8. GNS-CONSTRUCTION

Our goal is to show that every C*-algebra A is isometrically isomorphic to a closed sub-*-algebra of L(H) for some
Hilbert space H. It suffices to construct an injective *-homomorphism 7 : A — L(H) for some H. In the following,
let A be a C*-algebra.

Definition 8.1. A representation of A is a pair (n,H), where H is a Hilbert space and m : A — L(H) a *-
homomorphism.

Two representations (m, Hy) and (my, Hy) are called equivalent (written (7, H,) ~ (72, H>)) if there exists a unitary
U : Hy — H, such that m(x) = Um (x)U* Vx € A.

Given a family ((m;,H;)cr of representations, we can form the representation (@®; m;,@; H;) on the Hilbert space
@i = { (&): & € Hi i |&II < |, where (@) (1)(&) = (m&)

Remark 8.2. Let H be a Hilbert space, K C H a closed subspace. Let (7, H) be a representation of A. K is called 7-
invariant if 7(A)K C K. Then the orthogonal complement K is also 7-invariant. This is because given & € K and
n € K+, we have (£, (x)n) = (x(x*)&,n) = 0 Vx € A. Moreover, H = K ®© K+, and if we define 71 (x) := 7(x)
Mo (x) := 7(x)| gL, then (7, H) ~ (1] ® M, KD KL).

K>

Definition 8.3. A representation (n,H) is called non-degenerate if t(A)H = H.

A representation (m,H) is called cyclic if there exists & € H with 1(A)é = H. In that case, & is called a cyclic
vector.

Remark 8.4. (7, H) cyclic = (7, H) non-degenerate, but “<" is not true.

Remark 8.5. Let (7,H) be a non-degenerate representation, and let (u)) be an approximate unit in A. Then
limy w(uy)n = n Vn € H. This is because given arbitrary y € A and & € H, we have for 1 := 7n(y)€ that
limy, w(uy )n = limy w(u;y)€E = w(y)E = n. Now use that 7(A)H is dense in H.

Proposition 8.6. (a) Every representation is the direct sum of a non-degenerate representation and the zero repre-
sentation.

(b) Every non-degenerate representation is a direct sum of cyclic representations.

Proof. Let (m,H) be a representation.

(a) Let K := mw(A)H. Then K is a closed, m-invariant subspace. 7|k is non-degenerate. Moreover, Remark 8.2
shows that K is z-invariant. It is clear that 7|1 = 0.

(b) Assume that (7,H) is non-degenerate. By Zorn’s Lemma, there is a maximal family (K;,&;);e; of closed
subspaces K; which are pairwise orthogonal, and vectors &; € K; such that K; = w(A)&;. It remains to show that
@, K; = H, or equivalently, (;K;)* = {0}. So choose n € H,n L K; Vi € I, and assume 1 # 0. Set K := 7(A)7.
Then K | K;, K # {0} because given an approximate unit (u; ) in A, we have limy, 7(u; )n =1 # 0 by Remark 8.5.
But then we could add (K, n) to our family (K;, &;)cs, contradicting maximality. O

Proposition 8.7. Let (71, H,) and (m,, Hy) be cyclic representations with cyclic vectors & and &,. Define f;(x) :=
(m(x)&;, &) for i =1,2. Then f; are positive functionals on A. If fi = f», then there is a unitary U : Hy — H, such
that UE; = & and m(x) = U*m (x)U Vx € A.

Proof. First, we show that V : 7 (A)&; — mp(A)&, is isometric (in particular well-defined). We have

(mx)&2, m(x)62) = (M(x"x)E2, &) = fo(x"x) = fi(x"x) = (m (x)&1, 1 (x)E1) -

So in particular, V is well-defined, because ) (x)&; = ;1 (y)&) = M (x—y)& =0 = m(x—y)& = 0.
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Now V extends to a unitary U : 7m;(A)& — m(A)E,. We have for all x,y € A
Um()U m(y)&2 = Um (xy)&1 = Ma(xy) 52 = 2 (x) 12 (v) G2,

hence U (x)U* = my(x) Vx € A because &, is a cyclic vector. Now let (u; ) be an approximate unit in A. Then, by
Remark 8.5, Ué] = Ulim,l T (u;k)él = lim,l ﬂg(ul)gz = gz. O

Theorem 8.8. Let f be a state on A. Then there exists a cyclic representation (7, Hy) of A with cyclic vector &¢
such that f(x) = (ms(x)Er,&r) Vx € A.

Note that (7, Hy) and &y are unique up to (unitary) equivalence by Proposition 8.7.

Proof. (x,y) := f(y*x) defines a positive sesquilinear form on A. Let Ny := {x €A: (x,x), = O}. K;:=A/Nsisa
pre-Hilbert space, and the ||-| ;-closure Hy := K is a Hilbert space. Let y: A — Ky C Hy be the canonical quotient

map. Then (7(x),7(y)) = f(y"x). It follows that [|7(x)[* = (¥(x),7(x)) = f(x"x) <
Define n? (x)7(y) := y(xy). Then

IrCn)lI* = £ x'xy) < [lal] £ ) = Il 1Y),
so that n})- (x) : Kf — Ky is well-defined and continuous with H ?(x) H < ||x||. Now extend 7rj9(x) continuously to
xX)mp(y) = mp(xy). so that 7p(x)7s(y) = 7 (xy).
Moreover, we have 7 (x*) = 7;(x)" because { 2(x)7(s), ¥(2) ) = f(z"x) = £((x'2)"y) = (Y), 2} )¥(2) ).

2 . .
, so that Y is continuous.

mp(x) : Hf — Hy. We still have an H < ||x||. We have nf( n(;

Now let (u; ) be an approximate unit in A. We claim that (y(u;, )) is a Cauchy net. Given € > 0, choose A such that
forall A > Ao, | f(uy) — 1] < €. Then for all A > Ay, we have

[ 7(u2) = ¥l ||* = £((un —3,)?) < flug —wze) < |f(un) = 1]+ [ f(wp,) — 1] < 2.

Hence we may define &y := limy, y(u; ), and then we have

((x)&5,&r) = 1ilmf(lmxua) = f(x).

Finally, to show that & is cyclic, take x € A arbitrary. Then limy xuy = x, so that 7 (x)&, = limy, 7wy (x)y(uy ) =
limy, y(xuy ) = y(x). Hence y(x) € mp(A)&r Vx € A. O

So in conclusion, we obtain a one-to-one correspondence between states on A and unitary equivalence classes of
cyclic representations of A.

Theorem 8.9. Every C*-algebra has an injective representation (n,H), i.e., every C*-algebra is isomorphic to a
sub-C*-algebra of L(H).

Proof. Let x € A with x # 0. By Theorem 7.10, there exists a state f on A with f(x*x) = [|x||*. Thus Hﬂf(x)éfH2 =
f(x*x) = ||x]|*. Define
w:= P ns.

f state

Then 7(x) # 0 for every x # 0. O

Remark 8.10. If A is separable, say {x,}, is a countable dense subset of A, then we may choose states f, on A

with f,(x}x,) = Hanz. Then 7 := @, 7y, is an injective representation, and the Hilbert space Hy, is separable for
every n.

So as a consequence, every separable C*-algebra is isomorphic to a sub-C*-algebra of £(/°N).
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Example 8.11. Let A be a C*-algebra. Consider the algebra My(A) := {(aij)1<i, j<n’ aij EA}. My(A) is a *
algebra with respect to the usual operations. To define a norm on M,(A) such that it becomes a C*-algebra, we
may assume that A C L(H). Then we have an embedding M,,(A) C L(H"), where (a;;)(&;) = (¥ ;ai;E;)i. Therefore,
the norm on L(H") induces a norm on M,,(A) which satisfies the C*-identity.
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