
(written @ > 0) if (x) > 0Vx > 0.

Remark 7.2. ¢ > 0 < ¢(x*x) > 0 Vx € A. Moreover, @ preserves the partial order, i.e., x <y = @(x) < ¢(y).
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Examples 7.3. (a) A = C[0,1]. Then for any t € [0,1], @(f) = f(t) is positive. Also @(f) = [y f(¢)dt is positive.

(b) More generally, let A = C(X), where X is compact Hausdorff. Then positive functionals on A are in bijection
with Radon measures on X, @ <> |, where @(f) = [y f(x)du(x).

(c) A= M,(C). Then the trace M,,(C) — C, (a;j) — ¥;a;i is positive.

(d) Let H be a Hilbert space, A = L(H). For every & € H, the functional ¢g(x) := (x§,&) is positive.
Theorem 7.4. Let A be a C*-algebra and @ a positive functional on A. Then @ is bounded.

Proof. First we show that ¢ is bounded on S = {x € A: x > 0, ||x|| < 1}. Suppose not, i.e., there exists (a,) C S
with ¢(a,) > 2". Define a := Y,,2 "a,. Then a is positive since A is a closed convex cone. But then we have for
every N € N that ¢(a) > YN 27"¢(a,) > N. 4

So we know that |@(x)| < C||x|| for all positive x € A. Now take z € A arbitrary. Write
z=Re(z) +i-Im(z) =Re(z)+ —Re(z)- +i-Im(z)+ —i-Im(z)_
as a linear combination of four positive elements with norm bounded by ||z||. Hence, by the above, we have

lo(z)| < 4C||z]|. O

Proposition 7.5. Let A be a C*-algebra, ¢ a positive functional on A. Then @(x*) = @(x), and |@(x)|* <
@]l () Vx € A,

Proof. The first claim follows directly by writing arbitrary elements in A as linear combinations of four positive
elements. To prove the second claim, define (x,y) := ¢@(y*x). This is a sesquilinear form with (x,x) > 0. By the
Cauchy-Schwartz inequality, we obtain |{x,y)|> < (x,x) (y,y). Also, if (u;) is an approximate unit, then @ (x*) =
limy, @(x*uy ) = lim, @ (uyx) = @(x). Hence

(x)[?

= limlp(uy ) < limsup (i) pLx'x) < ] (x"x).

Theorem 7.6. Let A be a C*-algebra, ¢ : A — C a continuous functional. The following are equivalent:

M ¢ =0,
(2) For every approximate unit (uy ) in A, we have ||@|| = limy @(uy),
(3) There is an approximate unit (uy ) in A such that ||@|| = limy, @(uy ).

Proof. (1) = (2): Without loss of generality assume that ||@|| = 1. (¢(uy)) is an increasing bounded net in C, so
limy @(u)) = o < 1. For x € A with ||x|| < 1, we have

900 = limlg(ur) ” < limsup 9(u5 ) p(x'x) < lim p(us)p(x'x) < @ < 1.

As ||@|| = 1, there must exist x € A with |@(x)| arbitrarily close to 1, so that ot = 1.
(2) = (3) is obvious.

(3) = (1): Assume that 1 = ||@|| = lim, ¢(uy ). We first show that given x € Ag, with ||x|| < I, we must have
¢(x) € R. Write @(x) = a+i- . We may assume 8 < 0 (otherwise replace x by —x). Suppose that § < 0. Then
x—i-mu |)? = ||(x+1-nup) (x—i-nuy)|| = sz—l-nzuﬁ —i-n(xuy —uyx)|| < 14n% +n||xuy, —up x|,

so that

B> +2|B|n+n*= (|B|+n)* <|o(x)—i-n zli){n|q0(x—i-nu,1)|2 < li/{n1+n2+n||xu,1 —uyx|| = 1+n.
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But this would imply |B|> +2|B|n < 1 foralln € N. 4

Now let x > 0 with ||x|| < 1. Then —1 < uy —x <1, so that |luy —x|| <1, and hence 1 — @(x) =1limy @(u) —x) < 1.
This implies 0 < ¢(x). O

Corollary 7.7. Let A be a C*-algebra with unit 1 and @ a continuous functional on A. Then ¢ > 0< ¢(1) = ||¢||.

Proof. Just take u) = 1. O

Corollary 7.8. Ler ¢ and @' be two positive functionals on a C*-algebra A. Then | + ¢'|| = ||o|| + ||¢||-

Proof. Given an approximate unit (u, ), we have

ol +|¢'|| = lim () + @' () = Tim(@ + ¢")(up) = lo+¢|.

Definition 7.9. A state on a C*-algebra A is a positive functional @ with ||@|| = 1.

Theorem 7.10. Let A be a C*-algebra, x € A normal. Then there is a state @ on A with |@(x)| = ||x]|.

Proof. C*(x,1) C A is commutative, so by Theorem 4.19, there exists ¢y € SpecC*(x,1) with @y(1) = 1 and
|@o(x)| = ||x||. Using the Hahn-Banach Theorem, we can extend ¢ to a continuous functional ¢ on A with ||@|| =
llool| = 1= @o(1) = @(1). By Theorem 7.6, ¢ > 0. ¢ := @|4 is the desired functional on A.
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