
8. GNS-CONSTRUCTION

Our goal is to show that every C*-algebra A is isometrically isomorphic to a closed sub-*-algebra of L(H) for some
Hilbert space H. It suffices to construct an injective *-homomorphism π : A→L(H) for some H. In the following,
let A be a C*-algebra.

Definition 8.1. A representation of A is a pair (π,H), where H is a Hilbert space and π : A → L(H) a *-
homomorphism.

Two representations (π1,H1) and (π2,H2) are called equivalent (written (π1,H1)∼ (π2,H2)) if there exists a unitary
U : H1→ H2 such that π2(x) =Uπ1(x)U∗ ∀x ∈ A.

Given a family ((πi,Hi)i∈I of representations, we can form the representation (
⊕

i πi,
⊕

i Hi) on the Hilbert space⊕
i Hi =

{
(ξi): ξi ∈ Hi, ∑i ‖ξi‖2 < ∞

}
, where (

⊕
i πi)(x)(ξi) = (πiξi).

Remark 8.2. Let H be a Hilbert space, K ⊆H a closed subspace. Let (π,H) be a representation of A. K is called π-
invariant if π(A)K ⊆ K. Then the orthogonal complement K⊥ is also π-invariant. This is because given ξ ∈ K and
η ∈ K⊥, we have 〈ξ ,π(x)η〉= 〈π(x∗)ξ ,η〉= 0 ∀x ∈ A. Moreover, H = K⊕K⊥, and if we define π1(x) := π(x)|K ,
π2(x) := π(x)|K⊥ , then (π,H)∼ (π1⊕π2,K⊕K⊥).

Definition 8.3. A representation (π,H) is called non-degenerate if π(A)H = H.

A representation (π,H) is called cyclic if there exists ξ ∈ H with π(A)ξ = H. In that case, ξ is called a cyclic
vector.

Remark 8.4. (π,H) cyclic⇒ (π,H) non-degenerate, but “⇐” is not true.

Remark 8.5. Let (π,H) be a non-degenerate representation, and let (uλ ) be an approximate unit in A. Then
limλ π(uλ )η = η ∀η ∈ H. This is because given arbitrary y ∈ A and ξ ∈ H, we have for η := π(y)ξ that
limλ π(uλ )η = limλ π(uλ y)ξ = π(y)ξ = η . Now use that π(A)H is dense in H.

Proposition 8.6. (a) Every representation is the direct sum of a non-degenerate representation and the zero repre-
sentation.

(b) Every non-degenerate representation is a direct sum of cyclic representations.

Proof. Let (π,H) be a representation.

(a) Let K := π(A)H. Then K is a closed, π-invariant subspace. π|K is non-degenerate. Moreover, Remark 8.2
shows that K⊥ is π-invariant. It is clear that π|K⊥ = 0.

(b) Assume that (π,H) is non-degenerate. By Zorn’s Lemma, there is a maximal family (Ki,ξi)i∈I of closed
subspaces Ki which are pairwise orthogonal, and vectors ξi ∈ Ki such that Ki = π(A)ξi. It remains to show that⊕

i Ki = H, or equivalently, (
⋃

i Ki)
⊥ = {0}. So choose η ∈ H, η ⊥ Ki ∀i ∈ I, and assume η 6= 0. Set K := π(A)η .

Then K ⊥Ki, K 6= {0} because given an approximate unit (uλ ) in A, we have limλ π(uλ )η = η 6= 0 by Remark 8.5.
But then we could add (K,η) to our family (Ki,ξi)i∈I , contradicting maximality. �

Proposition 8.7. Let (π1,H1) and (π2,H2) be cyclic representations with cyclic vectors ξ1 and ξ2. Define fi(x) :=
〈π(x)ξi,ξi〉 for i = 1,2. Then fi are positive functionals on A. If f1 = f2, then there is a unitary U : H1→ H2 such
that Uξ1 = ξ2 and π1(x) =U∗π2(x)U ∀x ∈ A.

Proof. First, we show that V : π1(A)ξ1→ π2(A)ξ2 is isometric (in particular well-defined). We have

〈π2(x)ξ2,π2(x)ξ2〉= 〈π2(x∗x)ξ2,ξ2〉= f2(x∗x) = f1(x∗x) = 〈π1(x)ξ1,π1(x)ξ1〉 .
So in particular, V is well-defined, because π1(x)ξ1 = π1(y)ξ1⇒ π1(x− y)ξ1 = 0⇒ π2(x− y)ξ2 = 0.
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Now V extends to a unitary U : π1(A)ξ1→ π2(A)ξ2. We have for all x,y ∈ A

Uπ1(x)U∗π2(y)ξ2 =Uπ1(xy)ξ1 = π2(xy)ξ2 = π2(x)π2(y)ξ2,

hence Uπ1(x)U∗ = π2(x) ∀x ∈ A because ξ2 is a cyclic vector. Now let (uλ ) be an approximate unit in A. Then, by
Remark 8.5, Uξ1 =U limλ π1(uλ )ξ1 = limλ π2(uλ )ξ2 = ξ2. �

Theorem 8.8. Let f be a state on A. Then there exists a cyclic representation (π f ,H f ) of A with cyclic vector ξ f

such that f (x) =
〈
π f (x)ξ f ,ξ f

〉
∀x ∈ A.

Note that (π f ,H f ) and ξ f are unique up to (unitary) equivalence by Proposition 8.7.

Proof. 〈x,y〉 := f (y∗x) defines a positive sesquilinear form on A. Let N f :=
{

x ∈ A: 〈x,x〉 f = 0
}

. K f := A/N f is a

pre-Hilbert space, and the ‖·‖ f -closure H f := K f is a Hilbert space. Let γ : A→ K f ⊆H f be the canonical quotient
map. Then 〈γ(x),γ(y)〉 = f (y∗x). It follows that ‖γ(x)‖2 = 〈γ(x),γ(x)〉 = f (x∗x) ≤ ‖x‖2, so that γ is continuous.
Define π0

f (x)γ(y) := γ(xy). Then

‖γ(xy)‖2 = f (y∗x∗xy)≤ ‖x∗x‖ f (y∗y) = ‖x‖2 ‖γ(y)‖2 ,

so that π0
f (x) : K f → K f is well-defined and continuous with

∥∥∥π0
f (x)

∥∥∥ ≤ ‖x‖. Now extend π0
f (x) continuously to

π f (x) : H f → H f . We still have
∥∥π f (x)

∥∥ ≤ ‖x‖. We have π0
f (x)π

0
f (y) = π0

f (xy), so that π f (x)π f (y) = π f (xy).

Moreover, we have π f (x∗) = π f (x)∗ because
〈

π0
f (x)γ(y),γ(z)

〉
= f (z∗xy) = f ((x∗z)∗y) =

〈
γ(y),π0

f (x
∗)γ(z)

〉
.

Now let (uλ ) be an approximate unit in A. We claim that (γ(uλ )) is a Cauchy net. Given ε > 0, choose λ0 such that
for all λ ≥ λ0, | f (uλ )−1|< ε . Then for all λ ≥ λ0, we have∥∥γ(uλ )− γ(uλ0)

∥∥2
= f ((uλ −uλ0)

2)≤ f (uλ −uλ0)≤ | f (uλ )−1|+ | f (uλ0)−1|< 2ε.

Hence we may define ξ f := limλ γ(uλ ), and then we have〈
π(x)ξ f ,ξ f

〉
= lim

λ

f (uλ xuλ ) = f (x).

Finally, to show that ξ f is cyclic, take x ∈ A arbitrary. Then limλ xuλ = x, so that π f (x)ξ f = limλ π f (x)γ(uλ ) =
limλ γ(xuλ ) = γ(x). Hence γ(x) ∈ π f (A)ξ f ∀x ∈ A. �

So in conclusion, we obtain a one-to-one correspondence between states on A and unitary equivalence classes of
cyclic representations of A.

Theorem 8.9. Every C*-algebra has an injective representation (π,H), i.e., every C*-algebra is isomorphic to a
sub-C*-algebra of L(H).

Proof. Let x ∈ A with x 6= 0. By Theorem 7.10, there exists a state f on A with f (x∗x) = ‖x‖2. Thus
∥∥π f (x)ξ f

∥∥2
=

f (x∗x) = ‖x‖2. Define
π :=

⊕
f state

π f .

Then π(x) 6= 0 for every x 6= 0. �

Remark 8.10. If A is separable, say {xn}n is a countable dense subset of A, then we may choose states fn on A
with fn(x∗nxn) = ‖xn‖2. Then π :=

⊕
n π fn is an injective representation, and the Hilbert space H fn is separable for

every n.

So as a consequence, every separable C*-algebra is isomorphic to a sub-C*-algebra of L(`2N).
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Example 8.11. Let A be a C*-algebra. Consider the algebra Mn(A) :=
{
(ai j)1≤i, j≤n: ai j ∈ A

}
. Mn(A) is a *-

algebra with respect to the usual operations. To define a norm on Mn(A) such that it becomes a C*-algebra, we
may assume that A⊆L(H). Then we have an embedding Mn(A)⊆L(Hn), where (ai j)(ξ j) = (∑ j ai jξ j)i. Therefore,
the norm on L(Hn) induces a norm on Mn(A) which satisfies the C*-identity.
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