Empirical Likelihood: Exercise

- 1. Let X_1, \dots, X_n be a random sample from a continuous distribution. Construct a statistical test for the null hypothesis that the median of the distribution is 0.
- 2. Let X_1, \dots, X_n be a random sample from a distribution with mean 0 and variance σ^2 , construct a confidence interval for σ^2 .
- 3. Let $a_1 \leq \cdots \leq a_n$, and $a_1 < 0$ and $a_n > 0$. Show that there exists a unique constant λ between n/a_1 and n/a_n for which $\sum_{j=1}^n \frac{a_j}{n-\lambda a_j} = 0$, and $n > \lambda a_j$ for all $1 \leq j \leq n$.
- 4. Let X_1, \dots, X_n is a random sample from a distribution with mean μ , variance σ^2 , skewness $\gamma = E\{(X_1 \mu)^3\}/\sigma^3$ and kurtosis $\kappa = E\{(X_1 \mu)^4\}/\sigma^4$. By assuming the required regularity conditions, construct an empirical likelihood ratio test for testing the null hypothesis

$$H_0: \ \mu = 0, \ \sigma^2 = 1, \ \gamma = 0, \ \text{and} \ \kappa = 3.$$

State how a bootstrap calibration method can be used to find the critical value of the test.

5. Let $\{(X_i, Y_i), 1 \le i \le n\}$ be a random sample from a two-dimensional continuous distribution with P(X > 0) > 0. Construct an estimation equation for estimating $\theta \equiv \text{Median}(Y_1|X_1 > 0)$. Construct a statistical test for the hypothesis $H_0: \theta = 1$.