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Abstract

Short description Simplified mathematical models of some large-scale
atmospheric and oceanic flow features will be presented, using geophysical
fluid dynamics.

Syllabus This course is about aspects of geophysical fluid dynamics, relevant
to the climate system. The flows to be considered will be large-scale
oceanic and atmospheric features. With the aim of constructing sim-
plified idealised models that illustrate basic mechanisms, mathematical
models of several such features will be derived and analysed. After in-
troducing the quasigeostrophic equations, applications to be covered will
be baroclinic instability, multiple equilibria, ocean spinup.

Prerequisites: The course is suitable for students who have taken un-
dergraduate fluid mechanics courses. Familiarity with geophysical fluid
dynamics will be helpful, but not assumed.

Recommended reading The course will be self-contained. The following
books provide much wider coverage of the theme of oceanic and atmo-
spheric dynamics.

Gill, A.E. (1982) Atmosphere-Ocean Dynamics. Academic Press.

Pedlosky, J. (1987, 1992) Geophysical Fluid Dynamics. Springer-Verlag.

Vallis, G.K. (2006) Atmospheric and oceanic fluid dynamics. Cambridge
University Press.
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Content of notes The notes provided here are a summary of the course ma-
terial presented in 2009 and 2011. The main sections are:

1. Governing equations for quasigeostrophic stratified flow

2. Ekman layers

3. Rossby waves

4. Mid-latitude wind-driven ocean spinup and circulation

5. Baroclinic instability

6. Multiple equilibria and blocking

The lectures also contained numerous diagrams sketched on the board, but
these are not included here.

1 Governing equations for quasigeostrophic strat-

ified flow

1.1 Equations of motion in a rotating frame of reference

For flow relative to a rotating frame of reference (such as the Earth) with rotation
vector Ω the Navier-Stokes equations have the form

ut + (u.∇)u − 2Ω× u = −∇p/ρ + ν∇2u + gravity + other forces . (1.1)

Compared to the size of the planet, the ocean and atmosphere are thin layers on the
Earth’s surface, and we will be considering flows with large horizontal scale compared
to the depth in each medium.

For convenience, we will use local Cartesian co-ordinates, with z vertically up-
wards, x in the zonal (west to east) direction, and y in the meridional (south to north)
direction. The fluid velocity components will be denoted u (zonal), v (meridional)
and w (upward).

At latitude θ, the vertically upwards component of the rotation vector is Ω is
2Ω sin θ, denoted by f , and referred to as the Coriolis parameter. (Ω = |Ω| is the
rate of rotation of the Earth, 2π radians per day.) Other components of the rotation
vector have small influence, and will be ignored. Thus the horizontal momentum
equations are

ut + (u.∇)u − fv = − (1/ρ)px + ν∇2u + other forces , (1.2a)

vt + (u.∇)v + fu = − (1/ρ)py + ν∇2v + other forces . (1.2b)
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(Thus locally the Earth is regarded as flat, which is a useful approximation for many
purposes.)

At some reference latitude θ0, the meridional distance from the equator is Reθ0,
where Re is the radius of the Earth. Relative to that latitude the meridional co-
ordinate is y = Re(θ − θ0), and the zonal distance around the Earth is 2πRe cos θ0.
At that latitude the Coriolis parameter is f0 = 2Ω sin θ0.

1.2 The beta plane

For small ranges of latitudes, the Coriolis parameter can be approximated by

f = 2Ω sin θ ≈ 2Ω sin θ0 + 2Ω(θ − θ0) cos θ0 (1.3a)

= 2Ω sin θ0 + (2Ω/Re) cos θ0 y (1.3b)

= f0 + βy (1.3c)

where β = (2Ω/Re) cos θ0.
The is referred to as the ’beta-plane’ approximation. (The situation in which

variations of f with latitude are neglected, so f = f0, is known as the ’f-plane’.)

1.3 Hydrostatic balance

For the large-scale ocean and atmosphere flows relevant to this course, the vertical
equation of motion is dominated by the balance of vertical pressure gradient and
gravitational force. To a very good approximation, the system is in ’hydrostatic
balance’, with

pz = − ρg . (1.4)

(Effectively the pressure at any point is determined by the mass of overlying fluid,
and is not influenced by the fluid motion.)

1.4 Continuity

For the flows of interest, to a good approximation the fluids can be regarded as
incompressible. (Although the atmosphere is a compressible gas, the flow speeds
are much less than the speed of sound and dynamically the flow can be regarded as
incompressible.) Thus in our Cartesion representation,

ux + vy + wz = 0 . (1.5)
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1.5 Geostrophic balance

Suppose the flow has length scale L, a (horizontal) velocity scale U , and an advective
time scale L/U . The nondimensional Rossby number R is defined as

R = U/(f0L) . (1.6)

We will assume the Rossby number is small (R ≪ 1), in which case the left hand side
of equ 1.2 is dominated by the Coriolis terms fv and fu. Apart from thin layers near
boundaries (see later), viscous and forcing effects are small. The dominant balance
is between the Coriolis and pressure gradient terms:

−fv = − px/ρ , (1.7a)

fu = − py/ρ . (1.7b)

This is ’geostrophic balance’. For later use we define a geostrophic horizontal flow
ug, vg by

−vg = − px/(ρ0f0) , (1.8a)

ug = − py/(ρ0f0) , (1.8b)

where ρ0 is a typical density scale. Note that ug.∇p = 0: the geostrophic flow follows
isobars. Flow is cyclonic around low pressure centres, and anti-cyclonic around high
pressure centres. In the northern hemisphere, orientation is such that cyclonic flow
is anti-clockwise. Note also that ugx+vgy = 0, so the geostrophic flow is horizontally
non-divergent. Thus a streamfunction ψ can be defined: conventionally such that

ug = − ψy , vg = ψx . (1.9)

(Note: here and from here on we assume ∇ is the horizontal gradient operator, and
u = (u, v), as should be obvious from the context: thus the continuity equation
becomes ∇.u+ wz = 0 .)

1.6 Representation of density distribution as layers

In practice density varies throughout the ocean and atmosphere. The ideal gas law
applies to the atmosphere, and in the ocean density depends weakly on temperature,
salinity and pressure. For this course, as is often done for theoretical investiga-
tions, we will consider a simple representation of density structure as layers in which
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each layer has a constant prescribed density. (See textbooks for alternative repre-
sentations.) Thus we will not consider thermodynamic aspects, but concentrate on
dynamic processes in this course.

Using hydrostatic balance, some useful relationships between pressures and layer
distributions can be derived.

Suppose a system has N layers, with layer 1 at the top overlying layer 2 overlying
layer 3 etc. Suppose layer n has density ρn, with ρ1 < ρ2 < .... With the fluid at
rest the interfaces are horizontal, and the layers have depths Hn which are constant,
except for the lowest layer whose depth may vary with x and y to allow the possibility
of varying ’topography’. Suppose the top of layer 1 is at z = zT when undisturbed,
and suppose the perturbation of this surface is η1, so the top of disturbed layer 1 is
at zT + η1. Similarly, η2 denotes the perturbation to the interface between layers 1
and 2, so the bottom of layer 1 (and the top of layer 2) is at zT − H1 + η2, and so
on. A fixed perturbation ηN+1(x, y) at the base of layer N can be used to represent
topography, so the bottom of layer N is at zT − (H1 + ...+HN) + ηN+1.

Suppose the pressure at the top surface is pT . From the hydrostatic relation, the
pressure in layer 1 is

p1 = pT + ρ1gη1 − ρ1g(z − zT ) , (1.10)

for zT −H1 + η2 < z < zT + η1 , and in layer 2

p2 = pT + ρ1gη1 + (ρ1 − ρ2)g(H1 − η2)− ρ2g(z − zT ) , (1.11)

for zT −H1 −H2 + η3 < z < zT −H1 + η2 , etc.
Suppose pT is constant. (For oceanic applications, pT is the sea level atmospheric

pressure, fluctuations in which are small compared to pressure fluctuations below
the surface and negligible for most circumstances. For atmospheric applications
pT is effectively zero at the top of the atmosphere.) Then the horizontal pressure
gradients are independent of depth within each layer. In layer 1,

∇p1 = ρ1g∇η1 , (1.12)

and in layer 2
∇p2 = ρ1g∇η1 + (ρ2 − ρ1)g∇η2 , (1.13)

etc. Thus the geostrophic flow ug1 in layer 1 can be determined from η1 and is
independent of depth in layer 1; likewise ug2 is determined by η1 and η2, etc. (I.e.
ug is determined by the overlying density structure.) Note that

∇(p2 − p1) = (ρ2 − ρ1)g∇η2 , (1.14)
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so the difference ug1 − ug2 is determined by η2. (Thus the vertical geostrophic shear
between two layers is determined by the horizontal gradient in the intervening density
structure.)

1.7 Shallow water equations and potential vorticity equa-
tions

The above relations show how the density structure, pressure gradients, and geostrophic
flows are diagnostically related. However more information is needed to find out how
they evolve. The relevant equations can be derived rigorously through asymptotic
expansions with e.g. the Rossby number as a small parameter (see textbooks for
details). Here we take a more ad hoc approach, making a series of assumptions that
can ultimately be justified more formally.

Within each layer (away from thin frictional layers at the upper and lower inter-
faces - see later) the horizontal flow is independent of depth and governed by the
’shallow water equations’:

ut + (u.∇)u − fv = − px/ρ0 + A∇2u (1.15a)

vt + (u.∇)v + fu = − py/ρ0 + A∇2v . (1.15b)

Here A is a horizontal diffusivity coefficient, whose influence is negligible except in
regions of strong gradients. (The situation is analogous to long waves on shallow
(depth much less than a wavelength) water, hence the name.) Note that we have
assumed a constant reference density in the pressure gradient terms, valid for all
layers.

The vorticity (more correctly, the vertical component of the vorticity vector) is
ζ = vx − uy . We use the vector identity (u.∇)u = ∇u2/2 − u × ζk , where k is
the unit vertical vector, to write 1.15 as

ut + (u2)x/2 − (f + ζ)v = − px/ρ0 + A∇2u , (1.16a)

vt + (u2)y/2 + (f + ζ)u = − py/ρ0 + A∇2v . (1.16b)

Eliminating p and u2 by cross-differentiating leads to the vorticity equation

ζt + u.∇(ζ + f) + (ζ + f)∇.u = A∇2ζ . (1.17)

From the continuity equation we have ∇.u+ wz = 0 , so we obtain

D

Dt
(ζ + f) = (ζ + f)wz + A∇2ζ , (1.18)
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where the material derivative (’following the motion’) is D
Dt

= ∂
∂t
+u.∇ . Thus changes

in the total vorticity ζ+f are induced by vertical motion stretching or shrinking the
fluid column within the layer and by dissipation.

As wz is independent of depth within the layer (because u and hence ∇.u is
depth-independent), we have

wz = (wT − wB)/h , (1.19)

where h denotes the layer depth, and wT and wB denote w near the top and bottom
of the layer (i.e. outside any thin friction layers). Further, we have

wT − wB =
D

Dt
h+ wET − wEB , (1.20)

indicating a contribution from changes in the bounding interface positions and con-
tributions from thin frictional Ekman layers (see later). Noting that

D

Dt

(ζ + f)

h
=

1

h

D

Dt
(ζ + f) − (ζ + f)

h2
D

Dt
h ,

we obtain
D

Dt

(ζ + f)

h
=

(ζ + f)

h

(wET − wEB)

h
+

1

h
A∇2ζ . (1.21)

The expression (ζ+f)/h is known as the potential vorticity: a fundamental quantity
in geophysical fluid dynamics. (There are equivalent expressions in continuously
stratified systems.)

1.8 Quasigeostrophic potential vorticity

Suppose the layer displacements are small compared to the layer depth, so

1

hn
=

1

Hn + ηn − ηn+1

≈ 1

Hn

(
1− ηn − ηn+1

Hn

)
. (1.22)

With ζn + f = ζn + f0 + βy , the potential vorticity is approximately

ζn + f

hn
≈ f0

Hn

(
1 +

ζn + βy

f0

) (
1− ηn − ηn+1

Hn

)
.

Assuming ζn + βy is small compared to f0, and neglecting the product of the small
terms, we have

ζn + f

hn
≈ f0

Hn

(
1 +

ζn + βy

f0
− ηn − ηn+1

Hn

)
. (1.23)
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Further, the flow in the layer is approximately geostrophic: u ≈ ug. Thus from
equ 1.21 we obtain approximately

Dg

Dt
qn =

f0
Hn

(wEnT − wEnB) + A∇2ζgn , (1.24)

where

qn = ζgn + βy − f0
Hn

(ηn − ηn+1) , (1.25)

with geostrophic vorticity ζgn = vgnx − ugny and Dg

Dt
= ∂

∂t
+ ug.∇ . Equ. 1.24 is a

form of the quasigeostrophic potential vorticity equation. Note that in terms of the
streamfunction introduced by equ 1.9, ζgn = ∇2ψn .

The streamfunctions and interface displacements are related: e.g. using equs 1.8
and 1.12 etc.:

ψ1 =
g

f0
η1 , (1.26a)

ψn = ψn−1 +
g′n
f0

ηn etc. . (1.26b)

where

g′n =
(ρn − ρn−1)

ρ0
g (1.27)

is the ’reduced gravity’.
Thus the quasigeostrophic potential vorticities qn can be written as:

q1 = ∇2ψ1 + βy − f 2
0

H1

(ψ1

g
− (ψ2 − ψ1)

g′2

)
, (1.28a)

qn = ∇2ψn + βy − f 2
0

Hn

(ψn − ψn−1

g′n
− (ψn+1 − ψn)

g′n+1

)
, (1.28b)

qN = ∇2ψN + βy − f 2
0

HN

(ψN − ψN−1

g′N

)
+

f0
HN

ηN+1 . (1.28c)

8



2 Ekman layers

There are boundary conditions to be applied at the top and/or base of the stratified
flow system presented above, and at times also at the interfaces. Such boundary con-
ditions involve thin boundary layers, called Ekman layers, within which viscous terms
of the form νuzz become important in the balance of forces. The main properties
can be deduced by considering steady linear flow on an f-plane, ignoring horizontal
dissipation terms, leaving the basic equations

−f0v = − px/ρ0 + νuzz , (2.1a)

f0u = − py/ρ0 + νvzz . (2.1b)

(Note: here ν should be regarded as some constant viscosity coefficient appropriate
to large-scale flow.) In the flow interior, away from the boundary layer, the flow is
geostrophic with f0vg = −px/ρ0 and f0ug = −py/ρ0 . Define the departure from
geostrophic flow by u′ = u− ug . Then

−f0v′ = νu′zz , (2.2a)

f0u
′ = νv′zz . (2.2b)

2.1 The Ekman layer near a solid boundary

Consider first flow over a flat bottom boundary at z = zB, on which we require u = 0 .
(This would be appropriate for oceanic flow over the sea floor, or atmospheric flow
over land for example.) Then the boundary conditions for equs 2.2 are

u′ = − ug at z = zB , u′ → 0 outside the boundary layer . (2.3)

The solution can be written as

u′ = − (ug cosZ + vg sinZ)e
−Z , (2.4a)

v′ = − (vg cosZ − ug sinZ)e
−Z , (2.4b)

where
Z = (z − zB)/HE with HE = (2ν/f0)

1/2 . (2.5)

(We assume here f0 > 0, i.e. northern hemisphere conditions.) The velocity vector
spirals with height (the ’Ekman spiral’), and the boundary layer depth scale is HE .
For large scale atmospheric and oceanic flows the boundary layer is thin, i.e. HE ≪
H if H is the depth scale for the geostrophic flow (e.g. the thickness of one of our
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layers). The standard nondimensional parameter is the Ekman number E, defined
as

E = 2ν/(f0H
2) . (2.6)

Thus we have assumed E ≪ 1 . (Note: you may also see E defined without the
factor of 2 in some descriptions.)

From the continuity equation ux+vy+wz = 0 and the boundary condition w = 0
at z = zB, we obtain

w = HE ζg [1 − e−Z(cosZ + sinZ) ] / 2 . (2.7)

In particular, approaching the upper (outer) side of the boundary layer (i.e. large
Z) we find

w → HE ζg /2 , (2.8)

at the base of the geostrophic flow. Thus the mechanism of adjustment of the interior
geostrophic (to lowest order) flow to the boundary conditions via the frictional Ekman
layer induces a vertical velocity (the ’Ekman pump’ effect). This influences the
evolution of the geostrophic flow: in this case equ 2.8 provides the term wEB in the
quasigeostrophic potential vorticity equation.

Similarly, at a motionless upper boundary at z = zT (such as might be found in a
rotating tank experiment in a laboratory), and using for example Z = (zT −z)/HE ,
we find that near the base of the Ekman layer (the top of the geostrophic flow)

w → − HE ζg /2 , (2.9)

which is the term wET in the quasigeostrophic potential vorticity equation.

More generally, if the upper boundary has a velocity uT say (again, as might be
found in a laboratory experiment) then

w → HE (ζT − ζg) /2 , (2.10)

where ζT = vTx − uTy . Thus the ’pump’ is proportional to the vorticity difference
between the boundary and interior motion.

2.2 The Ekman layer driven by surface stress

Another important case is that of a boundary where a surface stress is given: in
particular, the effect of surface wind stress on the ocean. Suppose the zonal and
meridional components of the surface stress are

τ (x) = ρνuz , τ (y) = ρνvz , at z = zT . (2.11)
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With Z = (zT − z)/HE as before, we find with these boundary conditions that

u′ = (HE/2ρν)e
−Z [ (τ (x) + τ (y)) cosZ − (τ (x) − τ (y)) sinZ ] , (2.12a)

v′ = − (HE/2ρν)e
−Z [ (τ (x) − τ (y)) cosZ + (τ (x) + τ (y)) sinZ ] . (2.12b)

Note: at the surface (Z = 0),

u′ = (HE/2ρν) (τ
(x) + τ (y)) , (2.13a)

v′ = − (HE/2ρν) (τ
(x) − τ (y)) , (2.13b)

which is directed 450 to the right of the wind (Northern hemisphere).
In this case the ’Ekman pump’ at the base of the Ekman layer gives

wET = (τ (y)x − τ (x)y )/(ρf0) , (2.14)

i.e. proportional to the ’wind stress curl’. This is a very important mechanism for
driving the ocean circulation in the layers below the ocean surface.

Ekman layers have other important properties that are not covered in this course:
for example, the ’Ekman transport’ which is is the mass transport in the Ekman layer.
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3 Rossby waves in a two-layer stratified fluid

Variations in the Coriolis parameter f with latitude provide an important mechanism
for large-scale waves in the ocean and atmosphere. We illustrate this by considering
a two-layer system on a β-plane, ignoring the effects of dissipation, forcing and
topography to focus on the Rossby waves. Further, we linearise the quasigeostrophic
potential vorticity equations by omitting terms of the form u.∇ζ and u.∇η (which
involve multiples of derivatives of ψ), to obtain from equs 1.24 and 1.28

∂

∂t

[
∇2ψ1 − f 2

0

gH1

ψ1 +
f 2
0

g′H1

(ψ2 − ψ1)
]
+ βψ1x = 0 , (3.1a)

∂

∂t

[
∇2ψ2 − − f 2

0

g′H2

(ψ2 − ψ1)
]
+ βψ2x = 0 . (3.1b)

These equations have wavelike solutions. It is convenient to look for the ’modes’
which have coherent behaviour in each layer. While not strictly necessary, we also
make some further assumptions to simplify the algebra.

3.1 Baroclinic mode equation

Taking the difference of the equations above, we find

∇2(ψ1 −ψ2)t − f 2
0

g′

( 1

H1

+
1

H2

)
(ψ1 −ψ2)t − f 2

0

gH1

ψ1t + β(ψ1 −ψ2)x = 0 . (3.2)

For this mode, the surface displacement η1 is much less than that of the interface
displacement η2, so we omit the term (f 2

0 /gH1)ψ1, to obtain

∇2ψ̂t − (1/a2)ψ̂t + βψ̂x = 0 , (3.3)

where
ψ̂ = ψ1 − ψ2 (3.4)

is a streamfunction for the baroclinic mode (and for the geostrophic shear ug1−ug2 ),
and

a2 = g′H1H2/f
2
0 (H1 +H2) (3.5)

defines a length scale a known variously as the ’internal Rossby radius’ or ’inter-
nal deformation scale’ or ’baroclinic Rossby radius’ etc. (This scale is the distance
travelled by an internal gravity wave with speed

√
g′H1H2/(H1 +H2) in time 1/f0,

which is a scale valid also for f-plane motion.) For the baroclinic mode, internal
density variations (here, variations in the interface displacement) are essential.
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3.2 Barotropic mode equation

Taking the depth-weighted sum of the equations 3.1 leads instead to

∇2(H1ψ1 +H2ψ2)t − f 2
0

g
ψ1t + β(H1ψ1 +H2ψ2)x = 0 . (3.6)

Define a ’barotropic streamfunction’ by

ψ̄ = (H1ψ1 +H2ψ2)/(H1 +H2) , (3.7)

which is a streamfunction for the depth-averaged geostrophic flow. For barotropic
flow, which is the same in both layers to a good approximation so ψ1 = ψ2 = ψ̄, we
can write 3.6 as

∇2ψ̄t − (1/ā2)ψ̄t + βψ̄x = 0 , (3.8)

where
ā2 = g(H1 +H2)/f

2
0 (3.9)

defines an adjustment scale ā analagous to a, but with reference to the ’external’
gravity wave speed

√
g(H1 +H2). The barotropic mode behaves as though the

fluid were not stratified. The barotropic adjustment scale is much larger than the
baroclinic scale, and in practice the term (1/ā2)ψ̄t can often be neglected in 3.8 .

3.3 Wavelike solutions

For the baroclinic equation 3.3, consider a solution of the form

ψ̂ = Aei(kx+ly−ωt) , (3.10)

where A is an arbitrary amplitude, k is zonal wavenumber, l is meridional wavenum-
ber, and ω is frequency. Then ∇2ψ̂ = −K2ψ̂ , where K2 = k2 + l2 , and ψ̂x = −ikψ̂
etc., so 3.3 leads to the dispersion relation

ω = − βa2k/(K2a2 + 1) . (3.11)

Thus there are wavelike solutions, known as Rossby waves, when β is non-zero. The
zonal phase speed of these baroclinic Rossby waves is

ω/k = − βa2/(K2a2 + 1) , (3.12)

which is negative. Zonal propagation of information by these waves is determined
by the zonal group velocity, which is

∂ω/∂k = βa2 [ (k2 − l2)a2 − 1 ] / (K2a2 + 1)2 , (3.13)
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This may be positive or negative: waves with k2a2 < l2a2+1 have westward zonal
group velocity while waves with k2a2 > l2a2 + 1 have eastward zonal group velocity.
This is illustrated for the case al = 0 in Fig. 3.1 .

Note that for long waves (ka and la ≪ 1; wavelength large compared to a) we
have

ω/k ≈ − βa2 , ∂ω/∂k ≈ − βa2 . (3.14)

Thus long Rossby waves are non-dispersive and propagate westward.

Equ 3.8 has the same form as equ 3.3, and has analogous barotropic Rossby wave
solutions: just replace a by ā in the above dispersion and wave speed results.

If the surface displacement is ignored (a ’rigid lid’ approximation; effectively
ā→ ∞), then equ 3.8 has Rossby wave solutions with

ω/k = − β/K2 , (3.15)

∂ω/∂k = β (k2 − l2) / K4 . (3.16)

3.4 Ocean scales

The contrast between baroclinic and barotropic scales and speeds is particularly
marked for the ocean. As typical values for a mid-latitude region (say 400N), consider

H1 = 1000 m , H2 = 4000 m , (3.17a)

f0 = 9.4× 10−5 sec−1 , β = 1.75× 10−11 m−1sec−1 , (3.17b)

ρ = 1000 Kg m−3 , ∆ρ/ρ = 0.003 . (3.17c)

For the baroclinic mode,

a ≈ 50 Km , βa2 ≈ 5 cm sec−1 , (3.18)

and for the barotropic mode

ā ≈ 2300 Km , βā2 ≈ 100 m sec−1 . (3.19)
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4 Wind-driven mid-latitude ocean circulation

To illustrate some basic properties of mid-latitude wind-driven stratified ocean cir-
culation, we consider a highly idealised ’textbook’ scenario using a two-layer β-plane
system. The ocean is a square basin, with southern boundary at y = −L/2, northern
boundary at y = L/2, western boundary at x = xW = 0 and eastern boundary at
x = xE = L . The system is forced by surface wind stress, and damped by bot-
tom friction ν and lateral dissipation A. There are Ekman layers at the surface and
bottom of the ocean.

4.1 Governing equations

For simplicity, we assume ’rigid lid’ dynamics and linearise the quasigeostrophic
vorticity equations about a state of rest, to obtain

∇2ψ1t + βψ1x +
1

a21
(ψ2 − ψ1)t =

1

ρH1

k.∇× τ + A∇4ψ1 , (4.1a)

∇2ψ2t + βψ2x − 1

a22
(ψ2 − ψ1)t = − f0

HE

H2

∇2ψ2 + A∇4ψ2 , (4.1b)

where
a21 = g′H1/f

2
0 , a22 = g′H2/f

2
0 , g′ = g(ρ2 − ρ1)/ρ0 , (4.2)

For a northern hemisphere mid-latitude ocean (like the North Atlantic) the prevailing
surface winds are westerly (toward the east) in the northern half and easterly in the
southern half of the region: a simple representation of this is

τ (x) = τ0 sin(πy/L) , τ (y) = 0 , (4.3)

with τ0 > 0. Then the wind stress curl is

k.∇× τ = τ (y)x − τ (x)y = − τ0(π/L) cos(πy/L) . (4.4)

Thus the wind stress driven ’Ekman pump’ is negative, with largest amplitude at
y = 0. (Mass transport in the surface Ekman layer is directed to the right of the wind
direction in the northern hemisphere: in this simple model the result is converging
meridional Ekman transport requiring downward motion to compensate.)

With this choice, the streamfunctions in our linear model have the same depen-
dence on y as the wind stress curl, so we can separate variables by defining

ψj = Sj(x, t) cos(ly) , (4.5)
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where l = π/L. Then for example the vorticity is

∇2ψj = (Sjxx − l2Sj) cos(ly) . (4.6)

At this point we opt to omit the bottom friction term in equ 4.1b, and retain the
lateral diffusion. (The alternative, to retain the bottom friction and omit lateral
diffusion, is also often used as a simple example - see textbooks.) Then equ 4.1
becomes

(S1xx − l2S1)t + βS1x +
1

a21
(S2 − S1)t = − 1

ρ0H1

τ0l + A(S1xxxx − 2l2S1xx + l4S1) ,

(4.7a)

(S2xx − l2S2)t + βS2x − 1

a22
(S2 − S1)t = A(S2xxxx − 2l2S2xx + l4S2) . (4.7b)

It is useful to write these in terms of barotropic and baroclinic modes. Define the
barotropic (depth-average) and baroclinic parts by

S̄ = (H1S1 +H2S2)/(H1 +H2) , Ŝ = S1 − S2 . (4.8)

Then we find from equ 4.7:

(S̄xx − l2S̄)t + βS̄x = − 1

ρ0(H1 +H2)
τ0l + A(S̄xxxx − 2l2S̄xx + l4S̄) ,

(4.9a)

(Ŝxx − l2Ŝ)t + βŜx − 1

a2
Ŝt = − 1

ρ0H1

τ0l + A(Ŝxxxx − 2l2Ŝxx + l4Ŝ) , (4.9b)

where
1

a2
=

1

a21
+

1

a22
=

f 2
0 (H1 +H2)

g′H1H2

. (4.10)

Thus we have the usual rigid-lid barotropic and baroclinic Rossby wave equations,
now with forcing and dissipation.

4.2 Boundary conditions

There is no flow across the boundaries, so the perpendicular velocity component
must be zero on each boundary in each layer, which is satisfied if the streamfunction
is constant along each boundary: we choose ψj = 0 on the east and west boundaries.
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With lateral dissipation, further conditions are required. The obvious condition
is ’no slip’: vj = 0 on the east and west boundaries requires

ψjx = 0 on x = xE , x = xW . (4.11)

However, our equations do not properly represent flow near a coastline, and in ocean
models a common alternative is to use ’free slip’ conditions with vjx = 0 on the east
and west boundaries, which requires

ψjxx = 0 on x = xE , x = xW . (4.12)

4.3 Steady state

We first consider the steady state that is obtained when the ocean has adjusted to
the steady wind stress applied in our scenario.

From equ 4.7b with no slip or free slip conditions we find

S2 = 0 , (4.13)

so the lower layer is at rest.
From equ 4.7a we obtain

S1x = − C + (A/β)(S1xxxx − 2l2S1xx + l4S1) , (4.14)

where for convenience we have defined C = τ0l/(βρ0H1) .
For reasonable choices of parameter, it turns out that the length scale defined by

(A/β)1/3 is small compared to the scale L of the ocean basin, and dissipation effects
are confined to thin layers near the lateral boundaries. We define a small parameter
by ϵ = (A/β)1/3/L ≪ 1 , and write equ 4.14 as

ϵ3L3(S1xxxx − 2l2S1xx + l4S1) − S1x = C . (4.15)

This is a typical boundary layer problem that can be solved using matched asymptotic
expansions. Away from the thin boundary layers, the ’outer’ equation is

S1x = − C . (4.16)

Note: S1x is the meridional flow at y = 0, so in layer 1 in our example there is a
southward flow (the same at all longitudes) indirectly driven by the wind. (This
geostrophic current is in balance with a zonal pressure gradient that is associated
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with displacement of the upper surface, and generated by spinup - see below.) This
is a particular example of ’Sverdrup balance’ in which meridional geostrophic ocean
flow is related to the surface wind stress curl.

The general solution of equ 4.16 is

S1 = α − Cx , (4.17)

where α is some constant to be determined by matching to the near-boundary be-
haviour determined below.

4.3.1 The western boundary layer

With hindsight, for the ’inner’ expansion define the rescaled zonal co-ordinate X by

x = xW + ϵX , (4.18)

so equ 4.15 gives

L4(S1XXXX − 2l2ϵ2S1XX + l4ϵ4S1) − LS1x = ϵCL . (4.19)

To leading order
L4S1XXXX − LS1x = 0 . (4.20)

The general solution that does not grow exponentially eastward, and thus can be
matched to the ’outer’ solution, is

S1 = γ0 + e−X/2L
[
γ1 cos(

√
3X/2L) + γ2 sin(

√
3X/2L)

]
. (4.21)

A simple match of inner and outer solutions is sufficient in this problem: for large
X equ 4.21 must match 4.17 as x→ xW , so

γ0 = α − CxW . (4.22)

With noslip conditions at the western boundary, we require S1 = S1X = 0 at
X = 0, and find

S1 = γ0 − γ0 e
−X/2L

[
cos(

√
3X/2L) +

1√
3
sin(

√
3X/2L)

]
. (4.23)

With freeslip conditions at the western boundary, we require S1 = S1XX = 0 at
X = 0, and find

S1 = γ0 − γ0 e
−X/2L

[
cos(

√
3X/2L) − 1√

3
sin(

√
3X/2L)

]
. (4.24)
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4.3.2 The eastern boundary layer

For the ’inner’ expansion near the eastern boundary define instead the rescaled zonal
co-ordinate X by

x = xE − ϵX . (4.25)

This time to leading order

L4S1XXXX + LS1x = 0 , (4.26)

and to satisfy the boundary conditions at X = 0 and have no exponential growth we
require

S1 = 0 . (4.27)

Then a simple match to the outer solution equ 4.17 as x→ xE requires

α = CXE , and hence γ = C(xE − xW ) = CL . (4.28)

(Note: thus to leading order there is no eastern boundary layer. The adjustments to
satisfy the noslip boundary conditions are small higher order terms. With freeslip
conditions the ’outer’ solution satisfies the eastern boundary conditions and no
boundary layer is required.)

4.3.3 The composite solution

A leading order additive composite solution, valid in both the outer and boundary
regions, can be found using the form ’inner + outer - overlap’. The western ’overlap’
term is simply γ0. Thus for noslip conditions the composite is

S1 = C(xE−x)−C(xE−xW ) e−X/2L
[
cos(

√
3X/2L) +

1√
3
sin(

√
3X/2L)

]
, (4.29)

with X = (x− xW )/ϵ , and similarly for freeslip conditions

S1 = C(xE−x)−C(xE−xW ) e−X/2L
[
cos(

√
3X/2L) − 1√

3
sin(

√
3X/2L)

]
. (4.30)

Apart from details very near the western boundary, the two solutions are quite
similar. (See Figs. 4.1 and 4.2 .) In a narrow western boundary layer with width
scale (A/β)1/3 there is a relatively fast northward current (the western boundary
current; the Gulf Stream in the North Atlantic), with speed scale 1/ϵ times that of
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the slow southward flow in the rest of the ocean. Streamlines are illustrated in Fig.
4.3 .

(Note: in the real world the western boundary current separates from the coast at
some point due to a combination of geography, nonlinearity, wind stress distribution
etc.)

Note: the surface displacement is η1 = (f0/g)S1 cos(ly) , while the interface
displacement is η2 = −(g/g′)η1 .

Typical scales: with A = 104m2 s−1 , (A/β)1/3 is about 80 km.

4.4 Spinup

It is useful to see how the above steady state is reached starting from rest. Suppose

S1 = S2 = Ŝ = S̄ = 0 at time t = 0 . (4.31)

4.4.1 Initial adjustment away from boundary influences

Away from the east and west boundaries, the ocean initially evolves with no boundary
influence. With wind stress curl independent of x, the x derivative terms are zero in
the governing equations 4.7 and 4.9. We can assume lateral dissipation is negligibly
small in this region, for simplicity, to obtain

S̄ =
τ0l

ρ0(H1 +H2)l2
t , (4.32a)

Ŝ = a2l2S̄ ≪ S̄ , (4.32b)

The effect of the wind-induced Ekman transport is to raise the sea level: the merid-
ional gradient and geostrophic balance give a corresponding zonal geostrophic flow
within the ocean.

This acceleration continues until Rossby waves arrive from the east and west
boundaries, with information travelling at the group velocity speed. The fastest
Rossby waves are the long (k → 0) westward-propagating waves. The fastest
eastward-propagating waves are much slower, so most of the ocean is first influenced
by the Rossby waves arriving from the eastern boundary.
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4.4.2 Barotropic adjustment

Consider some location x = x0 between xW and xE. With the rigid lid approximation,
the fastest barotropic waves have group (and phase) velocity −β/l2, and the time
of arrival at x0 from xE is t0 = (xE − x0)l

2/β . After this time in turns out that
barotropic adjustment ceases, so

S̄ =
τ0l

ρ0(H1 +H2)

(xE − x0)

β
at time t > t0 . (4.33)

This is consistent with the barotropic part of the steady state solution described
above. (Recall that, away from the western boundary layer, the steady solution is
S1 = C(xE − x), and S2 = 0, so steady S̄ = C(xE − x)H1/(H1 +H2) .)

In the western boundary region short Rossby waves and dissipation play a role in
developing the western boundary layer. By the time the long waves have crossed the
ocean from east to west (i.e. after t = (xE−xW )l2/β ) the barotropic adjustment has
completed and the barotropic flow has ’spun up’. For typical scales, this barotropic
adjustment takes just a few days. (Indeed, for applications that involve timescales
longer than a few days the barotropic adjustment can be regarded as effectively
instantaneous: i.e. the barotropic mode is in balance with the wind stress curl.)
However, the ocean is far from a steady state at this time: the baroclinic mode takes
much longer to ’spin up’, and both the upper and lower layer flows are far from their
eventual steady states.

4.4.3 Baroclinic adjustment

The baroclinic adjustment process is similar to barotropic adjustment: i.e. most of
the ocean is adjusted by long baroclinic Rossby waves from the eastern boundary.
However the spin up time is much longer: the fastest baroclinic Rossby waves have
group (and phase) velocity −βa2, and the spinup time (xE − xW )/βa2 is several
years for, say, the mid-North Atlantic ocean.

As the long baroclinic Rossby wave advances from the eastern boundary and
reaches location x0 at time tC = (xE−x0)/βa2 , the baroclinic mode at that location
equilibrates at

Ŝ =
τ0l

ρ0H1

(xE − x0)

β
at time t > tC . (4.34)

Again this is consistent with the steady state solution above. After time tC the lower
layer is indeed at rest, and the upper layer has reached its steady state. As with
the barotropic mode, the baroclinic western boundary layer also develops during the
spin up phase.
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The whole process is best visualised in a few diagrams - see Figs.4.4, 4.5 and 4.6
.

Note: baroclinic Rossby waves provide the ocean with a long ’memory’. In the
real ocean the density structure supports many baroclinic modes that are even slower
than the one described above, so that memory can be very long!
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5 Baroclinic instability in a two-layer channel

In this section some basic baroclinic instability theory is described, to demonstrate
that in a flow with vertical shear small disturbances may grow. (E.g. small amplitude
large scale waves in the atmosphere may grow into fully developed weather systems;
small disturbances in a stratified current in the ocean may grow to form mesoscale
eddies.) As usual, we choose a model that is highly simplified to make the calculations
straightforward, while retaining the essential physical processes necessary for the
phenomenon.

Consider a two-layer zonally periodic beta-plane channel, with a rigid lid and flat
topography. In each layer the quasigeostrophic potential vorticity qj is

q1 = ζ1 + βy + (f0/H1)η , (5.1a)

q2 = ζ2 + βy − (f0/H2)η , (5.1b)

where η is the displacement of the interface between the layers. In terms of the
streamfunction ψj for the geostrophic flow, recall that

uj = − ψjy , vj = ψjx , ζj = ∇2ψj , η = (ψ2 − ψ1)f0/g
′ . (5.2)

We assume no explicit forcing or dissipation, so

Dqj/Dt = qjt + ujqjx + vjqjy = 0 . (5.3)

Note that the advection part can be written as J(ψj, qj) where J is the Jacobian
operator.

Suppose the basic (undisturbed) state has a uniform zonal flow in each layer,
maintained by some unspecified means, with (uj, vj) = (Uj, 0), with streamfunction
ψj = −Ujy and interface displacement η = (f0/g

′)(U1 − U2)y. Thus a positive
shear U1 > U2 is associated with a northward increase in η (assuming the northern
hemisphere): we can imagine this as corresponding to a basic poleward decrease in
temperature.

The basic state potential vorticity is denoted Qj with

Q1 = βy + (f 2
0 /g

′H1)(U1 − U2)y , (5.4a)

Q2 = βy − (f 2
0 /g

′H2)(U1 − U2)y . (5.4b)

Note that the basic state meridional potential vorticity gradient is

Q1y = β + (f 2
0 /g

′H1)(U1 − U2) , (5.5a)

Q2y = β − (f 2
0 /g

′H2)(U1 − U2) . (5.5b)
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For simplicity, suppose the layer depths are equal: H1 = H2 = H0. From the ear-
lier definition of the baroclinic adjustment length scale a, i.e. a2 = g′H1H2/f

2
0 (H1 +

H2), we find in this situation

a2 = g′H0/2f
2
0 , so f20/g

′H1 = f20/g
′H1 = 1/2a2 . (5.6)

For convenience, denote λ = 1/2a2 , and S = U1 − U2 .
Consider perturbations to the above basic state, so uj = Uj + u′j etc. and denote

the perturbation streamfunction by ϕ so ψj = −Ujy + ϕj, and the perturbation
potential vorticity q′j is

q′1 = ∇2ϕ1 + λ(ϕ2 − ϕ1) , (5.7a)

q′2 = ∇2ϕ2 − λ(ϕ2 − ϕ1) . (5.7b)

The potential vorticity equations can be expressed as

q′jt + Ujq
′
jx + ϕjxQjy + J(ϕj, q

′
j) = 0 , (5.8)

5.1 Linearised equations and wavelike solutions

For small perturbations, the nonlinear terms J(ϕj, q
′
j) can be neglected as a first

approximation, leaving the linear equations

q′jt + Ujq
′
jx + ϕjxQjy = 0 . (5.9)

Suppose the zonal channel has ’sidewalls’ at latitudes y = ±πb/2, where ϕj = 0,
and zonal extent 2πL. We seek wavelike solutions of the form

ϕj = Aje
ik(x−ct) cos(ly) , (5.10)

where k = m/L for integers m, and l = 1/b. Note that c may be complex.
Substituting, we obtain coupled algebraic equations for the amplitudes Aj:

(c− U1)[(K
2 + λ)A1 − λA2] + (β + λS)A1 = 0 , (5.11a)

(c− U2)[(K
2 + λ)A2 − λA1] + (β − λS)A2 = 0 , (5.11b)

where K2 = k2 + l2 .
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It is convenient to put

c = (U1 + U2)/2 + d , so c−U1 = d − S/2 , c−U2 = d + S/2 . (5.12)

The coupled equations become

[(d− S/2)(K2 + λ) + β + λS]A1 − (d− S/2)λA2 = 0 , (5.13a)

− (d+ S/2)λA1 + [(d+ S/2)(K2 + λ) + β − λS]A2 = 0 . (5.13b)

Non-trivial solutions for Aj require the determinant to vanish, which requires

K2(K2 + λ)d2 + 2β(K2 + λ)d + β2 +K2S2(2λ−K2)/4 = 0 . (5.14)

Using λ = 1/2a2 we obtain

d =
−βa2(1 + 2a2K2)± [β2a4 + S2a4K4(a4K4 − 1)]1/2

2a2K2(1 + a2K2)
. (5.15)

Note: a2K2 is non-dimensional, and is much less than 1 for waves with wave-
lengths that are large compare to a.

Note: if the term [...] in 5.15 is negative then d has an imaginary part dI that is
non-zero. In particular, positive dI gives a factor ekdI t in the wavelike solution that
is exponentially growing, so we have the possibility of unstable solutions.

Note: there is a particular vertical wave structure for each d: i.e. each d has an
associated value of A1/A2. The two values of d from 5.15 give two different wavelike
modes. If the system is unstable, then for arbitrary initial conditions one mode will
grow and dominate while the other decays. Moreover, A1/A2 is complex in general,
so there will be a phaseshift between the waves in the two layers.

5.2 Some particular cases

5.2.1 No shear

Suppose U1 = U2, so S = 0. From 5.15 we obtain two real values for d:

d = − βa2/(1 + a2K2) , or d = − β/K2 . (5.16)

With no shear the initial wavelike disturbance is stable and does not grow. The
values above are just the baroclinic and barotropic Rossby wave phase speeds in the
rigid-lid system, relative to the basic uniform flow, so an initial disturbance simply
evolves as a superposition of these Rossby waves.
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5.2.2 f-plane

Suppose we omit variation of the Coriolis parameter with latitude, by setting β = 0
(an f-plane model). Then from 5.15 we obtain

d2 = (S2/4) (a2K2 − 1)/(a2K2 + 1) . (5.17)

Thus d is real for a2K2 > 1, and pure imaginary for a2K2 < 1. (See Fig. 5.1
.) Thus unstable modes only occur for K2 sufficiently small, i.e. sufficiently long
wavelengths. For instability in our zonal channel, the zonal wavenumber k = m/L
must be less than

√
1/a2 − 1/b2. Note that the growth rate increases asK2 decreases,

so longer waves grow faster, and that the growth rate is proportional to |S|.

5.2.3 More general conditions: minimum shear

Instability requires the term [...] in 5.15 to be negative, i.e.

S2a4K4(a4K4 − 1) > β2a4 . (5.18)

Thus again we require a2K2 < 1 for instability. The β effect now also requires the
shear to be sufficiently large:

S2a4K4(a4K4 − 1) > β2a4 / a4K4(a4K4 − 1) . (5.19)

As a function of a4K4, the right hand side has a minimum value of 4β2a4 at
a4K4 = 1/2 (see Fig. 5.2): i.e. instability can only occur for

|S| > |S|min = 2βa2 . (5.20)

Note: from 5.5 we have

Q1y = β + S/βa2 , Q2y = β − S/βa2 , (5.21)

so the minimum shear criterion for instability also requires Q1y and Q2y to have oppo-
site sign. This requirement for reversal with height of the basic state quasigeostrophic
potential vorticity gradient also holds for more general circumstances.

Note also that if instability does occur then the range of unstable wavenumbers
is restricted to a band centred on a4K4 = 1/2 , with the range increasing as |S|
increases beyond the minimum value. In contrast to the f-plane case, very long
waves are stable and fastest growth occurs for an intermediate wavelength. (See Fig.
5.3 for an example.)

Analysis beyond the scope of these lectures (see textbooks) shows that the phase
difference between the layers is an essential feature of a growing mode.
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5.3 Energy conservation and finite amplitude effects

Ignoring a constant density factor, in a fluid column the kinetic energy is KEn =
Hn(u

2
n + v2n)/2 in layer n. If < ... > denotes a zonal average and [...] denotes a

meridional average across the channel, it can be shown that [< KE1+KE2+g
′η2/2 >]

is constant in our system with no forcing or dissipation. Here [< g′η2/2 >] is the
net available potential energy (APE) in the channel.

The linear stability analysis, valid for small amplitude disturbances, demonstrates
the possibility of exponentially growing unstable waves. In a growing unstable mode
the increase in perturbation energy is accompanied by a decrease in the mean merid-
ional interface gradient through nonlinear effects: effectively the basic state APE
provides the energy source, and wave growth is limited by depletion of this source.

This process can be examined analytically for waves that evolve slowly to mod-
erate finite amplitude, as when |S| is just above some critical value Sc for instability.
An outline of the calculation is provided here. For convenience, suppose S > 0, fix
U2, and put

S = Sc + ∆ , U1 = U2 + Sc + ∆ . (5.22)

In this situation the growth rate turns out to be O(∆1/2), and a two-time analysis is
appropriate with a ’slow time’ defined by T = ∆1/2t , so

∂

∂t
→ ∂

∂t
+ ∆1/2 ∂

∂T
. (5.23)

The nonlinear quasigeostrophic potential vorticity equations 5.8 are now

(
∂

∂t
+∆1/2 ∂

∂T
+ Uj

∂

∂x
)q′j + ϕjxQjy + J(ϕj, q

′
j) = 0 . (5.24)

An asymptotic expansion is used of the form

ϕj = ϕj(x, y, t, T ) = ∆1/2ϕ
(1)
j + ∆ϕ

(2)
j + ∆3/2ϕ

(3)
j + ... . (5.25)

To O(∆1/2) the linear equations with S = Sc are obtained, which as before have
wavelike solutions of the form

ϕ
(1)
j = Aj(T )e

ik(x−ct) cos(ly) , (5.26)

where the possibility of slow changes in amplitude is now allowed. For convenience,
denote A1 = A and A2 = γA: thus ϕ

(1)
2 = γϕ

(1)
1 . (NB γ is real, as with S = Sc the

Aj are real, as is c.) Thus

q
(1)
1 = ∇2ϕ

(1)
1 + λ(ϕ

(1)
2 − ϕ

(1)
1 ) = [−K2 + λ(γ − 1)]ϕ

(1)
1 , (5.27a)

q
(1)
2 = ∇2ϕ

(1)
2 − λ(ϕ

(1)
2 − ϕ

(1)
1 ) = [−K2γ − λ(γ − 1)]ϕ

(1)
1 . (5.27b)
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In particular, note that J(ϕ
(1)
j , q

(1)
j ) = 0 .

To O(∆) we obtain

(
∂

∂t
+ (U2 + Sc)

∂

∂x
)q

(2)
1 + ϕ

(2)
1x (β + λSc) = − ∂A

∂T
[λ(γ − 1)−K2] eik(x−ct) cos(ly) ,

(5.28a)

(
∂

∂t
+ U2

∂

∂x
)q

(2)
2 + ϕ

(2)
2x (β − λSc) = − ∂A

∂T
[λ(γ − 1) + γK2] eik(x−ct) cos(ly) .

(5.28b)

The left hand side has the same form as the equations for ϕ
(1)
j , so there are homoge-

neous solutions of the form

ϕ
(2)
j = A

(2)
j (T )eik(x−ct) cos(ly) . (5.29)

There are also solutions of the form ϕ(2)(y, T ) to be determined, that represent slow
adjustments to the zonal mean flow and the zonal mean interface shape. As an initial
small wavelike perturbation grows, the zonal mean state also adjusts and influences
the amplitude evolution. In turns out that calculations to ∆3/2 are needed to obtain
an equation that can be solved for A(T ). To cut a long story short, a nonlinear
equation of the nondimensional form

ATT = A − A(A2 − A2
0) , (5.30)

can be found for particular initial conditions, which is useful for illustrative examples.
The ’energy’ combination

E = (AT )
2/2 + A4/4 − (1 + A2

0)A
2/2 (5.31)

is conserved (ET = 0), with an associated ’potential’ A4/4−(1+A2
0)A

2/2 . Solutions
are oscillations, which may be near-sinusoidal in shape or more episodic (relatively
brief moderate amplitude spells separated by long small amplitude spells), depending
on the initial conditions. (See Figs. 5.4, 5.5, 5.6 .)) Such solutions provide a simple
model of the ’lifecycles’ of baroclinic instabilities.
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6 Blocking and multiple equilibria

The ’highs’ and ’lows’ of mid-latitude weather systems fluctuate from day to day,
with the systems generally moving eastward, in part carried along by the prevailingly
westerly mean zonal flow. In some circumstances the mean flow weakens and a ’block’
develops with a near-stationary high pressure system, and the weather remains static
for several days.

6.1 Formulation of a simple model with topography

One of several possible mechanisms for ’blocking’ involves interaction between the
mean flow, Rossby waves and topography. In this section this mechanism is described
in a highly idealised context. Again we choose a periodic zonal beta-plane channel,
this time with a single layer of mean depth H to represent barotropic flow, but
with the inclusion of topography h(x, y) . The length of the channel is 2πL, with
northern and southern boundaries (’sidewalls’) at y=±πL/2 for simplicity. We
neglect horizontal diffusivity for simplicity.

Consider a basic state in which there is a uniform zonal flow u = (U0, 0) when the
topography is flat. In the atmosphere this geostrophic flow is driven by a meridional
pressure gradient that in turn is associated with a meridional temperature gradient.
In our model channel, we suppose the basic flow is driven via Ekman layers via a
’rigid lid’ with uT = (2U0, 0): such as might be realised in a laboratory rotating-tank
experiment.

The governing quasigeostrophic potential vorticity equation is

Dg

Dt
(∇2ψ + βy + (f0/H)h) = f0E

1/2ζ . (6.1)

We state a general circulation condition that applies to this situation:∮
ut + f0E

1/2(u− 1

2
uT ) . dl = 0 , (6.2)

where the path integral is taken around a closed streamline of the geostrophic flow.
In the periodic channel, this condition includes zonally periodic streamlines: in par-
ticular, it applies to the streamlines along the north and south boundaries. (A proof
is not given here, but can be derived by considering Ekman transports.)
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It is convenient to define some terminology for zonal and meridional averages:

< ... > =
1

2πL

∫ πL

−πL

... dx zonal average, (6.3a)

[...] =
1

πL

∫ πL

0

... dy meridional average . (6.3b)

We write the geostrophic streamfunction as

ψ = − U(t)y + Φ(y, t) + ϕ(x, y, t) , (6.4)

where U = [<u>] is the mean zonal flow, Φ is the streamfunction for the zonal
mean shear < u > −U , and ϕ is the streamfunction for wavelike ’eddy’ flow. By
construction, < ϕ >= 0 and [Φy] = 0 .

The streamfunction ψ is constant along the sidewalls: we choose for convenience

ψ = − UπL/2 on y = πL/2 , UπL/2 on y = −πL/2 , (6.5)

and by construction Φ = ϕ = 0 on the sidewalls.
For convenience we choose topography h(x, y) with <h>= 0, and with h = 0 on

the sidewalls. More specifically, we choose the functional form

h = h0 cos(ly)
∞∑

m=1

Fm cos(kx) , (6.6)

where l = 1/L and k = m/L. Thus the topography has a height scale h0, a simple
meridional profile largest at the channel centre, and a zonal profile represented by a
Fourier series symmetric about x = 0. (For later examples we choose a simple shape
with a maximum at x = 0: see Fig. 6.1 .)

Equ 6.1 can be re-written as

Φyyt + ∇2ϕt + <u>
(
∇2ϕ+ (f0/H)h

)
x
+ ϕx(β + Φyyy) +

J
(
ϕ,∇2ϕ+ (f0/H)h

)
= f0E

1/2(Φyy +∇2ϕ) . (6.7)

Taking the zonal average of 6.7 leads to

Φyyt+ < J(ϕ,∇2ϕ+ (f0/H)h) + f0E
1/2Φyy = 0 . (6.8)

Note that
< J(ϕ, h) > = < ϕxhy − ϕyhx >
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= − < ϕhxy + ϕyhx > = − < (ϕhx)y > = − < ϕhx >y . (6.9)

A similar result holds for < J(ϕ,∇2ϕ) >.
Thus 6.8 can be expressed as(

Φyt− < ϕ(∇2ϕ+ (f0/H)h)x > + f0E
1/2Φy

)
y

= 0 . (6.10)

Integrating 6.10 with respect to y from the sidewall at y = −πL/2 leads to

−Φyt+ < ϕ(∇2ϕ+ (f0/H)h)x > − f0E
1/2Φy =

( − Φyt − f0E
1/2Φy ) |y=−πL/2 . (6.11)

On the sidewalls, from 6.2 we obtain

Ut − Φyt + f0E
1/2(U − Φy − U0) = 0 at y = −πL/2 . (6.12)

Thus

Ut−Φyt + < ϕ(∇2ϕ+(f0/H)h)x > − f0E
1/2Φy + f0E

1/2(U −U0) = 0 . (6.13)

Taking the meridional average of 6.13, using Φ = 0 on the sidewalls, and noting
[<ϕ∇2ϕx>] = 0 (use periodicity and ϕ = 0 on sidewalls), we obtain

Ut + (f0/H)[< ϕhx >] + f0E
1/2(U − U0) = 0 . (6.14)

This is the key equation, and it has a simple interpretation. Recalling that the
streamfunction is proportional to pressure (with the hydrostatic pressure component
removed), the second term is proportional to the drag on the flow exerted by the
pressure field associated with the wavelike ’eddy’ flow component. The drag depends
on ϕ, which in turn is related to U .

So far, we have just reformulated the original quasigeostrophic flow problem,
which remains nonlinear and must generally be solved numerically to determine U ,
Φ and ϕ.

6.2 Steady quasilinear flow

Analytic progress can be made by neglecting eddy-eddy interactions in the quasi-
geostrophic potential vorticity equation, and by considering steady flow. For sim-
plicity, we also ignore the mean shear component Φ at this stage. Effectively we set
<u> = U and J(Φ + ϕ,Φyy +∇2ϕ+ (f0/H)h ) = 0 in 6.7, to obtain

U(∇2ϕ+ (f0/H)h)x + βϕx + f0E
1/2∇2ϕ = 0 . (6.15)
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Given the form 6.6 for h, we can similarly express ϕ in the form

ϕ = cos(ly)
∞∑

m=1

Am cos(kx) +Bm sin(kx) , (6.16)

and obtain expressions for the Fourier coefficients Am and Bm:

Am =
Uf0k

2(UK2 − β)(h0/H)Fm

k2(UK2 − β)2 + f 2
0EK

4
, (6.17a)

Bm =
−Uf0E1/2K2(h0/H)kFm

k2(UK2 − β)2 + f 2
0EK

4
, (6.17b)

where K2 = k2+ l2 . We can now use these expressions in 6.14 to obtain an equation
for U . Noting that [< ϕhx >] = −(h0/4)

∑
m kBmFm , this leads to

U − U0 = − (U/4)f 2
0 (h0/H)2

∑
m

k2K2F 2
m

k2(UK2 − β)2 + f 2
0EK

4
, (6.18)

which is an odd-order polynomial equation for U . Using k = m/L and l = 1/L and
some re-arrangement, this is equivalent to

U/U0 − 1 =

− (U/4U0)(h0/H)2
∑
m

m2(1 +m2)F 2
m

m2
(
(U/U0)(U0/f0L)(1 +m2)− βL/f0

)2
+ E(1 +m2)2

.

(6.19)
Thus U/U0 can be determined given the non-dimensional parameters U0/f0L) (Rossby
number), βL/f0, E, h0/H and the topography shape Fm.

Note: re-arranging further,
U/U0 =(

1 + (h0/2H)2
∑
m

m2(1 +m2)F 2
m

m2((U/U0)(U0/f0L)(1 +m2)− βL/f0)2 + E(1 +m2)2

)−1

.

(6.20)
The sum is positive, so it is clear that 0 < U/U0 ≤ 1 : i.e. the topographic drag
slows down the flow.

Note: 6.18 is a nonlinear equation for U : but it can be regarded as a linear equa-
tion for U0 given U (and the other parameters), which is convenient for calculating
actual solutions.

Note: the combination UK2 − β has an important role in the solution. The
physical interpretation is that U − β/K2 is the Doppler-shifted phase speed of free
barotropic rigid-lid Rossby waves with k2 + l2 = K2 in a mean zonal flow of speed
U .
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6.3 Blocked and unblocked flows

To describe this simply, we consider topography with just one zonal wavenumber,
so the wavelike flow has the same wavenumber and ∇2ϕ = −K2ϕ. The quasilinear
quasigeostrophic vorticity equation 6.15 becomes

(β − U/K2)ϕx − f0E
1/2K2ϕ+ U(f0/H)hx = 0 . (6.21)

For small E1/2 and β−U/K2 not close to zero, the dominant balance is between
vorticity generated by the flow over the topography and advection of vorticity by the
mean flow (modified by the Rossby wave), giving

ϕ ≈ Uf0
H(UK2 − β)

h . (6.22)

In this case ϕ is nearly in phase with h, the topographic drag is low, and U/U0 ≈ 1.
The wavelike flow is small, and the mean flow is ’unblocked’. (Note that ϕ may have
the same or opposite sign to h: with U > β/K2 it has the same sign and turns out
to have a peak slightly upstream of the topographic peak.)

If instead β − U/K2 is close to zero, the dominant balance is between vorticity
generated by the flow over the topography and weak dissipation via the Ekman
layers, giving

ϕ ≈ U

E1/2K2H
hx . (6.23)

Now the wavelike flow is relatively large and out of phase with h, resulting in large
drag and a substantial reduction in U : the flow is ’blocked’.

6.4 Multiple equilibria and regimes

Another feature of the simple model is that 6.18 may have more than one solution
for the same parameter choices. This is best illustrated by an example.

Fig 6.1a shows the topography selected, constructed with 10 Fourier modes. Fig
6.2 shows U/U0 as a function of R0 = U0/f0L, with E = 10−4, h/h0 = 0.2, and
βL/f0 = 0.2 . The various curved spikes correspond to regions where various Rossby
waves ’resonate’. In this example several such spikes are sufficiently curved for there
to be 3 values of U for several ranges of values of U0. More advanced analysis shows
that the middle value is unstable, and in a time-dependent model the solution would
settle to one of the other two values of U : the smaller value is a ’blocked’ flow, while
the other is not blocked.
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The upper panel of Fig. 6.3 shows streamlines (contours of the streamfunction)
for the unblocked option for R0 = 0.2: the flow (dominated here by the m = 1 wave)
is only slightly disturbed by the topography, and U/U0 = 0.97 .

By contrast the lower panel shows streamlines the blocked alternative: the zonal
mean is reduced to U/U0 = 0.46, and the flow is sufficiently distorted to produce
closed streamlines within the channel.

As to flow regimes: consider starting at the blocked state with R0 = 0.2. As the
driving value U0 is increased the flow remains blocked until R0 ≈ 0.3: beyond this
point the system suddenly adjusts to an unblocked state as the only possibility, and
remains unblocked if U0 is increased further. But if U0 is then decreased, the system
remains in the unblocked regime until R0 ≈ 0.16, beyond which point the system
switches to a moderately blocked state, then switches to a strongly blocked state
dominated by the m = 2 wave.

6.5 An improvement of the quasilinear model

The reduction of the mean zonal flow is greatest around the centre of the channel for
the form assumed for h. Instead of assuming <u> = U , a meridional profile with
<u> = U − (U0 − U) cos(2ly) (so [<u>] = U as before) can be used. This leads to
solutions of comparable simplicity that compare well with full numerical solutions of
the problem.

34



3 Rossby waves

Figure 3.1: Baroclinic Rossby wave: zonal phase and group velocities
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4 Mid-latitude 2-layer ocean

Figure 4.1:

Figure 4.2:
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Figure 4.3: steady state
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Figure 4.4: Ocean spinup - day 100
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Figure 4.5: Ocean spinup - day 500
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Figure 4.6: Ocean spinup - day 2000
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5 Baroclinic instability

Figure 5.1:
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Figure 5.2:
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Figure 5.3:
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Figure 5.4:

44



Figure 5.5:
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Figure 5.6:
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6 Multiple equilibia

Figure 6.1:
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Figure 6.2:
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Figure 6.3: streamlines for multiple equilibria

49


