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CHAPTER 1

Projective resolutions

1. R-Modules

In this section we will quickly review the basic definitions of modules over a ring,
projective resolutions and the definition of Extn(M,N). In general we denote a ring
by R and assume that R has a unit.

Let R be a ring. A left R-module is an abelian group (M,+) together with a
multiplication

R×M → M
(r,m) 7→ rm

satisfying the following axioms:

(M1) r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M
(M2) (r + s)m = rm+ sm for all r, s ∈ R and m ∈M
(M3) (rs)m = r(sm) for all r, s ∈ R and m ∈M
(M4) 1Rm = m for all m ∈M.

We usually write MR - or M if it is clear which ring is meant. Right R-modules
are defined analogously. If R is commutative a left R-module can be made into a
right R-module by defining the multiplication by (m, r) 7→ rm.

Let M and N be R-modules. A map α : M → N is called R-linear or an R-module
homomorphism if

• α(m+m′) = α(m) + α(m′) for all m,m′ ∈M
• α(rm) = rα(m) for all m ∈M, r ∈ R.

Let M and N be R-modules. We denote by HomR(M,N) the set of all R-linear
maps α : M → N.

Remark. HomR(M,N) is an abelian group with addition defined pointwise. Fur-
thermore EndR(M) = HomR(M,M) is a ring where multiplication is defined by
composition of maps.

Naturality means that for every R-module homomorphism α : M → N the
following diagram commutes,

HomR(R,M)
φM //

α∗

��

M

α

��
HomR(R,N)

φN // N

where α∗(f) = α ◦ f and α ◦ φM = φN ◦ α∗.
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6 1. PROJECTIVE RESOLUTIONS

A sequence

· · · // Mi+1

αi+1 // Mi
αi // Mi−1

αi−1 // · · ·
(i ∈ Z) of linear maps is called exact at Mi if im(αi+1) = kerαi.
The sequence is called exact if it is exact at every Mi(i ∈ Z).

Exercise 1. Show that:

(1) 0 // L
α // M is exact if and only if α is a monomorphism.

(2) M
β // N // 0 is exact if and only if β is an epimorphism.

(3) 0 // L
α // M // 0 is exact iff α is an isomomorphism.

Remark. A short exact sequence is an exact sequence of the form

0 // L
α // M

β // N // 0.

In particular, α is a monomorphism, β is an epimorphism and im(α) = ker(β).
Hence N ∼= M/α(L). Conversely, if N ∼= M/L, then there is a short exact sequence

L ↪→M � N.

Let us get back to the groups HomR(M,N): Let α ∈ HomR(M,N) and let ξ : N →
X be an R-module homomorphism. We then define

ξ∗ : HomR(M,N)→ HomR(M,X)

by ξ∗(α) = ξ ◦ α. In other words, HomR(M,−) is a covariant functor. Now let
ψ : Y →M be an R-module homomorphism. We define

ψ∗ : HomR(M,N)→ HomR(Y,N)

by ψ∗(α) = α ◦ ψ. We say HomR(−, N) is a contravariant functor.

Theorem 1.1. Let X and Y be R-modules and let

0 // L
α // M

β // N // 0

be a short exact sequence. Then the following sequences are exact:

(1) 0 // HomR(Y, L)
α∗ // HomR(Y,M)

β∗ // HomR(Y,N)

(2) 0 // HomR(N,X)
β∗ // HomR(M,X)

α∗ // HomR(L,X).

Proof: We leave (2) as exercise and do (1) in class. �

We say HomR(−, X) and HomR(Y,−) are left exact functors. Neither β∗ nor α∗

have to be surjective. We’ll come back to conditions on X and Y for Hom to be an
exact functor.

Projective modules are basically the bread and butter of homological algebra, so
let’s define them. But first, let’s do free modules:

Let F be an R-module and X be a subset of F . We say F is free on X if for
every R-module A and every map ξ : X → A there exists a unique R-module
homomorphism φ : F → A such that φ(x) = ξ(x) for all x ∈ X.
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In other words F is free if there’s a unique R-module homorphism φ making the
following diagram commute:

F

φ!

��

X
>>

i

>>~~~~~~~~

ξ   @
@@

@@
@@

@

A

A very hard look at this diagram now gives us the following lemma.

Proposition 1.2. Let P be an R-module. Then the following statements are
equivalent:

(1) HomR(P,−) is an exact functor
(2) P is a direct summand of a free module.
(3) Every epimorphism M � P splits.
(4) For every epimorphism π : A � B of R-modules and every R-module

map α;P → B there is an R-module homomorphism φ : P → A such that
π ◦ φ = α.

Every R-module satisfying the conditions of Proposition 1.2 is called a projective
R-module.

Definition 1.3. Let M be an R-module. A projective resolution of M is an
exact sequence

· · · // Pi+1
di // Pi

di+1 // · · · d

1
// P1

d

0
// P0

ε // M // 0,

where every Pi, i ≥ 0, i ∈ Z, is a projective module.

We also use the short notation
P∗ �M.

Given anR-moduleN , we apply HomR(−, N) to the projective resolution above
to get a complex

0→ Hom(M,N)→ HomR(P0, N)→ HomR(P1, N)→ · · · .
We define:

ExtnR(M,N) = ker(HomR(Pn, N)→ HomR(Pn+1, N))/im(HomR(Pn−1, N)→ HomR(Pn, N)).

We use the convention that Pi = 0 for all i < 0.

Theorem 1.4. ExtnR(M,N) is independent of the choice of projective resolution
of M.

Exercise 2. Prove that Ext0
R(M,N) = HomR(M,N).

Definition 1.5. Let M be an R-module. We say M has finite projective
dimension over R, pdRM < ∞, if M admits a projective resolution P∗ � M of
finite length. In particular, there exists an n ≥ 0 such that

0→ Pn → Pn−1 → · · · → P0 →M → 0
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is a projective resulution of n. The smallest such n is called the projective dimension
of M .

Proposition 1.6. Let M be an R-module. Then the following statments are
equivalent:

(1) pdRM ≤ n.
(2) ExtiR(M,−) = 0 for all i > n
(3) Extn+1

R (M,−) = 0
(4) Let 0→ Kn−1 → Pn−1 → · · · → P1 → P0 →M → 0 be an exact sequence

with Pi projective for all 0 ≤ i ≤ n− 1. Then Kn−1 is projective.

Exercise 3. Let M ′′ ↪→ M � M ′ be a short exact sequence of R-modules.
Prove the following:

(1) pdM ′ ≤ sup{pdM, pdM ′′ + 1}.
(2) pdM ≤ sup{pdM ′′,pdM ′}.
(3) pdM ′′ ≤ sup{pdM, pdM ′ − 1}.

(This is an exercise in applying Theorem 1.7)

Exercise 4. Let M be an R-module such that pdM = n. Then there exists a
free R-module F such that

Extn(M,F ) 6= 0.

Theorem 1.7. Let M ′′ ↪→ M � M ′ be a short exact sequence of R-modules.
And let N be an arbitrary R-module. Then there are long exact sequences in coho-
mology

(1)

· · · → Extn(N,M ′′)→ Extn(N,M)→ Extn(N,M ′)→ Extn+1(N,M ′′)→ · · ·

(2)

· · · → Extn(M ′, N)→ Extn(M,N)→ Extn(M ′′, N)→ Extn+1(M ′, N)→ · · ·

Exercise 5. [Dimension shifting] Let K ↪→ P � M be the beginning of a
projective resolution of M and let N be an R-module. Then for all n ≥ 1,

Extn(K,N) ∼= Extn+1(M,N).

Proof: Apply Theorem 1.7 and the fact that Ext vanishes on projectives. �

2. The Group Ring

Throughout we denote a group by G. Let ZG denote the free Z-module with basis
the elements of G. In particular, every x ∈ ZG can be written in a unique way as

x =
∑
g∈G

ngg

where ng ∈ Zand almost all ng = 0. Define a multiplication on ZG as follows:

xy = (
∑
g∈G

ngg)(
∑
h∈G

nhh) =
∑
g,h∈G

ngnh(gh).

this makes ZG into a ring, the integral group ring.
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Example 1.8. (1) Let G = 〈x〉 be infinite cyclic. Then ZG has Z-basis
{xi | i ∈ Z} and can be identified with the ring Z[x, x−1] of Laurent poly-
nomials

∑
i∈Z aix

i, where almost all ai = 0.

(2) Let G be cyclic order n and t be a generator for G. {1, t, t2, ..., tn−1} is a
Z-basis for ZG and tn − 1 = 0 hence

ZG ∼= Z[T ]/Tn − 1.

Definition 1.9. Let M be an abelian group and let G act on M

G×M → M
(g,m) 7→ gm

such that for all m,n ∈M and g, h ∈ G:

• 1Gm = m
• (gh)m = g(hm)
• g(m+ n) = gm+ gn

we say that M is a G-module.

A G-module can be made in a ZG-module by ”linearly extending” the action,
i.e. xm = (

∑
g∈G ngg)m =

∑
g∈G ng(gm). Furthermore, G is a subgroup of the

multiplicative group ZG∗ and hence there’s the follwing universal property:
Let R be a ring and f : G → R∗ be a group homomorphism. Then f can be
extended uniquely to a ring homomorphism ZG→ R. Hence

Homrings(ZG,R) ∼= Homgroups(G,R
∗)

and a G-module is nothing but a ZG-module.

Example 1.10. Every abelian group A is a trivial G-module with the action
defined by ag = a for all a ∈ A, g ∈ G. Hence for x =

∑
g∈G ngg it follows that

xa =
∑
g∈G nga.

For every group G there is a ring homomorphism

ε : ZG→ Z

defined by ε(g) = 1. for all g ∈ G. Hence for x =
∑
g∈G ngg, ε(x) =

∑
g∈G ng. The

kernel of ε is called the augmentation ideal and is denoted by g or IG.

Lemma 1.11. g is a free Z-module with basis

X = {g − 1 | 1 6= g ∈ G}.

ε is a G-module homomorphism and g is a G-module.

Lemma 1.12. (1) Let S be generating set for G. Then g is generated as
a G-module by

S − 1 = {s− 1 | s ∈ S}.
(2) Let S be a set of elements of G such that S−1 generates g as a G-module.

Then S generates the group G.

Proof: We do (1) in class and leave (2) as an exercise. �

Now let Ω be a G-set and consider the free abelian group ZΩ on Ω. The operation
of G on Ω can be extended to a Z-linear operation of G on ZΩ. Hence ZΩ is a
G-module, the so called Permutation module.
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Example 1.13. (1) Let H ≤ G be a subgroup and let G/H be the set of
left cosets. Then Z[G/H] is a permutation module.

(2) Let Ω = ti∈IΩi (disjoint union). Then ZΩ = ⊕i∈IZΩi.

In particular, every permutation module can be expressed as

ZΩ =
⊕
ω∈Ω0

Z[G/Gω],

where Ω0 is a system of representatives of the orbits of the G-action and Gω = {g ∈
G | gω = ω} is the stabiliser (or isotropy group) of ω. We say G acts freely on Ω if
all stabilisers are trivial.

Lemma 1.14. Let Ω be a free G-set and let Ω0 be a system of representatives
for the G-orbits. Then ZΩ is a free G-module with basis Ω0.

Lemma 1.15. Let H ≤ G be a subgroup of G. Then ZG is free as a left H-
module.

Now let us define the cohomology groups:

Definition 1.16. Let G be a group. Then the n-th cohomology group of G
with coefficients in the G-module M is defined to be

Hn(G,M) = ExtnZG(Z,M).

In chapter one we have determined the zeroth cohomology group Ext0. Hence

H0(G,M) ∼= HomZG(Z,M) ∼= MG,

where MG denote the G-fixed points of M. We have, so far, computed cohomology
via projective resolutions and defined the projective resolution of a module M to
be the shortest length of a projective resolution of M . One theme of this course
will be cohomological finiteness conditions for groups, so let’s make first definition.

Definition 1.17. Let G be a group. The cohomological dimension of G, de-
noted cdG is defined to be

cdG = pdZGZ.

The above Lemma 1.15 implies directly:

Proposition 1.18. Let H ≤ G be a subgroup of G. Then

cdH ≤ cdG.

Remark 1.19. One can, of course always define the group ring RG for any
ring R. H∗R(G,−) and cdRG are defined analogously. Something more here, adjoint
functors?

We shall now spend some time on finding projective resolutions of Z over ZG. Let
us begin with two easy examples:

Example 1.20. (1) Let G = 〈x〉 be an infinite cyclic group. Then

0 // ZG
∗(x−1)// ZG ε // Z // 0

is a projective (free) resolution of Z.
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(2) Let G be a cyclic group of order n generated by t. Then, as seen before,
ZG ∼= Z[t]/(Tn − 1). Now Tn − 1 = (T − 1)(Tn−1 + Tn−2 + ...+ T o) and
hence for each x ∈ ZG it follows that

(t− 1)x = 0 ⇐⇒ x = (tn−1 + ...+ t+ t0)y = Ny some y ∈ ZG.

Hence there is a projective (free) resolution of Z of infinite length:

...
∗(t−1)// ZG ∗N // ZG

∗(t−1) // ...
∗N // ZG

∗(t−1) // ZG ε // Z // 0.

We will see later that G has no projective resolution of finite length.

Corollary 1.21. Let G be a group with cdG <∞, then G is torsion-free.

3. The Bar-resolution

The standard resolution
We define a free resolution

F∗ � Z
as follows: Let

Fi = Z(Gn+1)

with the G-action defined diagonally:

(g0, g1, ..., gn)g = (g0g, g1g, ..., gng).

The chain maps δ : Fn → Fn−1 are defined as by

di : Fn → Fn−1

(g0, ..., gi, ...gn) 7→ (g0, ..., ĝi, ..., gn)

(ĝi denotes omitting this term) and then

δ =

n∑
i=0

(−1)idi.

Show that δδ = 0. To see that F∗ � Z is exact , we note that there is a contracting
homotopy (not a G-map)

h : Fn → Fn−1

(go, ..., gn) 7→ (1, g0, ..., gn).

This resolution is called the standard resolution.

The Bar resolution Now define free G-modules

Qn = Z(Gn ×G)

where G acts on Gn ×G as follows:

(g0, ..., gn−1, gn)g = (go, ..., gn−1, gng).

For all n ≥ 0 there is G-module isomorphism

Qn ∼= Fn.

Lemma 1.22. HomZG(Qn,M) ∼= Cn(G,M), where Cn(G,M) denotes the set
of all functions ϕ : Gn →M.

Remark 1.23. (1) Cn(G,M) is an abelian group.
(2) As ZG module Qn has basis Gn × {1}.
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(3) Induced by the cochain maps HomZG(Fn,M) → HomZG(Fn+1,M) there
is a cochain map

D : Cn(G,M)→ Cn+1(G,M)

defined by (Dϕ)(g0, ..., gn) = ϕ(g1, ..., gn)−ϕ(g0g1, g2, ..., gn)+ϕ(g0, g1g2, g3, ..., gn)−
...+ (−1)n(ϕ(g0, ..., gn−1gn) + (−1)n+1ϕ(g0, ..., gn−1)gn.
Show DD = 0. As before, suppose ϕ : Gn →M such that Dϕ = 0 we call
ϕ a n-cocycle.

Definition 1.24. A 1-cocyle is called a derivation.

For ϕ : G→M and for all g, h ∈ G, 0 = (Dϕ)(g, h) = ϕ(h)−ϕ(gh)+ϕ(g)h implies

ϕ(gh) = ϕ(h) + ϕ(g)h.

Remark 1.25. Let ϕ : G→M be a derivation. Then

(1) ϕ(1) = 0;
(2) ϕ(g−1) = −ϕ(g)g−1.

Lemma 1.26. Let M be a G-module. for every m ∈M and g ∈ G the function
g 7→ mg −m is a derivation. Such derivations are called inner derivations.

A 2 cocyle is sometimes called a factor set.

Exercise 6. Let ϕ : G×G→M be a factor set. Show that ϕ(g, 1) = ϕ(1, 1)
and ϕ(1, k) = ϕ(1, 1)k. for all g, k ∈ G.

Example 1.27. Let G be an abelian group and let A be a trivial G-module.
Then every multilinear map

ϕ : G× ...×G→ A

is a cocylce.

(1) Let G = Rn Then det : Rn × ...× Rn︸ ︷︷ ︸
n

→ R is a n-cocylce.

(2) Let G = Rn and 〈v, w〉 =
∑n
i=0 viwi with v, w ∈ Rn is a 2-cocycle.

As shown above, the definition

Hn(G,M) = Hn(C∗(G,M))

is consistent with our previous definition of group cohomology via projective reso-
lutions.

Theorem 1.28. Let G be a finite group and let M be a G-module. Then
every element of Hn(G,M) for n > 0 has finite order dividing the order of G. In
particular, for all n > 0.

|G|Hn(G,M) = 0.



CHAPTER 2

Groups acting on trees

1. Trees

Definition 2.1. Let X be a set. A free group on X is a group F together
with a function ι : X → F such that for any group G and any function φ : X → G
there is a unique homomorphism θ : F → G such that θι = φ.

Remark 2.2. Any two free groups on X are isomorphic and for every set X
there exists a free group on X. Let F be the set of all reduced words in X ∪X−1.

Definition 2.3. Let G be a group. A G-graph Γ = (Γ, V, E, ι, τ) consists of
two G-sets V (vertices) and E (edges) and G-maps ι, τ : E → V.

We call ι the initial vertex (function) and τ the terminal vertex (function). In case
ι(e) = τ(e) for a e ∈ E, then e is a loop.

Definition 2.4. Let G be a group and let X be a subset of G. The Cayley-
graph Γ = Γ(G,X) with respect to X is the G-graph Γ defines as follows:

V = G and E = X ×G.
and ι(x, g) = g and τ(x, g) = xg for all x ∈ X, g ∈ G.

Let Γ be a G-graph. We define new initial and terminal vertex functions. Or,
in other works we define edges e1 and e−1 with an orientation. Let e ∈ E. now
ι(e1) = ι(e) and τ(e1) = τ(e) whereas ι(e−1) = τ(e) and τ(e−1) = ι(e). A path in
Γ is a finite sequence

v0e
ε1
1 v1e

ε2
2 ...vn−1e

εn
n vn

where εi ∈ {1,−1}, vi ∈ V, ei ∈ E and ι(eεi) = vi−1 and τ(eεi) = vi. We shorten
this to

p = eε11 e
ε2
2 ...e

εn
n

with ι(p) = v0 and τ(p) = vn. The inverse path is

p−1 = e−εnn ...e−ε11

Let q be a path such that ι(q) = τ(p). We form a new path (p, q) by gluing.
A path is called reduced if for all i = 1, ..., n− 1

eεii 6= e
−εi+1

i+1 .

A path is called a tree if for all vertices v, w there is a unique reduced path p such
that ι(p) = v and τ(p) = w. Such a path is called a geodesic.
A path p is called closed at the vertex v if ι(p) = τ(p) = v. p is simple closed if
there is no repetition of vertices. A graph Γ is called a forest if there are no simple
closed paths.
A graph Γ is connected if for all v, v′ ∈ V there is a path connecting v and v′.

13
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Proposition 2.5. A graph Γ is a tree if and only if Γ is a connected forest.

The augmented cellular chain complex C∗(Γ) � Z of a G-graph Γ = (Γ, V, E, ι.τ)
is the following sequence of G-modules

0 // ZE d // ZV ε // Z // 0.

where d(e) = τ(e) − ι(e) and ε(v) = 1. This is always a complex as εd = 0. Also ε
is onto if and only if V is non-empty.

Lemma 2.6. (1) A non-empty graph is connected if and only if

ZE → ZV � Z

is exact.
(2) A graph is a forest if and only if

0→ ZE → ZV

is exact.
(3) A non-empty graph Γ is a tree if and only if

0→ ZE → ZV → Z→ 0

is exact.

Let us now consider a little aside:

Definition 2.7. Let M be a G-module. The split extension M oG of M over
G is the set M ×G together with multiplication

(m, g)(n, h) = (mh+ n, gh).

Remark 2.8. (1) M oG is a group with identity (0, 1).
(2) The map π : M oG→ G defined by π(m, g) = g is a homomorphism.

Lemma 2.9. There is a bijection between the set of group homomorphisms θ :
G→M oG satisfying πθ = idG and the set of derivations ϕ : G→M.

Now back to trees:

Theorem 2.10. Let F be a free group on X. Then the Cayley graph Γ(F,X)
is a tree.

Exercise 7. Let G be a group and suppose the the Cayley graph Γ(G,X) is
connected. Show that G is generated by X.

Definition 2.11. Free product with amalgamation Let G1, G2 and A be
groups and let α1 : A→ G1 and α2 : A→ G2 be group homomorphisms. The free
amalgamated product of G1 and G2 over A is the group G satisfying:

There is a commutative diagram

A
α1 //

α2

��

G1

β1

��
G2

β2 // B

satisfying the following universal property



1. TREES 15

Let H be a group with homomorphisms γi : Gi → H (i = 1, 2) such that
γ1α1 = γ2α2 then there exists a unique homomorphism φ : G → H such that
φβi = γi (i = 1, 2).

We write
G = G1 ∗A G2.

Exercise 8. Let G = G1 ∗A G2 with A → G1 and A → G2 not necessarily
monomorphisms. Denote by Ḡ1 and Ḡ2 the images of G1 and G2 in G. Prove that
G = Ḡ1 ∗A Ḡ2.

We therefore assume from now on that A ↪→ Gi and Gi ↪→ G for i = 1, 2.

Lemma 2.12. Let G = K ∗H L. for every G-module M and derivations δ′ :
K →M and δ′′ : L→M such that δ′|H = δ′′|H . Then there is a unique derivation
δ : G→M such that δ|K = δ′ and δ|L = δ′′.

Remark 2.13. Let G = K ∗H L. Then

(1) H = K ∩ L;
(2) G is generated by K and L.

Theorem 2.14. Let G = K ∗H L and define a G-graph Γ = Γ(E, V, ι, τ) as
follows:

E = G/H and V = G/K tG/L,
with ι(gH) = gK and τ(gH) = gL. Then Γ is a tree.

Definition 2.15. HNN-extensions Let H ≤ K ≤ G be groups ad let t ∈ G
such that Ht ⊆ K. G is an HNN-extension with respect to (K,H, t) if is satisfying
the following universal property: Let G1 be a group, t1 ∈ G and θ : K → G be
a homomorphism such that for all h ∈ H. θ(ht) = θ(h)t1 . Then there is a unique

homomorphism θ̂G→ G1 such that θ̂|K = θ and θ̂(t) = t1. We write

G = K ∗H,t .

Theorem 2.16. Let G = K∗H,t be an HNN-extension. Then the G-graph
Γ = Γ(E, V, ι, τ) defined by

V = G/K and E = G/H

with ι(gH) = gK and τ(gH) = gtK is a tree.

Let T be a G-tree with one orbit of edges. Then there are one or two orbits of
vertices. Let e be an edge. Then every vertex is in the orbit of ι(k) or in the orbit
of τ(k).

One can also show that if H ≤ G and T a G-tree such that

(1) There is only one orbit of edges (with H = Ge where e ∈ E.
(2) For every vertex v there is a g ∈ G such that gv 6= v.

Then either G = G1 ∗H G2 with G1 6= G2 6= G or G is an HNN-extension with
G = K ∗H,t .





CHAPTER 3

Resolutions via Topology

In this section we shall see that we can construct resolutions once we have con-
structed models for classifying spaces. We shall introduce very quickly the basic
topological notions used later. We shall, however introduce classifying spaces in
a more general way than initially used. We will see how to construct classifying
spaces for families of subgroups.

1. CW-complexes

In this section we only briefly introduce the concept of a CW-complex. The inter-
ested reader can find all detail in most Algebraic Topology textbooks, such as for
example Hatcher’s book [8], appendix.

A CW-complex can be thought of as built by the following proceedure:

(1) Start with a discrete set X0, whose points are regarded as 0-cells. (This
is the 0-skeleton).

(2) Inductively, from the (n − 1)-skeleton Xn−1 build the n-skeleton Xn by
attaching n-cells enα via maps ϕα : Sn−1 → Xn−1. (This means that Xn

is the quotient space of the disjoint union Xn−1 tα Dn
α of Xn−1 with a

collection of n-disks Dn
α under the identification x ∼ ϕαx for x ∈ Dn

α.
Thus, as a set Xn = Xn−1 tα enα, where each enα is an open n-disk.)

(3) Put X =
⋃
nX

n where X is given the weak topology: A set A ⊂ X is
open if and only if A ∩Xn is open for all n.

Example 3.1. A 1-dimensional CW-comples is just a graph with vertices the
0-cells and edges the 1-cells.

Example 3.2. X = R2 is a 2-dimensional CW-complex with Z × Z as the
0-cells, the open intervalls as the 1-cells and the interior of the unit squares as
2-cells.

Example 3.3. The sphere Sn has the structure of a CW-complex with one
0-cell and one n-cell.

Example 3.4. The real projective plane, RP 2 can be seen as D2 with antipodal
points of S1 = δD2 identified. Hence RP 2 = e0 ∪ e1 ∪ en.

Exercise 9. How can we see that RPn has a CW-structure, e0 ∪ e1 ∪ ...∪ en?

Exercise 10. How can we see that a closed orientable surface Mg of genus g
(M1 = T , the torus) has a CW-structure given by: e0 ∪ e1

1 ∪ e1
2 ∪ ... ∪ e1

2g ∪ e2, i.e.
has one 0-cell, 2g 1-cells and one 2-cell? (Identify edges on a regular 4g-gon.)

17
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2. G-spaces

In this course, all our groups are discrete groups. One can, however, define clas-
sifying spaces for families for arbitrary topological groups. For detail see tomDieck’s
book on transformation groups [5].

Definition 3.5. A G-space is a topological space X with a (continuous) left
G-action

G×X → X, (g, x) 7→ gx

satisfying

(1) ex = x for all x ∈ X and e = eg the identity of G.
(2) (gh)x = g(hx) for all x ∈ X and all g, h ∈ G.

Example 3.6. (a) Let G be the infinite cyclic group with generator g,
i.e. G = 〈g〉 and X = R. X is a G-space with G acting by translation
gix = x+ i.

(b) Let G = Z× Z. X = R2 is a G-space with G acting by translation.
(c) Let H be the upper half plane model of the hyperbolic plane,

H = {z = x+ iy ∈ C | y > o}.

Sl2(Z) = {A =

(
a b
c d

)
| a, b, c, d ∈ Z, det(A) = 1} acts on H by

Möbius-transformations, i.e Az = az+b
cz+d .

(Check this really makes H into a Sl2(Z)-space)
The kernel of this action consists of scalar multiples in Sl2(Z) of the

identity matrix I. Hence H is a G space for G = PSl2(Z) = Sl2(Z)/{
+
− I}.

Definition 3.7. The stabilizer Gx ≤ G of a point x ∈ X is the subgroup
{g ∈ G | gx = x}.

Let us note that the Cartesian product X × Y of two G-spaces X and Y is again a
G-space via the diagonal action g(x, y) = (gx, gy) for all x ∈ X, y ∈ Y and g ∈ G.

Definition 3.8. Let H ⊆ G be a subgroup of G. Write XH for the subspace
of H-fixed points

XH = {x ∈ X |hx = x, ∀h ∈ H}
and X/H for the space of H-orbits,

X/H = {Hx |x ∈ X}.

Let NG(H) denote the normalizer of H in G:

NG(H) = {g ∈ G | gH = Hg}.

Then the G-action on X restricts to an NG(H)-action on XH with H acting trivally.
Hence XH is a NG(H)/H-space.

Example 3.9. The space of left cosets G/H is a G-space via (g, kH) 7→ gkH
for all g, k ∈ G.
(Fact: Every discrete G-space is a disjoint union of such G-spaces.)
Let K ≤ G a subgroup. Then (G/H)K consists of all cosets gH such that KgH =
gH ⇐⇒ g−1Kg ≤ H.
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Definition 3.10. A G-CW-complex consists of a G-space X together with a
filtration

X0 ⊂ X1 ⊂ X2 ⊂ ... ⊂ X
by G-subcomplexes such that

(1) Each Xn is closed in X.
(2)

⋃
n∈NX

n = X.

(3) X0 is a discrete subspace of X.
(4) For each n ≥ 1 there exists a discrete G-space ∆n together with G-maps

F : Sn−1 ×∆n → Xn−1 and f̂ : Dn ×∆n → Xn such that the following
diagramme is a push-out:

Sn−1 ×∆n → Xn−1

↓ ↓
Dn ×∆n → Xn

(5) A subspace Y of X is open if and only if Y ∩Xn is open for all n ≥ 0.

A map f : X → Y of G-CW-complexes is a G-map if f(gx) = gf(x) for all g ∈ G,
x ∈ X. If G = {e} the trivial group, then a G-CW-complex is just a CW-complex
as in Chapter 1. All our examples in 3.6 are G-CW-complexes.

Example 3.11. Let G = C2 be the cyclic group of order 2. Then the sphere,
S2 is a G-CW-complex with G acting by the antipodal map.

Definition 3.12. (1) A G-CW-complex is called finite dimensional if
Xn = X for some n ≥ 0. The least such n is called the dimension of
X. (In case dim(X) <∞, Axiom 5 above is redundant.)

(2) A G-CW-complex is said to be of finite type, if there are finitely many G-
orbits in each dimension. (Equivalently, as X/G is a CW-complex, X/G
only has finitely many cells in each dimension.)

(3) A G-CW-complex is called cocompact if X is finite dimensional and of
finite type. (Equivalently, X/G is a finite CW-complex.)

All the examples we’ve seen so far, are cocompact. Before we can move on to defin-
ing classifying spaces, we need to have a quick look at an important construction,
the join construction:

Definition 3.13. Let I = [0, 1] and let X,Y be G-CW-complexes. We define
the join of X and XY to be:

X ∗ Y = (I ×X × Y )/ ∼,
where∼ is the equivalence relation generated by (0, x, y1) = (0, x, y2) and (1, x1, y) =
(1, x2, y).

Hence the dimension ofX ∗ Y is equal to 1 + dim(X) + dim(Y ). Furthermore, the
join of two G-spaces is again a G-space with diagonal G-action. One can also show
that the join of two G-CW-complexes is again a G-CW-comples.

Example 3.14. (1) X ∗ {pt} = CX the cone on X.
(2) X ∗ S0 = ΣX the suspension on X.
(3) The n-fold join {pt} ∗ ... ∗ {pt} is a n− 1-simplex

Lemma 3.15. [12] Let X be a non-empty and Y be a n-connected space. Then
X ∗ Y is n + 1-connected. In particular, the infinite join of non-empty G-CW-
complexes is contractible.
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A space X is called 0-connected if it is non-empty and path-connected; it is callen
n-connected if X is 0-connected and for each 1 ≤ i ≤ n, the homotopy group πi(X)
is trivial. For detail on connectedness and higher homotopy groups see [15, Chapter
11].

3. Classifying spaces

Let F denote a family of subgroups of a group G. This is a collection of subgroups
closed under conjugation and finite intersection. The following are examples of such
families:

• F = All, the family of all subgroups of G
• F = Fin, the family of all finite subgroups of G
• F = VC, the family of all virtually cyclic subgroups of G. (A group is

virtually cyclic if it has a cyclic subgroup of finite index)
• F = {e}, the family consisting only of the trivial subgroup.

Later on, we will mainly be concerned with F = {e}, but will also talk about
F = Fin.

Definition 3.16. A G-CW-complex X is called a classifying space for the
family F, or a model for EFG, if for each subgroup H ≤ G, the following holds:

XH '

{
∗ if H ∈ F

∅ otherwise

Theorem 3.17. For each group G there exists a model for EFG.

Proof To prove existence one could follows either Milnor’s [11] or Segal’s [16]
construction of EG, the classifying space for free actions. We shall follow Milnor’s
model here: Let

∆ =
⊔
H∈F

G/H

be the discrete G-CW-complex as in example 3.9. Now form the n-fold join

∆n = ∆ ∗ ... ∗∆︸ ︷︷ ︸
n

and put

X =
⋃
n∈N

∆n.

Example 3.9 now implies that ∆H = ∅ ⇐⇒ H /∈ F. Furthermore, since

∆H ∗ ... ∗∆H = (∆ ∗ ... ∗∆)H ,

Lemma 3.15 implies that XH ' ∗ for H ∈ F and XH = ∅ otherwise and X is
therefore a model for EFG. �

This construction, however gives us an infinite dimensional model, which is not
of finite type. In this course we will try to find “nice” models.
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Remark 3.18. when considering the family F = Fin, the we denote the classi-
fyibg space EFG by EG. This is the classifying space for proper action.

Let G be torsion-free and X be a model for EG. Then X is contractible and G
acts freely (X{e} ' ∗ and XH = ∅ for all {e} 6= H ≤ G). Hence X is a model for
EG, the classifying space for free actions, or equivalently the universal cover of a
K(G, 1), an Eilenberg-Mac Lane space.

Example 3.19. (Examples for torsion-free groups)

(a) G = Z. Then R is a model for EG by Example 3.6 (a)
(b) G = Z× Z and R2 is a model for EG by Example 3.6 (b).
(c) Let G be the free group on 2 generators, G = 〈x, y〉. Then the Cayley-

graph is a tree, which is a model for EG .

Example 3.20. (Examples for groups with torsion)

(a) If G is a finite group, then {∗} is a model for EG.
(b) Let G = D∞ be the infinite dihedral group. Then R is a model for EG,

where the generator for the infinite cyclic group acts by translation and
the generator of order two acts by reflection.

(c) Let G be a wallpaper group, i.e. an extension of Z × Z with a finite
subgroup of O2, the group of 2 × 2 orthogonal matrices. Then R2 is a
model for EG.

(d) Let G = PSL2(Z). We’ve seen in example 3.6 (c) that G acts by Möbius
transformations on H the upper half plane. This is a 2-dimensional model
for EG.

Considering the two generators, S =

(
0 −1
1 0

)
and T =

(
0 −1
1 1

)
we can see that G ∼= C2 ∗C3 the free product of a cyclic group of order 2
and a cyclic group of order 3. Hence, the dual tree T is a 1-dimensional
model for EG.

For the interested reader I will include a very brief overview of some of the homotopy
theory behind the above construction:

Definition 3.21. A G-space X is called proper of for each pair of points
x, y ∈ X there are open neighbourhoods Vx of x and Vy of y such that the closure
of {g ∈ G | gVx ∩ Vy 6= ∅} is a compact subset of G.

If G is discrete this means that the above set is finite. Hence a G-CW complex X
is proper if and only if all stabilizers are finite.

Theorem 3.22. (J.H.C. Whitehead, see [?], Chapter I)
A G-map f : X → Y between two G-CW-complexes is a G-homotopy equiva-

lence if for all H < G and all x0 ∈ XH the induced map

π∗(X
H , x0)→ π∗(Y

H , f(x0))

is bijective.

Now, the following theorem explains why we call EG the classifying space for proper
actions:

Theorem 3.23. (See [?, Theorem 2.4]) Let X be a proper G-CW-complex.
Then, up to G-homotopy, there is a unique G-map X → EG.

Exercise 11. Show that any two models for EG are G-homotopy equivalent.
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4. Projective resolutions

In this section we will construct projective resolutions by considering classifying
spaces. We will look at EG, the classifying space for free actions. But let us begin
with the augmented cellular chain complex.

Let X be a G-CW-complex. It’s augmented cellular chain complex is a chain
complex of G-modules

· · · → Cn(X)→ Cn−1(X)→ · · · → Co(X) � Z,

in which each Ci(X) is the free abelian group on the orbits of i-cells. Hence

Ci(X) ∼=
⊕

orbit−reps σ

Z[G/Gσ].

Recall that a G-CW-complex X is a model for EG if X is contractible and G acts
freely on X.

Proposition 3.24. Let X be a model for EG. Then the augmented cellular
chain complex is a free resolution of Z over ZG.

Remark 3.25. Let C be a chain complex. We say C is acyclic of and only
if H∗(C) = 0. A G-CW-complex X is called acyclic if it has the homology of a
point. Hence an acyclic G-CW-complex with a free G-action would also give us a
free resolution of Z.

Definition 3.26. We say a group G has finite geometric dimension (gdG <∞)
if it admits a finite dimensional model for EG. The smallest such dimension is called
the geomtric dimension of G.

We can now state the following corollary to Proposition 3.24:

Corollary 3.27. For each group G:

cdG ≤ gdG.

The converse is almost true and involves rather more than we can cover here.
It comes in two parts, which were proved using very different methods.

Theorem 3.28. [17, 18][Stallings-Swan] Let G be a group. Then

cdG = 1 ⇐⇒ gdG = 1 ⇐⇒ Gis free.

Theorem 3.29. [7][Eilenberg-Ganea] Let G be a group such that cdG ≥ 3.
Then

cdG = gd3.

This leaves the case when G is a group with cdG = 2. It is still unknown whether
there is a group G, which does not admit a 2-dimensional model for EG, although
there are some candidates for examples [?] (Bestvina).

Example 3.30. Let G be a free group on S. We now construct a model X for
EG . We take a fixed vertex x0 and we then have a unique orbit of vertices . Hence

C0(X) = ZV = ZG.
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As basis for C1(X) = ZE we take for each s ∈ S an oriented 1-cell es. We assume
the initial vertex is x0. Otherwise we translate by a suitable g. Hence the initial
vertex of es is x0 and the terminal vertex is sx0. and we get a map

δ : ZE → ZV
es 7→ sx0 − x0 = (s− 1)x0

ZE = Ci(X) = ZG(S) and we have a free resolution of length 1:

0 // ZG(S) δ // ZG // Z // 0

This is the resolution we have seen in chapter 2.

(a) Let G = 〈t〉 be infinite cyclic. Then X = R and we recover the resolution
in section 1:

0 // ZG t−1 // ZG ε // Z // 0

(b) We can also view X as a G-CW-comples with one orbit of 0-cells and s
orbits of one cells {g, gs} with the action induced by left translation of G
on itself. E.g for G = 〈s, t〉 we get the tree seen in chapter 2

Example 3.31. Let G be a finite cyclic group, i.e. G = 〈t | tn − 1〉. The circle
S1 is a G-CW-complex with n vertices and n 1-cells. There is one orbit of vertices
{v, tv, ..., tn−1v} and one orbit of 1-cells {e, te, ..., tn−1e} and (t − 1)(e + te + ... +
tn−1e) = 0. Consider

ZG t−1 // ZG ε // Z // 0 .

Hence H1(S1) is generated by 1 element e + te + .. + tn−1e = Ne and we get an
exact sequence

0 // Z
η // ZG t−1 // ZG // Z // 0,

where η(1) = N. We now splice these sequences together to obtain a free resolution

· · · // ZG t−1 // ZG N // ZG t−1 // ZG ε // Z // 0

of infinite length, as seen in Section 3 in Chapter 1.

And we retrieve the following results from Section 3 in Chapter 1:

Proposition 3.32. Let G be a finite cyclic group. Then

H2k(G,Z) 6= 0)

for all k > 0. In particular
cdG =∞.

Corollary 3.33. Let G be a group of finite cohomological dimension. Then
G is torsion-free.





CHAPTER 4

Cohomological finiteness conditions

1. Induction and Coinduction

Proposition 4.1. Let R and S be rings, A a right S-module, B a right R-
module and a left S-module and C a right R-module. Then there is a natural
isomorphism

HomR(A⊗S B,C) ∼= HomS(A,HomR(B,C)),

the so called adjoint isomorphism.

HomR(B,C) is a right S-module via (ϕs)(b) = ϕ(sb). Contravariance of HomR(−, C)
leads to this ’switch from right to left’.

Remark 4.2. Let α : S → R be a ring homomorphism. Then every R-module
M can be viewed as an S-module via sm = α(s)m for all s ∈ S,m ∈ M. This is
called Restriction of scalars.

Remark 4.3. Extension of Scalars Let α : S → R be a ring homomorphism.
As above, R can be viewed as a left S-module vial sr = α(s)r for all s ∈ S, r ∈ R.
Now let M be a right S-module and form a Z-module

M ⊗S R.
The right action of R on itself commuted with the left action of S. Hence M ⊗S R
can be viewed as a right R-module via

(m⊗ r)r′ = m⊗ rr′.
We now apply the adjoint isomorphism 4.1 to obtain a natural isomorphism

HomR(M ⊗S R,N) ∼= HomS(M,N).

We say extension of scalars is left adjoint to restriction of scalars.

Remark 4.4. Coextension of scalars This construction is dual to that in
4.3. Let M be a right S-module. Then

HomS(R,M)

is a right R-module via fr
′
(r) = f(rr′). Now it follows from 4.1 that for all R-

modules N and S-modules M there is a natural isomorphism

HomR(N,HomS(R,M)) ∼= HomS(M,N).

We say Coextension of scalars is right adjoint to restriction of scalars.

Example 4.5. Let S = ZG for a group G and R = Z. Consider the augmenta-
tion map ε : ZG� Z, which is a ring homomorphism. extension of scalars sends a
G-module M to

M ⊗ZG Z ∼= MG,

25
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where MG = M/L, where L is the submodule generated by all mg−m. Also note,
that

MG
∼= M/g.

On the other hand, coextension of scalars gives HomZG(Z,M) = MG = Ho(G,M).

We will be insterested under which circumstances these constructions preserve ex-
actness, send projectives to projectives or injectives to injectives. Note, that so far,
it is only clear that restriction preserves exactness.

Lemma 4.6. (1) Extension of scalars sends projective S-modules to pro-
jective R-modules.

(2) Coextension of scalars sends injective S-modules to injective R-modules.
(3) Let R be flat as an S-module. Then under restriction, injective R-modules

become injective S-modules.
(4) Let R be projective as an S-module. Then under restriction projective

mR-modules become projective S-modules.

Lemma 4.7. Let G be a group. Then every right G-module can be viewed as
a left G-module and vice versa. The operation is given by gm = mg−1 for all
g ∈ G,m ∈M.

From now on let’s consider group rings again. Let H ≤ G be a subgroup. Then
the inclusion induces a ring-homomorphism

ZH ↪→ ZG.

Extension of scalars becomes Induction from H to G. Let M be an H-module.
Then.

IndGHM = M ⊗ZH ZG = M ↑GH
Coextension of scalars becomes Coinduction from H to G. Let M be an H-
module. Then:

CoindGHM = HomZH(ZG,M).

Let N be a G-module. Then restriction of scalars is usually denoted by

ResGHN = N ↓GH .

Proposition 4.8. The G-module M ↑GH contains M as a H-submodule. Fur-
thermore,

M ↑GH∼=
⊕
g∈E

Mg

where E is a system of representatives for the right cosets Hg.

Note that Z↑GH∼= Z[H\G] is a permutation module.

Proposition 4.9. Frobenius reciprocity Let H ≤ G be a subgroup of the
group G. Let M be an H-module and N be a G-module. Then there is an isomor-
phism of G-modules

N ⊗M ↑GH∼= (N ↓GH ⊗M)↑GH .

This implies that for every H-module N

N ⊗ Z[H\G] ∼= N ⊗ZH ZG,
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where on the left we have a diagonal G-action, wheras on the right hand side the
G-action only comes from the action on ZG. In particular, if M is a G-module with
underlying abelian group M0 then

M ⊗ ZG ∼= M0 ⊗ ZG.
In particular, if M0 is a free abelian group, M ⊗ ZG is a free G-module.

Proposition 4.10. Mackey’s formula Let H ≤ G and K ≤ G and let E
denote a system of representatives for the double cosets KgH. For each K-module
M there is a K-module isomorphism:

(M ↑GH)↓GK∼=
⊕
g∈E

(Mg↓H
g

K∩Hg )↑KK∩Hg .

In particular, if N is a normal subgroup of G then

(M ↑GH)↓GH∼=
⊕

g∈H\G

Mg.

We can identify Mg ↓Hg

K∩Hg with M ↓HK∩Hg whereby the second restriction is with
respect to the map: K ∩ g−1Hg → H mapping k 7→ gkg−1.

Proposition 4.11. Let |G : H| <∞. Then

IndGHM
∼= CoindGHM

for every H-module M .

Exercise 12. (1) Show that induction is invariant under conjugation,i.e.
show that for every H-module M and g ∈ G

M ↑GH∼= Mg↑GHg .

(2) Let |G : H| =∞. Show that for any H-module M :

(M ↑GH)G = 0.

Theorem 4.12. Eckmann-Shapiro Lemma Let H ≤ G and let M be an
H-module. Then

H∗(H,M) ∼= H∗(G,CoindGHM).

Remark 4.13. Let |G : H| <∞. Then

(1) H∗(H,Z) ∼= H∗(G,Z[H\G]) and
(2) H∗(H,ZH) ∼= H∗(G,ZG).

Finally we will make a remark on the exactness of induction:

Proposition 4.14. Let A ↪→ B � C be a short exact sequence of ZH-modules.
Then

A↑GH ↪→ B ↑GH� C ↑GH
is an exact sequence of ZG-modules.

Exercise 13. Let k be a field and let G be a finite group. Prove that a
kG-module is projective if and only if it is injective. (Hint: every k-module is free).

Theorem 4.15. Mayer Vietoris sequence: Let G = K ∗H L be a fee product
with amalgamation and let M be a G-module. Then the following sequence in
cohomology is exact:

· · · → Hn(G,M)→ Hn(L,M)⊕Hn(K,M)→ Hn(H,M)→ Hn+1(G,M)→ · · · .



28 4. COHOMOLOGICAL FINITENESS CONDITIONS

2. Cohomological dimension

Recall the definition of cohomological dimension from Chapter 2.1:

cdG = pdZGZ
= inf{n |Z has a projective resolution of length n}
= inf{n | Hi(G,−) = 0 ∀I > n}
= sup{n | ∃M s.t. Hn(G,M) 6= 0.}

We have further seen that if cdG = n there exists a free module F such that
Hn(G,F ) 6= 0.
Let us recall a few more facts:

(1) Let G be a finite group. Then cdG = ∞. In particular groups of finite
cohomological dimension are torsion-free.

(2) Let H ≤ G. Then cdH ≤ cdG.
(3) cdG = 0 ⇐⇒ G = {e}.
(4) Let G be a free group (in particular if G is infinite cyclic). Then cdG = 1.

The converse is also true and due to Stallings and Swan.

Lemma 4.16. Let G be a group with cdG = n. Then there is a free ZG-module
F such that

Hn(G,F ) 6= 0.

Proposition 4.17. Let G be a group of finite cohomological dimension and let
H ≤ G be a subgroup of finite index. Then

cdG = cdH.

One can make an even stronger statement not having to assume that G has
finite cohomological dimension:

Theorem 4.18. Serre’s Lemma Let |G : H| <∞ Then cdG = cdH.

The proof of Serre’s Lemma relies on Proposition 4.17 and on building a model
for EG from a product of models for EH.

Theorem 4.19. Let H ↪→ G� Q be a short exact sequence of groups. Then

cdG ≤ cdH + cdQ.

This follows directly from the Hochschild-Serre spectral sequence, and we will not
prove it here.

Exercise 14. Let G be a free abelian group of finite rank n. Then cdG = n.

We have already seen that a free abelian group G of rank n has cdG ≤ n. So one
only needs to prove the last part of the following theorem:

Theorem 4.20. Let G be a free abelian group of rank n. Then

cdG = n,

for all i < n
Hi(G,ZG) = 0

and
Hn(G,ZG) 6= 0.

And Now we have a direct corollary to the Mayer-Vietoris Sequence in Theorem
4.15:
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Corollary 4.21. Let G = K ∗H L be a fee product with amalgamation. Then
cdG ≤ sup{cdH, cdK, cdL}+ 1.

3. Groups of type FPn .

We already did see one cohomological finiteness condition, the cohomological di-
mension of a group. The main purpose of this chapter is a discussion of the notion
of groups of type FPn, which can be viewed as a generalisation of finite generation
(at least as long as n ≥ 2).

Definition 4.22. Let R be a ring.

(1) Let M be an R-module. We say M is of type FPn if there is a projective
resolution P∗ �M with Pi finitely generated for all i ≤ n.

(2) M is of type FP∞ if there is a projective resolution P∗ � M with Pi
finitely generated for all n ≥ 0.

(3) M is of type FP if M is of type FP∞ and pdRM <∞.

Remark 4.23. (1) M is of type FP0 if and only if M is finitely generated.
(2) M is of type FP1 if and only if M is finitely presented.
(3) Let M be of type FPn . Then there is a free resolution F∗ �M with each

Fi finitely generated for all i ≤ n.

We say a module is of type FL if there is a finite length free resolution F∗ � M
where all Fi are finitely generated. It is obvious that modules of type FL are of
type FP but the converse is not necessarily true.

Definition 4.24. A group G is said to be of type FPn if Z is a ZG-module of
type FPn .

Remark 4.25. Every group is of type FP0, since the augmentation map ε :
ZG� Z gives the beginning of a projective resolution and ZG is a finitely generated
ZG-module.

Proposition 4.26. A group G is of type FP1 if and only if G is finitely gen-
erated.

The description of groups of type FP2 is already a lot more complicated. A group is
called almost finitely presented if there is an exact sequence of groups K ↪→ F � G
where F is finitely generated free and K/[K,K] is finitely generated as a G-module.
Finitely presented groups are almost finitely presented but the converse is not true
in general, see the examples by Bestvina and Brady [1]. Bieri [2] has shown that
the property FP2 is equivalent to the group being almost finitely presented.

Now let’s have a look at finite extensions. We cannot make any more general
statements as even finite generation is in general not a subgroup-closed property.

Proposition 4.27. Let G′ ≤ G be a subgroup of finite index. Then G is of
type FPn if and only if G′ is of type FPn .

Definition 4.28. (1) A group G is of type FP iff G is of type FP∞ and
cdG <∞.

(2) A group is of type FL if G has a finite length finitely generated free
resolution.
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Obviously does FL imply FP but the converse is not known. Let P be a projective
module in the top dimension of a projective resolution of Z. Suppose F is a finitely
generated free module such that P ⊕ F is free. Then on can construct a finitely
generated free resolution

F ↪→ P ⊕ F → Fn−1 → ...→ F0 � Z
. We say such a P is stably free.

Proposition 4.29. Let G be a group of type FP Suppose that

0→ P → Fn−1 → ...� Z
is a finitely generated resolution with Fi finitely generated for all i ≤ n − 1. Then
G is of type FL if and only of P is stable free.

Hence the question whether FL implies FP reduces to the question whether there
are projectives that are not stably free. Over general rings the answer can be Yes.
There are even examples over group rings ZG where G = Z23 due to Milnor [13,
Chapter 3]. These groups, however have infinite cohomological dimension.

Let is conclude this chapter with some topological remarks. We have already defined
finite type and finitelt generated G-CW-complexes. A G-CW-complex X is finitely
dominated if there exists a finite complex K such that Y is a homotopy retract, i.e.
there are maps i : X → K and r : K → X such that ri ' idX .

Proposition 4.30. (1) Let G admit a finite type model for EG. Then G
is of type FP∞ .

(2) Let G admit a cocompact model for EG. Then G is of type FL .
(3) Let G admit a finitely dominated model for EG. Then G is of type FP .

The converse to the above is also true if we also assume that G is finitely presented.
This is due to Eilenberg-Ganea and Wall.

We also have a direct corollary to the Mayer-Vietoris Sequence in Theorem 4.15
for FP∞. This also relies on the fact that G is of type FP∞ if and only if H∗(G,−)
commutes with direct limits, see, for example [4, VIII,4.8]

Corollary 4.31. Let G = K ∗H L be a fee product with amalgamation. Then

(1) cdG ≤ sup{cdH, cdK, cdL}+ 1.
(2) If H,K and L are of type FP∞ or FP respectively, then so is G.

Exercise 15. State and prove an analogous result to 4.31 (2) for H,K,L of
types FPl,FPn and FPm respectively. (Use an analogue result for direct limits,
due to Bieri-Eckman, see [2]
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