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Overview

Rational maps are self-maps of the Riemann sphere of the form z → p(z)/q(z) where p(z) and q(z) are polynomi-
als. Kleinian groups are discrete subgroups of PSL(2,C), acting as isometries of 3-dimensional hyperbolic space
and as conformal automorphisms of its boundary, the Riemann sphere. Both theories experienced remarkable
advances in the last two decades of the 20th century and are very active areas of continuing research. The aim
of the course is to introduce some of the main techniques and results in the two areas, emphasising the strong
connections and parallels between them.

Topics to be covered in 5 two-hour lectures

(Added April 2013. The lecture notes that follow are divided into 8 chapters. They comprise the material that
was covered during the 5 week lecture course in February-March 2013. This was essentially the list of topics
below, with some covered in more depth than others.)

1. Dynamics of rational maps: The Riemann sphere and rational maps (basic essentials from complex
analysis); conformal automorphisms of the sphere, plane and disc; Schwarz’s Lemma; the Poincaré metric on
the upper half-plane and unit disc; conjugacies, fixed points and periodic orbits (basic essentials from dynamical
systems); spherical metric; equicontinuity; Fatou and Julia sets (definition).

2. Fatou and Julia sets: Normal families and Montel’s Theorem; characterisations and proporties of Fatou
and Julia sets; types of Fatou component; linearization theorems (Koenigs, Böttcher, Siegel, Brjuno, Yoccoz).

3. Hyperbolic 3-space and Kleinian groups: Hyperbolic 3-space and its isometry group; Kleinian groups;
ordinary sets and limit sets; fundamental domains, Poincaré’s polyhedron theorem; examples of Fuchsian and
Kleinian groups and their limit sets.

4. Quadratic maps and the Mandelbrot set: The Mandelbrot set and its connectivity; geography of the
Mandelbrot set: internal and external rays; introduction to kneading theory (Milnor-Thurston); open questions.

5. Further topics (selection from the following): The Measurable Riemann Mapping Theorem and
its applications to holomorphic dynamics and Kleinian groups; polynomial-like mappings and renormalisation
theory; Thurston’s Theorem (characterizing topological branched-covering maps equivalent to rational maps);
conformal surgery, matings; the ‘Sullivan Dictionary’ between holomorphic dynamics and Kleinian groups.

Prerequisites

Undergraduate complex analysis, linear algebra and elementary group theory.

c©Shaun Bullett, QMUL, February 2013
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1 Introduction

1.1 Overview

The objective of these lecture notes is to develop some of the main themes in the study of iterated rational
maps, that is to say maps of the Riemann sphere Ĉ = C ∪∞ to itself of the form

z → p(z)

q(z)

(where p and q are polynomials with complex coefficients), and the study of Kleinian groups, discrete groups of

maps from Ĉ to itself, each of the form

z → az + b

cz + d

(where a, b, c, d are complex numbers, with ad− bc 6= 0).

We shall develop these studies in parallel: although there is no single unifying theory encompassing both areas
there are tantalizing similarities between them, and results in one field frequently suggest what we should look
for in the other (Sullivan’s Dictionary).

The study of iterated rational maps had its first great flowering with the the work of the French mathematicians
Julia and Fatou around 1918-20, though its origins perhaps lie earlier, in the late 19th century, in the more
geometric work of Schottky, Poincaré, Fricke and Klein. It has had its second great flowering over the last 30
years, motivated partly by the spectacular computer pictures which started to appear from about 1980 onwards,
partly by the explosive growth in the subject of chaotic dynamics which started about the same time, and not
least by the revolutionary work in three-dimensional hyperbolic geometry initiated by Thurston in the early
1980’s. In the intervening period Siegel (in the 1940s) had proved key results concerning local linearisability
of holomorphic maps, and Ahlfors and Bers (in the 1960s) following pioneering work of Teichmüller (in the
late 1930s) had developed quasiconformal deformation theory for Kleinian groups: the stage was set for an
explosion of interest, both experimental and analytical. Some of the names associated with this second great
wave of activity are Mandelbrot, Douady, Hubbard, Sullivan, Herman, Milnor, Thurston, Yoccoz, McMullen
and Lyubich. Both subjects are still very active indeed: as we shall see, some of the major conjectures are
still waiting to be proved. But the remarkable mixture of complex analysis, hyperbolic geometry and symbolic
dynamics that constitutes the subject of holomorphic dynamics yields powerful methods for problems which
at first sight might appear only to concern only real mathematics. For example the most conceptual proof of
the universality of the Feigenbaum ratios for period doubling renormalisation of real unimodal maps is that of
Sullivan (1992) using complex analysis.

We start our study of rational maps and Kleinian groups - as we mean to go on - with motivating examples.

1.2 The family of maps z → z2 + c

(i) c = 0

Here the dynamical behaviour is straightforward. When we iterate z → z2 any orbit started inside the unit
circle heads towards the point 0, any orbit started outside the unit circle heads towards∞, and any orbit started
on the unit circle remains there. The two components of {z : |z| 6= 1} are known as the Fatou set of the map
and the circle |z| = 1 is called the Julia set. On the unit circle itself the dynamics are those of the shift, namely
if we parametrise the circle by t ∈ [0, 1) ⊂ R (t = arg(z)/2π): then z → z2 sends t→ 2t mod 1.

Any t ∈ [0, 1) of the form t = m/(2n − 1) (for 0 ≤ m < 2n − 1 integer) is periodic, of period n (exercise: prove
this). Hence the periodic points form a dense set on the unit circle. Moreover the map z → z2 has sensitive
dependence on initial condition, since the map on the unit circle doubles distance.
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Figure 1: Julia set for z → z2 − 1

Figure 2: Lamination for z → z2 − 1 (first few leaves).

(ii) c = −1

When we vary c just a little from 0 the dynamical picture remains like that for z → z2. There is a single
attractive fixed point (but this is no longer 0 itself), the Fatou set is a pair of (topological) discs, the basins of
attraction of the finite fixed point and ∞ respectively, and the Julia is a (fractal) topological circle separating
these discs. However as |c| becomes larger the Julia set becomes more and more distorted and eventually self-
intersects. For example once c has reached −1 the dynamical behaviour is rather more complicated to describe
(see Figure 1). The Fatou set now has infinitely many components. There is a fixed point at ∞ to which
every orbit started in the component of the Fatou set outside the ‘filled Julia set’ is attracted, and a period 2
cycle 0 → −1 → 0 → −1 → ... towards which every orbit started in any other component of the Fatou set is
attracted. An orbit which starts on the common boundary of the two attractors (the ‘Julia set’, which we shall
define formally soon) remains on that boundary. Combinatorially, the Julia set in this example is a quotient of
the circle, and the dynamics are those of the corresponding quotient of the shift. Figure 2 shows the first few
identifications on the unit circle in the construction of this quotient: contracting the leaves on the closed unit
disc gives a model of the filled Julia set for z → z2 − 1.

(iii) c = i

See Figure 3. Note that the point 0 is preperiodic for this map (0 → i → −1 + i → −i → −1 + i...). It can be

Figure 3: Julia set for z → z2 + i
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Figure 4: The modular group action on the upper half-plane

proved that whenever c is such that the critical point 0 of z → z2 + c is preperiodic but not periodic, the Julia
set is a dendrite (that is a connected, simply-connected set with empty interior).

(iv) c = −2

Here again 0 is preperiodic, and the dendrite (not drawn here) is the real interval [−2, 2].

Exercise Show that h : z → z+1/z is a semiconjugacy from f : z → z2 to g : z → z2−2 (that is, h is a surjection
satisfying hf = gh) and that h sends the Julia set of f (the unit circle) onto the real interval [−2,+2].

For |c| sufficiently large the Julia set becomes disconnected - in fact it becomes a Cantor set. The set of all
values of c ∈ C such the Julia set is connected is known as the Mandelbrot Set.

1.3 The modular group PSL(2,Z)

The modular group PSL(2,Z) is the group of Möbius transformations

z → az + b

cz + d

such that a, b, c, d are integers with ad− bc = 1. It is easy to see that PSL(2,Z) maps the open upper half H+

of the complex plane to itself, the open lower half plane H− to itself and the extended real axis R̂ = R ∪∞ to
itself (see Figure 4).

We remark that the modular group is generated by S : z → −1/z and T : z → z+1. All relations in the group are
consequences of the pair of relations S2 = I, (ST )3 = I. The region ∆ = {z : |z| ≤ 1, Re(z) ≤ 1/2, Im(z) > 0}
is a fundamental domain for the action of PSL(2,Z) on the upper half plane: H+ is ‘tiled’ by the translates of
∆ under elements of the group. Similarly H− is tiled by the mirror image of ∆ and its translates. Both sets
of tiles accumulate on R̂. Just as is the case for rational maps, the action of a Kleinian group G partitions the
Riemann sphere into two disjoint completely invariant subsets, an ordinary set Ω(G) (in the case of the modular
group this is H+∪H−), and a limit set Λ(G) (in this case R̄) on which the system exhibits sensitive dependence
on initial conditions: arbitrarily close to any point in Λ(G) we can find another point and an element of G
sending the two points arbitrarily far apart.
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2 Dynamics of rational maps

2.1 The Riemann sphere

The extended complex plane is C together with an extra point ‘∞’. The topology on C∪ {∞} can be described
as follows. Let S2 denote the unit sphere in R3, regard C as the plane R2 ⊂ R3 (which cuts through S2 at
its equator), and let N = (0, 0, 1) denote the ‘north pole’ of S2. Stereographic projection from N defines a
homeomorphism π : S2 − {N} → C. Extending π to send N to ∞ we obtain a homeomorphism from S2 to
C ∪∞, where the latter is topologised by taking as neighbourhoods of ∞ the sets {z : |z| > R} ∪∞. However
we need more than just a topology on C ∪∞: we give S2 the structure of a Riemann surface by equipping it
with charts (homeomorphisms) φ1 : C → S2 − {N} and φ2 : C → S2 − {S} such that φ−12 φ1 is an analytic
bijection on the overlap. We may take φ1 to be the inverse π−1 of stereographic projection from the north pole
and φ2 to be the inverse of sterographic projection from the south pole, followed by complex conjugation. The
overlap φ−12 φ1 is then z → z̄/|z|2 = 1/z.

Equivalently we can put a complex structure on C ∪∞ by regarding it as the complex projective line

CP1 = {C2 − (0, 0)}/R

where R is the relation (z, w) ∼ (λz, λw) for λ ∈ C − 0. An equivalence class [z, w] contains (z/w, 1) if w 6= 0
or (1, w/z) if z 6= 0, so we may think of CP1 as the union of two copies of the complex plane glued together,
C1 ∪ C2/(z1 ∼ 1/z2). The bijection

CP1 ↔ Ĉ
is given by [z, w] ↔ z/w when w 6= 0 and [z, 0] ↔ ∞. We shall use the term Riemann sphere interchangeably

for Ĉ or CP1, but we shall tend to use the notation z ∈ Ĉ rather than [z, w] for an individual point, just for
convenience: all polynomial expressions in the former form can if necessary be re-written in the latter form
simply by introducing a homogenising variable w.

2.2 Basic essentials from complex analysis

Definitions An open connected set Ω ⊂ C is called a domain.

f : Ω→ C is said to be differentiable at z0 ∈ Ω if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
exists.

f : Ω→ C is said to be holomorphic if f is differentiable at all z0 ∈ Ω.

Theorem 2.1 Let f be holomorphic on the domain Ω ⊂ C and let z0 ∈ Ω. Let R denote the radius of the
largest disc which has centre z0 and is contained in Ω. Then for all z with |z − z0| < R the Taylor series∑∞
n=0 an(z − z0)n for f at z0 converges absolutely to the value f(z).

This is a classical theorem of complex analysis. The coefficients an are given by the formulae

an =
1

2πi

∫
C

f(z)

(z − z0)n+1
dz

where C is a positively-oriented circle around z0, or equivalently by

an =
fn(z0)

n!

A function expressible as a power series is called analytic. Thus Theorem 2.1 says that a holomorphic function
on a domain Ω ⊂ C is analytic. The converse is also a well known result: every function expressible as a
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power series is holomorphic on the disc of convergence of the series, and its derivative is given by term-by-term
differentiation.

There is a geometric interpretation for the statement that a function f is differentiable at z0. If f ′(z0) 6= 0,
then near z0 we have f(z) − f(z0) ∼ f ′(z0)(z − z0) so f acts on z − z0 by multiplying it by the scaling factor
|f ′(z0)| and turning it through an angle arg(f ′(z0)). Thus in particular if f ′(z0) 6= 0 the function f is conformal
(angle-preserving) at z0. If f ′(z0) = 0, then on a small disc centred at z0 we have f(z) ∼ f(z0) +an(z− zo)n for
the first coefficient an 6= 0 and f acts on this disc as an n-to-1 branched covering map (branched at z0): note
that f is then not conformal at z0, indeed it multiplies angles at z0 by n.

If f : Ω → C is holomorphic except at isolated singularities (isolated points where f is undefined or not
differentiable) then we say that f is meromorphic if all these singularities are either removable or poles, or
equivalently if for each z0 ∈ Ω there is a disc neighbourhood D of z0 such that the Laurent series for f in the
punctured disc D−{z0} has the form

∑+∞
n=−m an(z−z0)n. Recall that z0 is said to be a pole of order m if m > 0

is such that a−m 6= 0 but a−n = 0 for all n > m, and that z0 is said to be removable if a−n = 0 for all n > 0.
When z0 is a removable singularity we can set f(z0) = a0 and thereby extend f to a function differentiable at z0,
and when z0 is a pole limz→z0 f(z) =∞ so we can extend the definition of f by setting f(z0) =∞ and regard

f as a continuous function f : Ω→ Ĉ = C∪∞. This extension is generally called meromorphic too. (Note that
if our original f : Ω → C has any essential singularities there is no way to assign values at these singularities
to obtain a continuous extension f : Ω→ C ∪∞ since in any neighbourhood of an essential singularity f takes
values arbitrarily close to any given value.)

There is a nice way to characterise a meromorphic function f : Ω → Ĉ (Ω a domain in C), making use of the
‘duality’ between ‘0’ and ‘∞’. Let σ denote the function z → 1/z. Then around any pole z0 of f the function
σf is analytic, since f(z) has an expression as a Laurent series

f(z) = (z − z0)−m
∞∑
n=0

bn(z − z0)n (b0 6= 0)

and taking the reciprocal of this expression we obtain for σf(z) a series of the form

σf(z) = (z − z0)m
∞∑
n=0

cn(z − z0)n

where c0 = 1/b0. It follows that f : Ω→ Ĉ is meromorphic if and only if f is analytic at those points z0 where
f(z0) 6=∞ and σf is analytic at those where f(z0) 6= 0.

Finally, for full generality, we allow Ω to be a domain in Ĉ = C∪∞ and not just in C and we say that f : Ω→ Ĉ
is meromorphic at ∞ if fσ is meromorphic at 0. The class of functions f : Ĉ → Ĉ which are meromorphic on
C and at ∞ are precisely the functions we are interested in: they are the functions which, provided we replace
f by σf, fσ or σfσ as appropriate, have a Taylor series expansion at every point of Ĉ.

Definition Ĉ→ Ĉ is holomorphic if f is meromorphic at every point of C and at ∞.

2.3 Rational maps and critical points

Theorem 2.2 f : Ĉ → Ĉ is holomorphic if and only if f is a rational function, that is to say there exist
polynomials p(z), q(z), with complex coefficients, such that f(z) = p(z)/q(z) for all z ∈ Ĉ.

Proof It is an elementary exercise to show that any rational map f is meromorphic both at points of C and at
∞, since by the Fundamental Theorem of Algebra f has the form

f(z) = c
(z − α1)m1 ...(z − αr)mr

(z − β1)n1 ...(z − βs)ns
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For the converse, let f : Ĉ → Ĉ be holomorphic. Then f has finitely many poles (else 1/f has a convergent
sequence of zeros, which, by Theorem 2.1, is only possible if 1/f is identically zero). Let these poles be β1, ..., βs,
of order n1, ...ns respectively. Then

g(z) = (z − β1)n1 ...(z − βs)nsf(z)

is analytic on C, and so g can be written in the form

g(z) =

∞∑
n=0

anz
n

Since f is meromorphic at ∞ so is g. Thus gσ is meromorphic at 0. In other words
∑∞
n=0 anz

−n has a pole
or a removable singularity at z = 0. It follows that only finitely many of the an are non-zero and hence g is a
polynomial. QED

Comments

1. This is a very powerful result: it tells us that any holomorphic f : Ĉ → Ĉ is determined by a finite set of
data, for example the poles and zeros of f together with the value of f at one other point.

2. We can write a rational map f(z) = p(z)/q(z) : Ĉ → Ĉ in terms of homogeneous coordinates on CP1 as
follows: write

p(z) =

d∑
m=0

amz
m; q(z) =

d∑
m=0

bmz
m

(where if necessary extra zero coefficients have been added to give p and q the same degree). Now define

f([z, w]) = [

d∑
m=0

amz
mwd−m,

d∑
m=0

bmz
mwd−m]

Let f(z) = p(z)/q(z), where p and q are polynomials of degree dp and dq respectively, with no common zeros.

Then a general point ζ ∈ Ĉ has max(dp, dq) inverse images (just consider the equation ζ = p(z)/q(z), that is
to say p(z)− ζq(z) = 0: this has max(dp, dq) solutions z for any ζ in general position). We define the degree of
f to be max(dp, dq). Thus, for example, rational maps of degree 1 have f(z) = p(z)/q(z) where p(z) = az + b
and q(z) = cz + d (but ad− bc 6= 0 else p is a constant multiple of q).

Definition A critical point of a rational map f is a point z0 where the degree one term of the Taylor series for
f vanishes, in other words the derivative f ′(z0) vanishes.

As usual we replace f by fσ here if z0 =∞, by σf if f(z0) =∞ and by σfσ if both are∞, so that an appropriate
Taylor series exists. Looked at topologically a critical point of f is a branch point of f , a point z0 such that
f(z)− f(z0) has a factor (z− z0)n for some n > 1, and thus in particular where f−1f(z0) consists of less than d
distinct points. (But for d > 2 it does not follow that z0 is a critical point just because f−1f(z0) consists of less
than d distinct points (exercise!).) Writing f(z) = p(z)/q(z), we see that f ′(z) = 0⇔ q′(z)p(z)− p′(z)q(z) = 0.

Proposition 2.3 A degree d rational map has 2d− 2 critical points (counted with multiplicity)

Proof In the generic case both p and q have degree d and q′(z)p(z) − p′(z)q(z) is generically a polynomial of
degree 2d − 2 (since q′(z)p(z) and p′(z)q(z) have the same degree 2d − 1 term). In the non-generic case we
obtain the same result if we adopt the right notion of ‘multiplicity’: this is best proved topologically using an
argument based on Euler characteristics (see later for a full proof). QED

2.4 Conformal automorphisms of Ĉ, C and D

The invertible holomorphic maps f : Ĉ → Ĉ are the conformal automorphisms of the Riemann sphere. They
form a group Aut(Ĉ).

7



Proposition 2.4 The conformal automorphisms of Ĉ are the rational maps of form

f(z) =
az + b

cz + d

having a, b, c, d ∈ C and ad 6= bc.

Proof By Theorem 2.2 for f to be holomorphic it must be rational, but to be injective it must have degree 1.
Conversely, any f of this form is invertible since it has inverse f−1(z) = (dz − b)/(−cz + a). QED

Maps of the form f(z) = (az+ b)/(cz+d) having a, b, c, d ∈ C and ad 6= bc are called fractional linear or Möbius
transformations.

Properties of Möbius transformations

1. Any invertible linear map α : C2 → C2 has the form

(
z
w

)
→
(
a b
c d

)(
z
w

)
=

(
az + bw
cw + dw

)
and passes to a map CP1 → CP1 which in our coordinate z/w on Ĉ = C ∪∞ is

z/w → az + bw

cz + dw
=
az/w + b

cz/w + d

(where (a∞+ b)/(c∞+ d) is to be interpreted as a/c and so on).

2. Composition of linear maps passes to composition of Möbius transformations. The group of all Möbius
transformations is therefore

PGL(2,C) =
GL(2,C)

{λI;λ ∈ C− {0}}
=
SL(2,C)

{±I}
= PSL(2,C)

where GL(2,C) denotes the group of all invertible 2× 2 matrices and SL(2,C) denotes those of determinant 1.

3. Given any three distinct points P,Q,R ∈ Ĉ, there exists a unique Möbius transformation sending P →
∞, Q→ 0, R→ 1, given by

α(z) =
(P −R)(Q− z)
(Q−R)(P − z)

(Uniqueness follows from the easy exercise that the only Möbius transformation fixing 0, 1 and∞ is the identity.)

It follows that given any other three distinct points P ′, Q′, R′ ∈ Ĉ there exists a unique Möbius transformation
sending P → P ′, Q → Q′ and R → R′, for if α is as above and β sends P ′ → ∞, Q′ → 0, R′ → 1 then β−1α
has the required property.

4. Given any four distinct points P,Q,R, S ∈ Ĉ, their cross-ratio is defined to be

(P,Q;R,S) =
(P −R)(Q− S)

(Q−R)(P − S)
∈ Ĉ− {0.1,∞}

(Warning: There are several different definitions of a cross-ratio in common use.) It follows from the preceding
remark that (P,Q;R,S) = α(S), where α is the unique Möbius transformation sending P → ∞, Q → 0 and
R→ 1. Hence if γ is a Möbius transformation then (γ(P ), γ(Q); γ(R), γ(S)) = (P,Q;R,S), for αγ−1 is then a
Möbius transformation sending γ(P ) → ∞, γ(Q) → 0, γ(R) → 1 and has (αγ−1)γ(S) = α(S) = (P,Q;R,S).
Thus cross-ratios are preserved by Möbius transformations.

Möbius transformations are conformal (since they are invertible and therfore have non-zero derivative every-
where). But conformality is just a local property and we can prove a much stronger result:

Proposition 2.5 Möbius transformations send circles in Ĉ to circles in Ĉ (where a ‘circle through ∞’ is a
straight line in C).
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Proof Any ‘circle’ in Ĉ (including those through ∞) has the form

α(x2 + y2) + 2βx+ 2γy + δ = 0 (α, β, γ, δ ∈ R)

in other words
Azz̄ +Bz + B̄z̄ + C = 0

where A = α ∈ R, B = β − iγ ∈ C, C = δ ∈ R. Let

z =
aw + b

cw + d

Now a direct substitution for z in the equation above gives an equation of the same form for w once the
denominator has been cleared. QED

Corollary 2.6 Any four distinct points P,Q,R, S ∈ Ĉ lie on a common circle if and only if their cross ratio
(P,Q;R,S) is real.

Proof Send P,Q,R to ∞, 0, 1 by a Möbius transformation. QED

Proposition 2.7 The conformal automorphisms of C are the maps f(z) = az + b having a, b ∈ C and a 6= 0.

Proof Let f be a conformal automorphism of C. Then limz→∞ f(z) =∞ (this follows from the fact that f is a
homeomorphism). Hence σfσ has a removable singularity at 0 and so f extends to a conformal automorphism

of Ĉ. The result follows by Proposition 2.4. QED

We next identify the conformal automorphisms of D. The neatest method is via Schwarz’s Lemma, which will
be an important tool for us later for other purposes.

Lemma 2.8 (Schwarz’s Lemma) If f is holomorphic D → D and f(0) = 0 then |f ′(0)| ≤ 1. If |f ′(0)| = 1
then f(z) = µz for some µ ∈ C with |µ| = 1. If |f ′(0)| < 1 then |f(z)| < |z| for all 0 6= z ∈ D.

Proof Let f(z) have Taylor series a1z + a2z
2 + ... on D, and set g(z) = a1 + a2z + ...(= f(z)/z). Then g is

holomorphic D→ C and on the circle C having centre 0 and radius ρ we see that

|g(z)| = |f(z)|
|z|

≤ 1

ρ

so by the Maximum Modulus Principle |g(z)| has the bound 1/ρ for all z inside C too. Letting ρ tend to 1
(from below) we deduce that |g(z)| ≤ 1 for all z ∈ D, and in particular |g(0)| ≤ 1, that is |f ′(0)| ≤ 1. If there
is any z0 ∈ D with |g(z0)| = 1 (for example if |g(0)| = 1), then |g(z)| = 1 for all z ∈ D (again by the Maximum
Modulus Principle) in which case g must be constant, say g(z) = µ, with |µ| = 1. If there is no such z0 then
|g(z)| < 1 for all z ∈ D, i.e. |f(z)| < |z| for all z ∈ D. QED

Proposition 2.9 The conformal automorphisms of D are the maps of form

f(z) = eiθ
z − a
1− āz

, θ ∈ R, a ∈ D

Proof Let f be a conformal automorphism of D. Then f−1(0) = a ∈ D. The Möbius transformation

g(z) =
z − a
1− āz

sends a to 0 and the unit circle to itself, so it sends D to itself. Thus fg−1 is a conformal automorphism of D
sending 0 to 0. From Schwarz’s Lemma it follows that fg−1(z) = µz for some µ with |µ| = 1. QED

Corollary 2.10 The conformal automorphisms of the upper half-plane H+ are the Möbius transformations

f(z) =
az + b

cz + d
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having a, b, c, d ∈ R and ad 6= bc.

Proof. Take any Möbius transform M which sends the upper half plane H+ bijectively onto D (exercise: write
one down). The conformal automophisms of H+ are the maps M−1gM where g runs through the conformal
automorphisms of D given by Proposition 2.9 (details: exercise). QED

We recall that not only is there is a conformal bijection between H+ and D, but that the Riemann Mapping
Theorem states that for every simply-connected domain U ⊂ C (U 6= C) there is a conformal bijection between
U and D. An important generalisation of this that we shall repeatedly use explicitly or implicitly, but which
we will not prove in this course, is the following (proved by Poincaré and Koebe):

Theorem 2.11 (The Uniformisation Theorem) Every simply-connected Riemann surface is conformally

bijective to one of Ĉ, C or D.

2.5 The Poincaré metric on the upper half plane

Define the infinitesimal Poincaré metric on the upper half plane by ds =

√
(dx)2+(dy)2

y .

Proposition 2.12 ds is invariant under PSL(2,R)

Proof Every element of PSL(2,R) can be written as a composition of transformations of the type z → z + λ
(λ ∈ R), z → µz (µ ∈ R>0) and z → −1/z, and it is easily checked that each preserves ds. QED

A path in H+ is called a geodesic from P to Q in H+ if it is a path of shortest length.

Proposition 2.13 There is a unique geodesic between any two distinct points P and Q in H. It is the segment
between P and Q of the (unique) euclidean semicircle through P and Q which meets R̂ orthogonally. The
distance between P and Q (in the Poincaré metric) is ln(|(P,Q;A,B)|) where A and B are the points where

the semicircle meets R̂.

Proof In the case that P and Q are on the imaginary axis, the straight line path γ1 from P to Q is shorter
than any other path γ2 from P to Q, since∫

γ2

1

y

√
(dx)2 + (dy)2 >

∫
γ2

1

y
dy =

∫
γ2

1

y
dy

For P = i and Q = it (real t > 1) the hyperbolic distance from P tp Q is∫ t

1

1

y
dy = ln t = ln |(i, it; 0,∞)|

The result follows, since given any P ′, Q′ in H+ there is an element of PSL(2,R) which sends P to P ′ and Q
to Q′, and moreover this Möbius transformation sends the positive imaginary axis to a semicircle with ends on
the extended real axis R̂ and preserves corss-rations. QED

Corollary 2.14 The group of conformal automorphisms of the upper half-plane, PSL(2,R), is also the group
of orientation-preserving isometries of the upper half-plane (equipped with the Poincaré metric).

Proof (sketch) It is obvious that every element of PSL(2,R) preserves the Poincaré metric since it preserves
the upper half-plane, the real axis and cross-ratios. For the other direction, observe that an isometry of the
Poincaré metric must send geodesics to geodesics, and it must send orthogonal pairs of geodesics to orthogonal
pairs of geodesics (since othogonal pairs of geodesics are pairs of semicircles with end points on R̂ having cross-
ratio −1). It follows that an isometry must satisfy the Cauchy-Riemann equations everywhere and is therefore
a conformal automorphism. QED

We can transfer the Poincaré matric to D, using any Möbius transformation M sending H+ → D.

Exercise. Show that the infinitesimal metric 2|dz|
1−|z|2 on D is invariant under Aut(D), show that the distance

between 0 and t ∈ (0, 1) ⊂ D ∩ R in this metric is ln |(0, t;−1,+1)|, and deduce that this is the infinitesimal
Poincaré metric, transferred from H+ to D.
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2.6 Conjugacies, fixed points and multipliers

Definition Rational maps f, g are said to be conjugate if there exists a Möbius transformation h such that
g = hfh−1, in other words such that the following diagram commutes:

-

-

? ?

Ĉ Ĉ

Ĉ Ĉ
f

g

h h

Conjugate maps have identical dynamical behaviour (think of h as a ‘change of coordinate system’). In particular
h sends fixed points of f to fixed points of g, periodic points of f to periodic points of g etc, as we shall see
below. We can often put a rational map into a simpler form by applying a suitable conjugacy.

Examples

1. A rational map f is conjugate to a polynomial if and only if there exists a point z0 ∈ Ĉ such that f−1(z0) =
{z0}. (Proof: Move z0 to ∞ by a Möbius transformation h. Details: exercise.)

2. A rational map f is conjugate to a polynomial of the form z → zn (some n > 0) if and only if there exist

distinct points z0, z1 ∈ Ĉ such that f−1(z0) = {z0} and f−1(z1) = {z1}. (Proof: Move z0 to ∞ and z1 to 0 by
a Möbius transformation h. Details: exercise.)

3. Every degree 2 polynomial z → αz2 + βz + γ (α 6= 0) is conjugate to a (unique) one of the form z → z2 + c.
(Proof: Exercise: h can be taken of the form az + b since we do not have to move ∞).

Fixed points and multipliers

Definitions A fixed point of a rational map f is a point z0 ∈ Ĉ such that f(z0) = z0.

The multiplier of f at such a fixed point is the derivative f ′(z0) = λ. We say that z0 is

attracting if |λ| < 1 (if λ = 0 we say z0 is superattracting);

repelling if |λ| > 1;

neutral if |λ| = 1, i.e. λ = e2πiθ for some θ ∈ R.

As we shall see, the dynamical behaviour around a neutral periodic point depends on whether θ is rational or
irrational, and the irrational case can be further subdivided into ‘linearisable’ and ‘non-linearisable’.

Proposition 2.15 When the function f is conjugated by a Möbius transformation h any fixed point z0 of f
is sent to a fixed point w0 = h(z0) of g = hfh−1 and the multiplier of the fixed point w0 for g is equal to the
multiplier for the fixed point z0 for f .

Proof If z0 is a fixed point of f and w0 = h(z0) then

g(w0) = gh(z0) = hf(z0) = wo

and, by the chain rule for differentiation,

g′(w0) = h′(w0)f ′(z0)(h−1)′(w0)

but since h is differentiable, has differentiable inverse and sends z0 to w0, we know that

(h−1)′(w0) =
1

h′(z0)

11



and hence g′(w0) = f ′(z0). QED

Note that we cannot expect the derivative of a rational map f at a point z0 to be a conjugacy invariant when z0
is not a fixed point, since there is no reason to expect any relation between h′(z0) and (h−1)′(hf(z0)). However
the property of having zero derivative does turn out to be a conjugacy invariant (exercise). This should not
surprise us as this is a topological property of the map: the critical points are the branch points of the map,
that is to say the points where it fails to be locally one-to-one.

Proposition 2.15 says that a conjugacy sends a fixed point of f to a fixed point of g having the same dynamical
behaviour (attractor, repellor etc). Analogous results hold for periodic orbits:

Definition A point z0 is said to periodic of period n for f if fn(z0) = z0 but f j(z0) 6= z0 for 0 < j < n. The
multiplier of the periodic orbit {z0, f(z0) = z1, f(z1) = z2, ..., f(zn−1) = z0} is defined to be (fn)′(z0). Note
that (fn)′(z0) = f ′(z0)f ′(z1)...f ′(zn−1) by the chain rule.

Proposition 2.16 When the function f is conjugated by a Möbius transformation h any orbit of period n of f
is sent an orbit of period n of g = hfh−1, and the two orbits have the same multiplier.

Proof Denote the periodic orbit of f by {z0, f(z0) = z1, f(z1) = z2, ..., f(zn−1) = z0}. Then gjh(z0) =
hf j(z0) = h(zj). So gjh(z0) 6= h(z0) for 0 < j < n (h being injective) and gnh(z0) = h(z0). Hence h(z0) is
periodic of period n for g. The orbits have the same multiplier by Proposition 2.15 applied to fn. QED

2.7 The spherical metric and the Fatou and Julia sets of a rational map

We define the spherical metric on the unit sphere S2 by setting the distance between two points to be the
shortest Euclidean length of a great circle path between them. On the Riemann sphere, parameterised as the
extended complex plane C ∪∞, the infinitesimal spherical metric is:

ds =
2|dz|

1 + |z|2

WARNING The spherical metric is not preserved by Aut(Ĉ), but conjugating by any particular conformal

automorphism sends the spherical metric to a Lipschitz equivalent metric, since Ĉ is compact.

Definition Let f be a rational map and z0 be a point of Ĉ. We say that the family of iterates {fn}n≥0 is
equicontinuous at z0 if given any ε > 0 there exists δ > 0 such that for all n ≥ 0 d(fn(z), fn(z0)) < ε whenever

d(z, z0) < δ. (Here d is the spherical metric on Ĉ).

Think of this as saying that ‘any orbit which that starts near z0 remains close to the orbit of z0’.

Definitions The Fatou set F (f) of f is the largest open subset of Ĉ on which the family {fn}n≥0 is equicon-

tinuous at every point. The Julia set J(f) of f is Ĉ− F (f).

The Julia set should be thought of as the set of points the orbits of which exhibit ‘sensitive dependence on
initial conditions’.

Example

f(z) = z2 has Fatou set F (f) = {z : |z| 6= 1}, and Julia set J(f) = {z : |z| = 1}.

Since f doubles length along the unit circle it is clear that {z : |z| = 1} ⊂ J(f). It is not quite so obvious
that points not on the unit circle are in F (f). One can give a direct formal proof of this, but the details are a
little messy in practice: the problem is that orbits started close together near (but not on) the unit circle will
move apart for a large number of iterations before they start approaching each other again. For a more general
method of proof, see the next chapter.

Remark If g = hfh−1 where h ∈ Aut(Ĉ), then F (g) = h(F (f)) and J(g) = h(J(f)). This follows from the
remark about Lipschitz equivalent metrics in the warning above.
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3 Fatou and Julia sets

The following properties follow immediately from our definitions at the end of the previous chapter:

1. F (f) is open (by definition); hence J(f) is closed and therefore compact (since Ĉ is compact).

2. F (f) is completely invariant, that is f(F (f)) = F (f) = f−1(F (f)). The fact that f−1(F (f)) ⊂ F (f) follows
from the definition of F (f) and the continuity of f ; the converse, F (f) ⊂ f−1(F (f)), is a consequence of the
fact that a rational map is open (i.e the image of an open set is itself open).

3. J(f) is completely invariant. (This follows at once from 2.)

What kinds of families F of analytic maps f : Ω→ Ĉ are equicontinuous ? Our first step towards an answer is
the following very useful Proposition which interprets Schwarz’s Lemma in the language of hyperbolic geometry:

Proposition 3.1 If f be a holomorphic map D→ D then f is non-increasing in the Poincaré metric.

Proof Let z0, z1 be any two points in D. Let f(z0) = w0 and f(z1) = w1. Choose isometries h, k of the Poincaré
disc D (Möbius transformations) such that h(0) = z0 and k(0) = w0. Let z′1 = h−1z1 and w′1 = k−1w1. Now
k−1fh is a holomorphic map of D to itself sending 0 to 0 and z′1 to w′1. Hence |w′1| ≤ |z′1| by Schwarz’s Lemma,
and so d(0, w′1) < d(0, z1) in the Poincaré metric. But d(w0, w1) = d(0, w′1) and d(z0, z1) = d(0, z′1) (as h and k
are isometries). QED

Corollary 3.2 Every family of holomorphic maps D→ D is equicontinuous.

Proof It follows at once from Proposition 3.1 that every such family F is equicontinuous with respect to the
Poincaré metric on D. But we need to show that it is equicontinuous with respect to the spherical metric (where

we regard D as D ⊂ C ⊂ Ĉ). However given any point z0 we can find a small disc around z0 and a constant k
such that the distance between any two points z, z′ in this disc in the Poincaré metric is less than k times the
distance in the spherical metric. Equicontinuity at z0 follows, since the spherical distance between the images
f(z), f(z′) of two points under f ∈ F is less than or equal to the Poincaré distance betwen these images, this
being true for any pair of points in D. QED

Example The family {z → z2
n}n≥0 is equicontinuous on D: thus the Fatou set of z → z2 contains {z : |z| < 1}.

Conjugating by σ : z → 1/z we see that the Fatou set of z → z2 also contains {z : |z| > 1}. Since every point
on the unit circle is in the Julia set of z → z2, we now have a proof that the Fatou and Julia sets of this map
are as we claimed at the end of the previous chapter.

It follows at once from Corollary 3.2 that every bounded family of holomorphic maps D→ C is equicontinuous
(again with respect to the spherical metric).

There are two approaches to defining the Fatou set of a rational map f , either as the equicontinuity set of the
family of iterates of f , or as the normality set of this family. They give equivalent definitions, so it really makes
no difference which route we take, but it will be convenient for us to switch back and forth.

Definition Let Ω be a domain in Ĉ. A family F of maps Ω → Ĉ is called normal if every sequence in F
contains a subsequence which converges locally uniformly to a map f : Ω→ Ĉ (not necessarily in F).

Example {z → z2
n}n≥0 are a normal family on D, since they converge locally uniformly there to the constant

map z → 0.

Theorem 3.3 (Arzelà-Ascoli) Let Ω be a domain in Ĉ. Any family of continuous maps Ω→ Ĉ is normal if
and only if it is equicontinuous.

For a proof, see for example Ahlfors’ book ‘Complex Analysis’.

Comments

1. We remind the reader that we use the spherical metric on Ĉ, both in the definition of local uniform convergence
(used in defining the notion of a normal family) and in the definition of equicontinuity.
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Figure 5: A fundamental domain ∆ for the action of the group G on the upper half-plane (Theorem 3.4). The
two vertical lines are identified by z → z + 1, the two semicircles are identified by z → z/(2z + 1), and the
quotient ∆/G is a thrice punctured sphere.

2. It is more elegant mathematically to develop the whole Fatou-Julia theory via normality rather than equicon-
tinuity but the latter is perhaps easier to comprehend dynamically (Milnor follows the normality route).

3. It follows at once from Corollary 3.2 and Theorem 3.3 that every family of holomorphic maps from D to itself
is normal. One can also prove Corollary 3.2 directly from the definition of a normal family (see Milnor, Thm
3.2, for a general version): at the heart of the argument is the Bolzano-Weierstrass Theorem that in any metric
space a set is compact if and only if every infinite subset contains a convergent subsequence. Also relevant to
this circle of ideas is the Denjoy-Wolff Theorem (1926), which states that a holomorphic map f : D → D is
either a conformal bijection or the iterates of f converge locally uniformly to a constant map D→ ζ ∈ D̄.

This brings us to a theorem central to the development of the Fatou-Julia theory of rational maps:

Theorem 3.4 (Montel, 1911) let Ω be a domain in Ĉ. Every family of analytic maps Ω→ Ĉ− {0, 1,∞} is
normal (or equivalently, by Arzelà-Ascoli, equicontinuous).

Proof Without loss of generality assume Ω is an open disc (since equicontinuity and normality are local
properties), and indeed by scaling if necessary assume Ω = D, the unit disc. Since D is simply connected,

any map f : D → Ĉ − {0, 1,∞} lifts to a map f̃ from D to the universal cover of Ĉ − {0, 1,∞}, which is the
complex upper half plane H+, the group of covering translations being

G =

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
acting on the upper half plane in the usual way (Figure 5).

[Aside Here we recall that a universal cover of a manifold M is a simply-connected manifold M̃ which evenly
covers M , i.e. M̃ is equipped with a projection p : M̃ → M with the property that every x ∈ M has a
neighbourhood U such that p−1(U) is a disjoint union of copies of U , each mapped homeomorphically by p onto
U . Given a universal cover p : M̃ → M and a simply-connected space Y , every continuous f : Y → M has a
lift, f̃ : Y → M̃ such that pf̃ = f , and indeed there is a unique f̃ that lifts a chosen base point x ∈ M to any
specified point in p−1(x).]

Equivalently we may take the universal cover to be the Poincaré disc model, D, of the hyperbolic plane. Observe
that the set of all lifts f̃ : D→ D of elements f of F forms a normal family, since these lifts are self-maps of the
disc. The Poincaré metric on D projects under q : D→ Ĉ− {0, 1,∞} to a metric on Ĉ− {0, 1,∞} in which the
three missing points are pairwise infinitely far apart. Taking the Poincaré metric on domain and range each f̃ is
metric non-increasing (by Proposition 3.1) and hence the same is true for each f : D→ Ĉ−{0, 1,∞}. Given any
z0 ∈ D, we may restrict consideration to a small disc D′ ⊂ D centred on z0 (since equicontinuity and normality
are local properties). Since D′ has finite diameter, say k (in the Poincaré metric), each f(D′) has diameter ≤ k,

and so for a small disc neighbourhood N of at least one of the three missing points in Ĉ−{0, 1,∞}, there must

be an infinite sub-family F ′ ⊂ F such that f(D′)∩N = ∅ for all f ∈ F ′. Since Ĉ−N is a disc, the family F ′ is
equicontinuous with respect to the spherical metric (by Prop. 3.2), therefore normal, and hence so is F . QED

We can replace the points 0, 1,∞ in the statement of Montel’s Theorem by any other three points of Ĉ (just
compose with a suitable Möbius transformation). Montel’s Theorem is a much more powerful result than our
earlier observation that any family of maps with a common bound is equicontinuous. One should perhaps
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compare it with Picard’s Theorem that any holomorphic function C → Ĉ − {0, 1,∞} is constant, which is in
turn is much more powerful than Liouville’s Theorem that a bounded holomorphic function on C is constant.

Exercise Deduce Picard’s Theorem from Liouville’s Theorem and the fact that D is the universal cover of the
thrice-punctured Riemann sphere.

3.1 Counting critical points, and the exceptional set

Before considering the many properties of Julia sets which follow from Montel, we make a brief excursion into
topology to count critical points and derive some consequences for finite completely invariant sets.

Definition The valency of a critical point c of a rational map f is νc, where locally near c the map f has the
form z → kzνc (plus higher order terms). In other words the valency is the ‘degree of branching’ at c.

The following result gives the delayed precise formulation and proof of Proposition 2.3.

Proposition 3.5 (Riemann-Hurwitz Formula) If f is a rational map of degree d, then∑
c

(νc − 1) = 2d− 2

where the sum is taken over all critical points of f .

Proof Triangulate the target copy of Ĉ in such a way that the critical values of f are all vertices, and pull this
triangulation back, via f , to a triangulation of the source copy of Ĉ. The Euler characteristic of Ĉ (number of
triangles minus number of edges plus number of vertices) is 2. Apart from at critical points, f is a d to one
map and so we obtain the equation

2d−
∑
c

(νc − 1) = 2

and thus ∑
c

(νc − 1) = 2d− 2

QED

Corollary 3.6 Let f be a rational map with deg(f) ≥ 2, and suppose E is a finite completely invariant subset

of Ĉ. Then E contains at most 2 points.

Proof Suppose E contains k points. Then f must permute these points (since every surjection of a finite set to
itself is a bijection) and hence for some q the iterate fq = g is the identity on E. Suppose g has degree d. Each
point z ∈ E must be a critical point of g, of valency d, else g−1(z) would contain points other than z. Hence by
Proposition 3.5

k(d− 1) ≤ 2d− 2

and therefore k ≤ 2. QED

Definition The exceptional set E(f) of a rational map is the union of all finite completely invariant sets.
Corollary 3.6 says |E(f)| ≤ 2. Note that if |E(f)| = 1 then f is conjugate to a polynomial (just conjugate by
a Möbius transformation sending the exceptional point to ∞), and if |E(f)| = 2 then f is conjugate to some
z → zd, with d a positive or negative integer (just send the two exceptional points to ∞ and 0).

3.2 Properties of Julia sets

For a rational map of degree greater or equal to two we have the following:

1. J(f) 6= ∅.

Proof. Let f be a rational map of degree d ≥ 2. Then fn has degree dn (this can be proved various ways:
if you know about homology groups it follows from the fact that f∗ : H2(S2) → H2(S2) is the homorphism
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×d : Z → Z). If {fn}n≥0 form a normal family on the whole of Ĉ then some subfamily {fnj}j≥1 converges

locally uniformly to a function g, and since Ĉ is compact ∃J such that ∀j > J and all z ∈ Ĉ we have
d(fnj (z), g(z)) < π/2 in the spherical metric. But then ∀j, k > J we have d(fnj (z), fnk(z)) < π, and hence
that fnj is homotopic to fnk (by the ‘straight line homotopy’ along the shortest great circle arc between fnj (z)
and fnk(z)). Hence ∀j, k > J we have deg(fnj ) = deg(fnk) i.e. dnj = dnk , contradicting nj →∞.

2. J(f) is infinite.

Proof. By Corollary 3.6 the only possibilities for finite completely invariant sets are (up to conjugacy) the set
{∞} (for a polynomial) or {∞, 0} (for a map z → zd). But in both cases these exceptional sets are contained
in the Fatou set.

3. J(f) is the smallest completely invariant closed set containing at least three points.

Proof. The complement of a completely invariant closed set containing at least three points is an open
completely invariant set omitting at least three points, hence contained in the Fatou set, by Montel’s Theorem.

4. J(f) is perfect, that is, every point of J(f) is an accumulation point of J(f).

Proof. For if we let J0 be the set of accumulation points of J , then J0 is non-empty (by Property 2), closed
(by definition) and completely invariant (using the facts that f is continuous, open and finite-to-one). But J0
cannot be finite since it would then be exceptional and hence contained in F (f), so J0 = J by Property 3.

5. J(f) is either the whole of Ĉ or it has empty interior.

Proof. Write S = Ĉ− int(J). Then S is the union of the Fatou Set F and the boundary ∂J of J , and either
S is empty or it is an infinite closed completely invariant set, so containing J (by Property 3).

We remark in connection with Property 5 that there exist examples of rational maps f having J(f) = Ĉ (e.g.
the example of Lattès (1918): z → (z2 + 1)2/4z(z2 − 1)) but that for a polynomial map the Fatou set always
contains the point ∞ and hence is non-empty.

3.3 Useful results for plotting J(f)

Proposition 3.7 If deg(f) ≥ 2 and U is any open set meeting J(f), then
⋃∞
n=0 f

n(U) ⊃ Ĉ− E(f).

Proof If
⋃∞
n=0 f

n(U) misses three or more points of Ĉ then fn are a normal family on U by Montel, contradicting

U ∩ J 6= ∅. But if a non-exceptional z lies in Ĉ−
⋃∞
n=0 f

n(U) then for some m and n a point of f−m(z) must
lie in fn(U) (since

⋃
m≥0 f

−m(z) is infinite). Hence z ∈ fm+n(U). Contradiction. QED.

Corollary 3.8 If z0 is not in E(f), then J(f) ⊂
⋃
n≥0 f

−n(z0).

Proof Take any z ∈ J(f) and neighbourhood U of z. By Proposition 3.7 the given point z0 lies in some fn(U).
Hence f−n(z0) ∩ U 6= ∅. QED.

This gives us a very simple algorithm for plotting J(f). One just has to start at any (non-exceptional) z0
whatever and plot all its images under f−1, then all of their images under f−1 etc., or alternatively plot
z0, z1, z2, ... where each zj+1 is a random choice out of the (finite) set of values of f−1(zj). The resulting set
accumulates on the whole of J(f). Even better, if one starts at a point z0 known to be in J(f) (for example a
repelling fixed point) one has J(f) =

⋃
n≥0 f

−n(z0), so that all points plotted are actually in the Julia set, not
just accumulating there.

3.4 Julia sets and repelling periodic points

Obviously every repelling periodic point of f lies in the Julia set. However it is also true that every point of
the Julia set has a periodic point arbitrarily close to it:
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Theorem 3.9 If deg(f) ≥ 2 then J(f) is contained in the closure of the set of all periodic points of f .

Proof Let z0 ∈ J(f) and assume z0 is not a critical value of f (without loss of generality, since there are only a
finite set of critical values and J(f) is perfect). Then z0 has a neighbourhood U on which two distinct branches
of f−1 are defined. Denote these by h1 : U → U1 and h2 : U → U2 (where the sets U1 and U2 are disjoint).

Suppose (for a contradiction) that U contains no periodic point of f . For each z ∈ U set

gn(z) =
(fnz − h1z)
(fnz − h2z)

(z − h2z)
(z − h1z)

Then for each value of n, gn(z) 6= 0, 1,∞ for z ∈ U (else f would have a periodic point). So by Montel’s
Theorem the {gn} form a normal family. It follows (by an exercise in analysis) that the {fn} form a normal
family, contradicting the hypothesis that z0 ∈ J(f). QED

Comments

1. In fact with a little more work one can establish that J(f) is equal to the closure of the set of all repelling
periodic points of f : this follows from Theorem 3.9 together with the observations that every repelling periodic
point of f lies in the Julia set, and the result (of Fatou) that there are only finitely many non-repelling periodic
orbits. What Fatou showed was that non-repelling periodic points must either have critical points in their basins
of attraction or on the boundaries of their basins (we shall investigate these basins shortly). Shishikura (1987)
improved Fatou’s result to show that a degree d rational map has at most 2d− 2 non-repelling periodic orbits.

2. Earlier we observed that for the map z → z2 the Julia set (the unit circle) is the closure of the set of repelling
periodic points. Theorem 3.9 shows that this example typifies the general case.

3.5 The Julia set of qc : z → z2 + c for |c| large

Lemma 3.10 Let |c| > 1. Then |qc(z)| > |z|(|c| − 1) whenever |z| ≥ |c|.

Proof |qc(z)| ≥ |z|2 − |c| ≥ |z|2 − |z| = |z|(|z| − 1) ≥ |z|(|c| − 1). QED

Thus if |c| > 2 the orbit zn = qnc (0) converges to ∞ as n→∞, since z1 = c and |zn| ≥ |zn−1|(|c| − 1).

Definition A Cantor set is a topological space homeomorphic to the space C = {0, 1}N of all infinite sequences
of 0’s and 1’s, equipped with the product topology (that is, two sequences are close if and only if they have
the identical initial segments, and the longer these identical segments, the closer the points). Recall that every
perfect totally disconnected compact subset of Rn is homeomorphic to C (an example is the Cantor set obtained
by removing the open interval (1/3, 2/3) from the closed unit interval on the real line, then the ‘middle thirds’
(1/9, 2/9) ∪ (7/9, 8/9) of the remaining intervals, then the middle thirds of the remaining intervals and so on).

Proposition 3.11 For |c| sufficiently large, J(qc) is homeomorphic to the Cantor set C, and the action of qc
on J(qc) is conjugate to that of the shift σ on C.

Proof Let γ0 be the circle |z| = |c|, and let γ1 = q−1c (γ0). Then, if |c| > 2, γ1 lies inside γ0 (by Lemma 3.10)
and γ1 is a lemniscate (since 0 is the only critical point of qc on C). q−1c (γ1) now consists of a lemniscate inside
each lobe of γ1, and so on (Figure 6).

Let D be any disc containing γ1 and contained in γ0. Label the the two discs making up q−1c (D) as D0 and D1,
and label the components of q−2c (D) by

D00 = D0 ∩ q−1c (D0) D01 = D0 ∩ q−1c (D1) D10 = D1 ∩ q−1c (D0) D11 = D1 ∩ q−1c (D1)

Continue inductively, setting
D0s = D0 ∩ q−1c (Ds) D1s = D1 ∩ q−1c (Ds)

for any finite sequence s of 0’s and 1’s. Set

Λ =

∞⋂
1

q−nc (D)
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Figure 6: The circle γ0 and its inverse images (Proposition 3.11).

To show that Λ is a Cantor set we observe that for large |c| both branches of q−1c contract distances, by a
definite factor k < 1, on both D0 and D1 (the details are in Comment 1 below). Λ therefore consists of points
Ds, each labelled by an infinite sequence s of 0’s and 1’s, and the action of qc on Λ is conjugate to the action
of the shift σ on these sequences. Since Λ is a closed completely invariant set it contains J(qc); moreover since
Λ contains a dense orbit (just write down an infinite sequence of 0’s and 1’s containing all finite sequences) it
is a minimal closed completely invariant set and is therefore equal to J(qc). QED

Comments

1. To show that q−1c contracts on D0 and D1 we must show that qc expands on their inverse images. But qc
contracts at a point z if and only if |2z| < 1, which is to say if and only if |z| < 1/2. So it will suffice to show
that qc maps the disc having centre 0, radius 1/2, to the region outside the lemniscate γ1 (and hence outside
both D0 and D1). But qc maps this disc to the disc which has centre c and radius 1/4, and the largest modulus
of any point of γ1 is |

√
−2c| (exercise). It follows that if c is sufficiently large (for example |c| > 3) the image

disc lies outside γ1 and so q−1c contracts on D0 and D1 as required.

2. In fact Proposition 3.11 holds whenever qnc (0) → ∞, not just for ‘large’ |c|, but the proof requires a little
more work to show that the Ds (s an infinite sequence of 0’s and 1’s) are points. This is best done by an
argument appealing to ‘moduli of annuli’ (Grötzsch’s inequality) or by a normal families argument applied to
the branches of q−1c (see Beardon).

3. For maps in the family qc, the Julia set J(qc) is either a Cantor set or else is connected. For if the orbit
qnc (0) does not tend to ∞ one can show that the basin of attraction of ∞ is a (topological) disc, with boundary
a minimal closed completely invariant non-empty set, in other words J(qc).
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4 Fatou components and linearisation theorems

4.1 Counting components

Proposition 4.1 The Fatou set of a rational map f of degree at least two contains at most two completely
invariant simply-connected components.

Proof Any such component is homeomorphic to a disc D, and the restriction of f to D is a branched covering
of degree d. Since D has Euler characteristic 1 we deduce that f has d− 1 critical points on D (counted with
multiplicity). But f has only 2d− 2 critical points. QED.

Example The Fatou set for z → z2 has exactly two such components.

Omitting the words ‘completely invariant simply-connected’ and just counting components, we have:

Proposition 4.2 If F (f) has more than two components, it has infinitely many components.

Proof If F (f) has only finitely many components, D1, ...Dk, they must be permuted by f (since each component
has image a component and inverse image a union of components). Hence there exists an m such that g = fm

maps each Dj to itself. But F (g) = F (f) (from the definition of a normal family) and the Dj are completely
invariant for g. To apply Proposition 4.1 and complete the proof it remains to show that the Dj are simply-
connected. But each Dj has boundary ∂Dj closed and completely invariant under g, and hence ∂Dj = J(f).
It follows that

Ĉ− D̄1 = Ĉ− (J(f) ∪D1) = F (f)−D1 = D2 ∪ ... ∪Dk

Hence D2, ...Dk are the components of the complement of the connected set D1 and are therefore simply-
connected. Similarly D1 is simply-connected. QED

Examples

(i) z → z2 − 1. The basin of infinity is a completely invariant component. The components containing 0 and
−1 form a periodic 2-cycle. All other components are pre-periodic (fall onto the period two cycle after a finite
number of steps).

(ii) z → z2 + c with |c| large. Here F (f) has a single component, the complement in Ĉ of a Cantor set (but
note that this component is multi-connected).

A key theorem concerning the components of F (f) is:

Theorem 4.3 (Sullivan’s ‘No Wandering Domains Theorem’ 1985) Every component of F (f) is either
periodic or preperiodic

For a proof see Sullivan (Annals 1985), or Appendix F of Milnor’s book. The basic idea is that if there were a
wandering domain then it would be possible to construct an infinite-dimensional family of perturbations of f ,
all of them rational and topologically conjugate to f , but this is impossible since f is determined by a finite set
of data (as already remarked earlier). The key ingredient is the quasi-conformal deformation theory developed
by Ahlfors and Bers, in particular the ‘Measurable Riemann Mapping Theorem’, which we may consider later
in this course. The original conjecture that f could not have wandering domains was made by Fatou. Note that
Theorem 4.3 is a result about rational maps: the Fatou set of a transcendental map C→ C can have wandering
components (these are known as Baker domains).

The basin of an attractive fixed point z0 is the set {z : limn→∞ fn(z) = z0} and the immediate basin is the
component of this set containing z0. There are similar definitions for an attracting period n cycle: here the
immediate basin is the set of components of the basin containing points of the cycle.

Theorem 4.4 The immediate basin of an attractive periodic point (for a rational map f of degree at least two)
contains a critical point.

Proof Without loss of generality we suppose z0 to be an attracting fixed point. If z0 is superattracting, the
result is obvious. if z0 is attracting but not superattracting then there is a neighbourhood U of z0 such that
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f(U) ⊂ U and f |U is injective. Let V = f(U) and consider the branch of f−1 sending V to U . If f has no
critical value in U , this branch can be extended to the whole of U and hence f−2 has a well-defined branch
on V . Repeat. If some f−n(V ) contains a critical value then the basin contains a critical point. but if not,
then {f−n}n>0 are all defined on V and have images in the the immediate basin. But then they would form an
equicontinuous family (by Montel) and this is impossible since z0 is a repelling fixed point for f−1. QED

Corollary 4.5 If f has degree d then it has at most 2d− 2 attracting or superattracting cycles.

Shishikura (1987) improved this bound to ‘at most 2d− 2 non-repelling cycles’.

4.2 Linearisation Theorems

Dynamics of f near a fixed or periodic point

In the neighbourhood of a fixed point, which without loss of generality we take to be 0, f(z) = λz+O(z2) (Taylor
series), where λ is the multiplier at the fixed point. We say that f is linearisable if there is a neighbourhood U
on which f is conjugate to z → λz (by a complex analytic conjugacy).

Theorem 4.6 (Koenigs’ Linearization Theorem 1884) If λ 6= 0 and |λ| 6= 1 then f is linearizable

Proof Assume first that 0 < |λ| < 1. Set

hn(z) =
1

λn
fn(z)

Then, by construction hnf(z) = λhn+1(z), and it suffices to show that the {hn} converge locally uniformly to
a function h, since then hf = λh. See the example below for a sketch proof in the case of a particular example,
and Milnor (Theorem 8.2) for the general case, which proceeds along the same lines.

For the case 1 < |λ| <∞ one can proceed in exactly the same fashion, but with f−1 in place of f . QED.

Example

f(z) = λz + z2 (where |λ| < 1). Here the orbit of any initial point z0 is

z1 = f(z0) = λz0(1 + z0/λ)

z2 = f(z1) = λz1(1 + z1/λ) = λ2z0(1 + z0/λ)(1 + z1/λ)

...

zn = λnz0(1 + z0/λ)(1 + z1/λ)...(1 + zn−1/λ)

Thus hn(z0) = z0(1 + z0/λ)(1 + z1/λ)...(1 + zn−1/λ) where {zn} is the orbit of z0. As n tends to infinity, zn
tends to 0, and {hn} converge locally uniformly to

h(z0) = z0

∞∏
0

(1 +
zn
λ

)

Observe that we have used the dynamics to construct an explicit conjugacy: essentially we have followed an
orbit in to very close to the attracting fixed point, and then used the fact that very close the fixed point the map
f is very close to z → λz. One can also construct the coefficients of h recursively, directly from the functional
equation hf(z) = λh(z), but the dynamical motivation is then no longer so apparent.

Theorem 4.7 (Böttcher 1904) If f(z) = zk + O(zk+1) (k ≥ 2 integer) then f is conjugate to z → zk on a
neighbourhood of 0.

Proof Analogously to 4.6, we set hn(z) = (fn(z))1/k
n

. Then hnf(z) = (hn+1(z))k and the {hn} converge
locally uniformly to a function h conjugating f to z → zk. QED
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Figure 7: Dynamics of z → z + zn+1 for n = 1, n = 2 and n = 3.

The proof above is only a sketch. See Milnor (Theorem 9.1) for details. The right choice of branch of knth root
in the definition of hn is important, but rather than fill in the details in general, we consider an example, one
that will also be useful later.

Example Consider f : z → z2 + c near the fixed point ∞.

Write this map as z → z2(1 + c/z2).

z1 = f(z0) = z20(1 + c/z20)

z2 = f(z1) = z21(1 + c/z21) = z40(1 + c/z20)2(1 + c/z21)

...

zn = z2n−1(1 + c/z2n−1) = z2
n

0 (1 + c/z20)2
n−1

(1 + c/z21)2
n−2

...(1 + c/z2n−1)

So hn(z0) = z0(1 + c/z20)1/2(1 + c/z21)1/4...(1 + c/z2n−1)1/2
n

where the choice of each root is the obvious one
coming from the binomial expansion. As n tends to ∞ the zn tend to ∞ (since z0 is outside the filled Julia
set). Thus the hn converge (locally uniformly) to

h(z0) = z0

∞∏
0

(1 +
c

z2n
)1/2

n+1

Once again one could compute explicit formulae for the coefficients of h using recursion relations based on the
functional equation, but they are far less revealing than the dynamical approach above.

We shall come back to this example when we look at the Mandelbrot set later. Meanwhile, what can be said
about linearisability near a neutral fixed point ?

Suppose f(z) = λz +O(z2), with |λ| = 1.

Case 1: λ = e2πip/q (in this case z = 0 is called a parabolic fixed point).

Example f(z) = z + zn+1

See Figure 7 for ths example in the cases n = 1, n = 2 and n = 3. The ‘attracting petals’ bounded by dashed
lines are mapped into themselves and each initial point in a petal has orbit which eventually converges to to
the fixed point along a direction tangent to the mid-line of the petal. The Julia set (not marked) heads off from
the fixed point in directions tangent to the repelling axes (between the petals).

A rational map f is not linearizable around a parabolic fixed point (unless f(z) = λz), since fq 6= identity.
But by analysing the local power series expansion of f(z) it can be shown that the parabolic point itself lies in
the Julia set and its the basin of attraction lies in the Fatou set (See Milnor, Lemma 10.5). It can easily be
proved (via Montel) that this basin of attraction must contain a critical point. Similar considerations apply to
a parabolic cycle.

The local dynamics around a parabolic fixed point (or cycle) has a very particular topological dynamics, that
of a Leau-Fatou flower, with ‘attracting petals’ contained within the Fatou set, as illustrated in the examples
above. For λ = e2π1p/q this flower has kq petals, where k ≥ 1 (see, for example Milnor, Theorem 10.7). The
study of holomorphic germs around parabolic points and cycles contains deep and interesting results: Chapter
10 of Milnor’s book is an excellent starting point to learn more about this.
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Case 2: λ = e2πiα with α irrational.

Here it all depend on ‘how irrational α is’. Write α as a continued fraction

α = a0 +
1

a1 + 1
a2+...

= [a0, a1, a2, ...]

and let pn/qn (in lowest terms) be the value of its nth truncation [a0, a1, ..., an].

For example the golden mean [0, 1, 1, 1, 1, ...] has p1/q1 = 1/1, p2/q2 = 1/2, p3/q3 = 2/3, p4/q4 = 3/5, ....

Definition α satisfies the Brjuno condition if and only if

∞∑
1

log(qn+1)

qn
<∞

We write B for the set of real numbers satisfing the Brjuno condition.

Theorem 4.9 (Brjuno, 1965) α ∈ B ⇒ all complex analytic maps z → e2πiαz +O(z2) are linearisable.

Theorem 4.10 (Yoccoz, 1988) α /∈ B ⇒ z → e2πiαz + z2 is not linearisable.

When a linearisation exists its domain is known as a Siegel disc.

Notes

1. Yoccoz’s proof of the necessity of the Brjuno condition is motivated by ideas of renormalization.

2. The Siegel disc around a linearizable irrational neutral fixed point is in the Fatou set F (f). It can be shown
the Siegel discs ‘use up’ critical points in the sense that the boundary of a Siegel disc necessarily lies in the
accumulation set of the forward orbit of some critical point.

3. The irrational neutral points which are not linearizable are known as Cremer points (after Cremer 1928).
They lie in J(f) and the dynamics around them is complicated. In the 1990s Perez-Marco introduced invariant
structures he called ‘hedgehogs’ and showed they they exist at all Cremer points. These are the subject of
continuing research.

4.3 The classification of types of Fatou component

Sullivan’s proof of the ‘No Wandering Domains Theorem’ has the consequence that for a polynomial the only
possible components of a Fatou set are components of the basin of:

1. a superattracting periodic orbit;

2. an attracting periodic orbit;

3. a rational neutral periodic orbit;

4. a periodic cycle of Siegel discs.

There is one other type that can ocur for rational f (but not polynomial f), components of the basin of:

5. a periodic cycle of Herman rings. (A Herman ring is an annulus with dynamics conjugate to an irrational
rotation.)

For a proof of this classification see for example Milnor’s book (Chapter 16) or the original paper of Sullivan in
1985.

These are the 5 types of ‘regular behaviour’ of a rational map. To completely understand rational maps we
have to understand how they fit together with each other, and with the behaviour on the complement of the
regular domain, the Julia set. As we shall see, there are still unanswered questions even in the simplest case,
that of quadratic maps z → z2 + c.
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5 Hyperbolic 3-space and Kleinian groups

Definition H3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0}

Just as in the two-dimensional case we may define an infinitesimal metric:

ds =
1

x3
((dx1)2 + (dx2)2 + (dx3)2)1/2

With this metric H3
+ becomes the upper half-space model of hyperbolic 3-space. The geodesics are the semicircles

in H3 orthogonal to the plane x3 = 0.

Now think of the plane x3 = 0 in R3 as the complex plane C ((x1, x2, 0) ↔ x1 + ix2), add the point ‘∞’, and

think of Ĉ as the boundary of H3
+. Every fractional linear map

α : z → az + b

cz + d
(a, b, c, d ∈ C, ad− bc 6= 0)

mapping Ĉ to Ĉ, has an extension to an isometry from H3
+ to H3

+. One way to see this is to break down α into
a composition of maps of the form

(i) z → z + λ (λ ∈ C) (ii) z → λz (λ ∈ C) (iii) z → −1/z

We extend these as follows on H3
+ (where z denotes x1 + ix2):

(i) (z, x3)→ (z + λ, x3) (ii) (z, x3)→ (λz, |λ|x3) (iii) (z, x3)→
(

−z̄
|z|2 + x23

,
x3

|z|2 + x23

)

The expressions above come from decomposing the action on Ĉ of each of the elements of PSL(2,C) in question

into two inversions (reflections) in circles in Ĉ. Each such inversion has a unique extension to H3
+ as an inversion

in the hemisphere spanned by the circle and composing appropriate pairs of inversions gives us these formulae.
It is now an exercise along the lines of Proposition 2.12 to show that PSL(2,C) preserves the metric ds on H3

and another exercise, along the lines of Proposition 2.13 to show that the geodesics are the arcs of semicircles
as claimed. Moreover every isometry of H3 can be seen to be the extension of a conformal map of Ĉ to itself,
since it must send hemispheres orthogonal to Ĉ to hemispheres orthogonal to Ĉ, hence circles in Ĉ to circles in
Ĉ. Thus all orientation-preserving isometries of H3 are given by elements of PSL(2,C) acting as above, and all

orientation-reversing isometries are extensions of anti-holomorphic Möbius transformations of Ĉ.

Comments

1. The fact that the orientation-preserving isometry group of H3
+ is PSL(2,C) was first observed by Poincaré.

2. To verify that the extension of the action of PSL(2,C) from Ĉ to H3
+ is well-defined we should check that

when we decompose an element of PSL(2,C) into a product in different ways we get the same extension to H3
+.

We can avoid this problem by writing down a single formula for the action of an element of PSL(2,C) in terms
of quaternions. (Regard R3

+ as quaternions of the form x+ yi+ tj(+0k) with t > 0: see Exercise Sheet 3.)

3. In practice we may do many of our computations in H3
+ by taking a hyperplane ‘slice’ that looks like H2

+:

given any two points P and Q in H3
+, the plane through these points orthogonal to the boundary Ĉ of upper

half-space is a copy of H2, and so d(P,Q) = | ln(P,Q;A,B)| where A and B are the endpoints of the semicircle

through P and Q orthogonal to Ĉ.

4. The disc model for hyperbolic three-space is the interior D3 of the unit disc in Euclidean three-space R3,
equipped with the metric

ds =
((dx1)2 + (dx2)2 + (dx3)2))1/2

1− r2
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(where r2 = x21 + x22 + x23). Geodesics are arcs of circles orthogonal to the boundary sphere S2 of the disc.

5. One can construct higher dimensional hyperbolic spaces Hn+ in the analagous way. In each case the conformal
transformations of the boundary extend uniquely to give the isometries of the interior.

5.1 Types of isometries of hyperbolic 3-space

Non-identity elements α ∈ PSL(2,C) are of four types.

Definition α is said to be

elliptic ⇔ α fixes some geodesic in H3
+ pointwise;

parabolic ⇔ α has a single fixed point in Ĉ;

hyperbolic ⇔ α has two fixed points in Ĉ, no fixed points in H3
+, and every hyperplane in H3

+ which contains

the geodesic joining the two fixed points in Ĉ is invariant (mapped to itself) under α;

loxodromic ⇔ α has two fixed points in Ĉ, no fixed points in H3
+, and no invariant hyperplane in H3

+.

Note The distinction between hyperbolic and loxodromic is not always made: some authors use either word for
an isometry having two fixed points in Ĉ and none in H3

+.

Lemma 5.1 α is elliptic/parabolic/hyperbolic/loxodromic

⇔ (tr(α))2 ∈ [0, 4) ⊂ R≥0 / = 4 / ∈ R≥0− [0, 4] / ∈ C−R≥0 (where α has been normalised to have det = 1).

Proof

If α has two fixed points in Ĉ we may assume (after conjugating α by an appropriate Möbius transformation)
they are at 0 and ∞ and that α has the form z → λz (and tr(α) = λ1/2 + λ−1/2).

Case 1: |λ| = 1, say λ = eiθ. Then on Ĉ α is a rotation about 0 through an angle θ, and fixes the x3-axis in
H3

+ pointwise. As a matrix, normalised to determinant 1,

α =

(
eiθ/2 0

0 e−iθ/2

)
and so (tr(α))2 = 4 cos2(θ/2) ∈ [0, 4).

Case 2: |λ| 6= 1. then α acts on the x3-axis in H3
+ as multiplication by |λ|. Writing λ = |λ|eiθ we have

α =

(
|λ|1/2eiθ/2 0

0 |λ|−1/2e−iθ/2
)

so (tr(α))2 ∈ C− [0, 4]. Now if λ is real (i.e. θ = 0 or π) α is hyperbolic and (tr(α))2 ∈ R≥0 − [0, 4] and if λ is
not real, α is loxodromic and (tr(α))2 ∈ C− R≥0.

Finally if α has a single fixed point in Ĉ then we can place this fixed point at∞ (by conjugating α if necessary)
in which case α has the form z → z + λ (indeed we may even conjugate it to z → z + 1). Then α is parabolic
and (tr(α))2 = 4. QED.

Dynamics of Möbius transformations on H3
+ ∪ Ĉ

In the first example in Figure 8 the fixed points 0,∞ on Ĉ are neutral. For z → eiθz with θ real, all orbits on
H3

+ have finite period if θ is a rational multiple of π, and densely fill circles around the x3 axis if not.

In the second example all orbits in H3
+ head away from a repelling fixed point 0 and towards an attracting fixed

point ∞, spiralling around the x3 axis as they go. We have this behaviour in general for z → keiθz (k real > 1)
but the nature of the spiralling depends on θ: in particular if θ = 0 or π each orbit remains in a hyperplane.
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Figure 8: Dynamics of (i) z → e2πi/3z (ii) z → 2e2πi/3z (iii) z → z + 1

Figure 9: The modular group action on the upper half-plane

In the third example the (unique) fixed point∞ is neutral (multiplier 1) and all orbits on H3
+ head towards the

fixed point under both forward and backward time. Any parabolic map α will have this behaviour.

5.2 The ordinary set of a Kleinian group

Definition A Kleinian group is a discrete subgroup G < PSL(2,C).

Thus for a subgroup G < PSL(2,C) to be called Kleinian we require that there be no sequence {gn} of distinct
elements of G tending to a limit g ∈ PSL(2,C). Here the topology on PSL(2,C) is that induced by the norm∣∣∣∣∣∣∣∣( a b

c d

)∣∣∣∣∣∣∣∣ =
√
|a|2 + |b|2 + |c|2 + |d|2

on SL(2,C) (so that two elements of PSL(2,C) are close together if and only if they are representable by
A1, A2 ∈ SL(2,C) with ||A2 −A1|| small).

Note If G is discrete then for any N > 0 the number of elements of G having norm ≤ N is finite, since every
infinite sequence with bounded norm has a convergent subsequence. Hence every discrete G is countable.

Definition The action of G is discontinuous at z ∈ Ĉ if there exists a neighbourhood U of z such that
g(U) ∩ U = ∅ for all but finitely many g ∈ G.

Example (See Week 3 Exercises) G = PSL(2,Z) acts discontinuously on Ĉ − R̂. For z in the region ∆ =
{z : |z| ≤ 1, Re(z) ≤ 1/2, Im(z) > 0} (Figure 9) each z 6= i,±1/2 + i

√
3/2 has a neighbourhood U such that

g(U) ∩ U = ∅ for all non-identity g ∈ G, the point z = i has a neighbourhood U such that g(U) ∩ U = ∅ for
all g ∈ G − {I, S} where S : z → −1/z, and the point z = −1/2 + i

√
3/2 has a neighbourhood U such that

g(U) ∩ U = ∅ for all g ∈ G− {I, ST, (ST )2} where ST : z → −1/(z + 1), etc.
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Definition The set of all z ∈ Ĉ at which the action of G is discontinuous is called the ordinary (or discontinuity
or regular) set Ω(G).

Comments

1. It follows at once from the definition that Ω(G) is open and G-invariant.

2. In the example in figure 9 observe that the origin 0 is not in Ω(G), since any U containing 0 has g(U)∩U 6= ∅
for all

g =

(
1 0
n 1

)
with n sufficiently large. In fact in this example Ω(G) = Ĉ− R̂.

5.3 The action of a Kleinian group on H3
+

We next consider the action of a subgroup G < PSL(2,C) on H3
+ rather than just on its boundary Ĉ.

Theorem 5.1 A subgroup G < PSL(2,C) is discrete if and only if it acts discontinuously on H3
+.

Proof. If G is not discrete there exists {gn} ∈ G with limit g ∈ PSL(2,C). So for all x ∈ H3
+, g−1m gn(x)→ x as

m,n→∞. Thus for any x ∈ H3
+ and neighbourhood U of x, for m and n sufficiently large g−1m gn(U) ∩ U 6= ∅.

Hence G does not act discontinuously at x.

Conversely, if G does not act discontinuously at x ∈ H3
+, then for any neighbourhood U of x there exist a

sequence {xn} ∈ U and (distinct) gn ∈ G such that each gn(xn) ∈ U . Take U compact. Then by passing to
subsequences we may assume the xn tend to a point y and the gn(xn) tend to a point z (with both y and z
in U). Now let k be an isometry of H3

+ having k(z) = y and let {hn}, {jn} be sequences of isometries, both
tending to the identity, and having hn(y) = xn and jngn(xn) = z respectively. Consider fn = kjngnhn. For
each n this fixes y (by construction). But the isometries of H3

+ fixing a common point of H3
+ are a compact

group (the Euclidean rotations, in the Poincaré ball model with the common point the origin). Hence the {fn}
have a convergent subsequence. Hence so do the {gn}, in other words G is not discrete. QED

5.4 Limit sets of Kleinian groups

One can define the notion of the limit set Λ(G) of a Kleinian group G, either in terms of its action on H3
+, or

in terms of the action on the boundary Ĉ of H3
+. We shall see later that the two definitions are equivalent.

Definition 1. Let x be any point of H3
+. Then set

Λ(x) = {w ∈ Ĉ : ∃gn ∈ G with gn(x)→ w as n→∞}

(where convergence is taken in the Euclidean metric on the Poincaré disc model of H3
+). Note that the {gn(x)}

cannot have accumulation points in H3
+, since G acts discontinuously there. Thus an alternative description of

Λ(x) is as the accumulation set in H3
+ ∪ Ĉ of the orbit Gx on H3

+. This accumulation set is independent of
the initial point x ∈ H3

+, since if we choose another initial point y the hyperbolic distance from g(x) to g(y) is
constant for all g and therefore the Euclidean distance from g(x) to g(y) tends to zero as g(x) and g(y) approach

the boundary Ĉ of the Poincaré disc. We define Λ(G) to be Λ(x) for any x ∈ H3
+.

Definition 2. Let z be any point of Ĉ. Set

Λ(z) = {w ∈ Ĉ : ∃gn ∈ G with gn(z)→ w as n→∞}

(where convergence is taken in the spherical metric on Ĉ). It can be shown that when G is non-elementary (see

below for definition) Λ(z) is independent of z ∈ Ĉ. We define Λ(G) to be Λ(z) for any z ∈ Ĉ.
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Comments

1. The restriction that G be ‘non-elementary’ is included in definition 2 in order to exclude just one class
of examples where the limit Λ(z) depends on z. Consider G = {gn : n ∈ Z}, where g is loxodromic, with
fixed points z0 and z1. The limit set by definition 1 is Λ(G) = {z0} ∪ {z1}, but definition 2 gives Λ(z0) = z0,
Λ(z1) = z1 (although Λ(z) = {z0} ∪ {z1} for any other choice of z).

2. We shall adopt definition 2 until we have proved the equivalence of the two notions (later in this section).
Meanwhile we remark that the underlying reason that the definitions are equivalent is that to an observer inside
H3

+ an orbit of G of H3
+ is viewed as accumulating at Λ(G) on the ‘visual sphere’ Ĉ.

3. A third equivalent definition is that Λ(G) consists of the points z ∈ Ĉ where the family g ∈ G fail to be a
normal family (with respect, as always, to the spherical metric). We shall prove also later.

4. It follows at once from definition 2 (or indeed from definition 1) that Λ(G) is both closed and G-invariant.

It is clear from the definitions of Ω(G) and Λ(G) that Ω(G) ∩ Λ(G) = ∅, but we shall prove the stronger

statement that Λ(G) is the complement of Ω(G) in Ĉ. First we deal with some special cases.

5.5 Elementary Kleinian groups

Definition A Kleinian group G is called elementary if there exists a finite G orbit on either H3
+ or Ĉ.

All elementary Kleinian groups G belong to the following three classes. For a proof see for example Beardon’s
book ‘Geometry of Discrete Groups’ or Ratcliffe’s book ‘Foundations of Hyperbolic Manifolds.’

(i) G is conjugate to a finite subgroup of SO(3) acting on the Poincaré disc by rigid rotations fixing the origin
(for example the symmetry group of a regular solid). In this case Λ(G) = ∅.

(ii) G is conjugate to a discrete group of Euclidean motions of C (i.e. fixing ∞ ∈ Ĉ). (For example the group
generated by z → z + 1 and z → z + i). Then |Λ(G)| = 1.

(iii) G is conjugate to a group in which all elements are of the form z → kz or z → k/z for k ∈ C. Then
|Λ(G)| = 2.

It is not hard to see that if G is Kleinian then Λ(G) = ∅ ⇒ G elementary of type (i), |Λ(G)| = 1⇒ G elementary
of type (ii), and |Λ(G)| = 2⇒ G elementary of type (iii), so elementary groups are characterised by the size of
their limit sets. Indeed

Proposition 5.2 A Kleinian group G is elementary if and only |Λ(G)| ≤ 2, and non-elementary if and only if
Λ(G) is infinite.

Proof. If Λ(G) is finite and non-empty then any G orbit in Λ(G) is a finite G orbit on Ĉ so G is elementary
by definition and has |Λ(G)| = 1 or 2 by the above classification. QED

5.6 Properties of ordinary and limit sets

Theorem 5.3 Every Kleinian group G acts discontinuously on Ĉ − Λ(G). Hence Ĉ is the disjoint union of
Ω(G) and Λ(G).

Proof. (Outline.) For groups G with |Λ(G)| = 0, 1 the result can be verified by checking the corresponding
types of elementary Kleinian groups, so we may assume |Λ(G)| ≥ 2. Now let C(G) be the convex hull of Λ(G)

in H3
+ ∪ Ĉ, i.e. the space obtained by joining every point of Λ(G) to every other point of Λ(G) by a geodesic in

H3
+ and then ‘filling in the interior’ to obtain a convex set in H3

+ ∪ Ĉ. (An equivalent definition of C(G) is that
it is the space obtained from H3

+ by ‘scooping out’ every open half 3-ball bounded by a round 2-disc contained
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in Ĉ − Λ(G)). The set C(G) is closed and G-invariant, since Λ(G) is. There is a uniquely defined retraction
map

ρ : H3
+ ∪ (Ĉ− Λ(G))→ C(G)

sending each point of H3 to the nearest point of C(G) (in the hyperbolic metric). This map ρ is continuous and

commutes with the action of G. Now let z be any point of Ĉ − Λ(G) and U ⊂ Ĉ − Λ(G) be a neighbourhood
of z. Then ρ(U) is contained in a neighbourhood V of ρ(z), and by taking U small (in the spherical metric)
we can take V as small as we please (in the hyperbolic metric). But now since the action of G is discontinuous
(by Theorem 5.1) V meets g(V ) for at most finitely many g ∈ G. Hence gρ(U) meets ρ(U) for at most finitely
many g ∈ G, and so g(U) meets U for at most finitely many g ∈ G, in other words z ∈ Ω(G). QED

Proposition 5.4 Let G be a non-elementary Kleinian group. Then any non-empty closed G-invariant subset
S of Ĉ contains Λ(G)

Proof. Let z be any point of S having an infinite orbit under G. Since S is G-invariant it contains the orbit
Gz, and since S is closed it contains the accumulation set of Gz. But this accumulation set is Λ(G). QED

Corollary 5.5 Let G be a Kleinian group. Then either Λ(G) = Ĉ or Λ(G) has empty interior.

Proof. In the elementary case Λ(G) has empty interior. In the non-elementary case apply Proposition 5.4 to

Ĉ− intΛ(G). QED

Corollary 5.6 Let G be a non-elementary Kleinian group. Then Λ(G) is the closure of the set of all fixed points
of loxodromic and hyperbolic elements of G.

Proof. If z ∈ Ĉ is a fixed point of a hyperbolic or loxodromic element g ∈ G then z lies in Λ(G) by definition
2. For the converse we remark that the set of fixed points of loxodromic and hyperbolic elements of a non-
elementary group is non-empty (by a standard exercise) and is G-invariant since if z is fixed by g, then hz is
fixed by hgh−1. The result now follows by Proposition 5.4. QED

Comment. If G has any parabolic elements their fixed points must lie in Λ(G), but elliptic elements may have
fixed points in either Ω(G) or Λ(G).

Corollary 5.7 Let G be a non-elementary Kleinian group. Then Λ(G) is perfect (and hence, in particular,
uncountable).

Proof. The set of accumulation points of Λ(G) is closed and G-invariant. Now apply Proposition 5.4. QED

Corollary 5.8 Definitions 1 and 2 for the limit set Λ(G) of a non-elementary Kleinian group G are equivalent.

Proof. We show that the limit set as defined by definition 1 has exactly the same characterising property as
that specified by Proposition 5.4 for Λ(G) (where we used definition 2). Let S be any closed G-invariant subset

of Ĉ (note that S must be infinite, since G is non-elementary). Then C(S), the convex hull of S in H3
+ ∪ Ĉ, is

also closed and G-invariant. Take any x ∈ C(S)∩H3
+. Its orbit Gx is contained in C(S) and the accumulation

set of this orbit is contained in C(S) ∩ Ĉ = S. Hence S contains the definition 1 limit set of G. QED

5.7 Comparison with Fatou and Julia sets

The results we have proved so far for regular and limit sets for Kleinian groups exhibit a very close analogy
with our earlier results on Fatou and Julia sets for rational maps. This raises the question as to whether we
can make the definitions analogous too. The answer is yes.

Proposition 5.9 Let G be a Kleinian group. Then Ω(G) is the largest open subset of Ĉ on which the elements
of G form an equicontinuous family.
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Proof. Assume G non-elementary (as usual elementary groups can be dealt with on a case by case basis). Then
Λ(G) contains at least three points (in fact infinitely many) so Ω(G) is contained in the equicontinuity set by
Montel’s Theorem. But given any z ∈ Λ(G), by Corollary 5.6 there must be a repelling fixed point of some
g ∈ G arbitrarily close to z, so the family of maps G cannot be equicontinuous at z. QED

We deduce the following two consequences (useful for plotting Λ(G)).

Theorem 5.10 Let G be a non-elementary Kleinian group, and U be any open subset of Ĉ meeting Λ(G). Then⋃
g∈G

gU = Ĉ

Proof. The union
⋃
g∈G gU covers all of Ĉ except at most two points (else the family G would be equicontinuous

on U by Montel’s Theorem). But the complement of this union is a finite G-invariant set and therefore empty
(since G is non-elementary). QED

The following corollary is immediate.

Corollary 5.11 Let G be a non-elementary Kleinian group, and U be any open subset of Ĉ meeting Λ(G).
Then ⋃

g∈G
g(U ∩ Λ(G)) = Λ(G)

Comments

1. A discrete subgroup of PSL(2,R) is called Fuchsian. All our results for Kleinian groups in this chapter have

obvious specialisations to the Fuchsian case, with H3
+ replaced by H2

+, and Ĉ replaced by R̂.

2. ‘Sullivan’s Dictionary’ is a continually evolving correspondence between definitions, conjectures and theorems
in the realm of iterated rational maps and definitions, conjectures and theorems in the realm of Kleinian groups.
Some entries are obvious, e.g. Julia set ↔ limit set, but not everything works in exactly the same way in the
two areas, for example:

Ahlfors 0 − 1 Conjecture, formulated by Ahlfors in the 1960s and proved by him for geometrically finite
Kleinian groups, states in its most general form that for any finitely generated Kleinian group G either Λ(G) = Ĉ
or Λ(G) has 2-dimensional Lebesgue measure zero. This was finally proved in 2004 as a consequence of work
by many authors (see Marden, Theorem 5.6.6).

Fatou’s Question. Can the Julia set of a polynomial have positive 2-dimensional Lebesgue measure? This
question was finally answered in 2005 by Xavier Buff and Arnaud Chéritat, who proved that there exist quadratic
polynomials, z → z2 + c, with positive area Julia sets. The proof is very technical, but see their paper at the
2010 Intenational Congress of Mathematics in Hyderabad for an overview of their method.

I don’t know that the current contents of this dictionary are all written down in one place, but see Chapter 5 of
the book by S.Morosawa, Y.Nishimura, M.Taniguchi and T.Ueda for the situation in 2000. More recently Dick
Canary gave a talk about the dictionary at Dennis Sullivan’s 70th birthday conference at Stony Brook in 2011
and you can find this on the web.
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6 Fundamental domains and examples of Kleinian groups

6.1 Fundamental domains

Let G be a Kleinian group, acting on H3
+, on Ĉ, or on H3

+ ∪ Ĉ, and let Ω(G) be the ordinary set for the action.

Definition A fundamental domain for the action of G on Ω(G) is a subset F of Ω(G) such that

(i)
⋃
g∈G

g(F̄ ) = Ω(G) and

(ii) g(F ) ∩ h(F ) = ∅ when g 6= h (g, h ∈ G)

(where in (i), F̄ denotes the closure of F ).

Thus the images of F tesselate Ω(G) (they cover it without overlapping).

Example The set {x + iy : 0 < x < 1} is a fundamental domain for the action of z → z + 1 on the complex
plane C (as indeed is the set {x+ iy : 0 ≤ x < 1}).

Note The precise definition of the term ‘fundamental domain’ varies from author to author: some require F
to be closed - in which case of course one must modify condition (ii) above to require only that g(F )∩ h(F ) be
contained in the boundary of both g(F ) and h(F ), rather than it be empty.

6.2 Dirichlet domains

The simplest construction of fundamental domains makes use of a metric. So for the time being we consider an
action of G on H3

+ (or, if G is Fuchsian, on H2
+).

Choose x ∈ H3
+ such that for all g ∈ G except the identity, gx 6= x. (Exercise: show that there are at most a

discrete set of points x ∈ H3
+ which do not have this property.) Now for each g ∈ G define the half-space

Hg = {y ∈ H3
+ : d(y, x) < d(y, gx)}

where d(y, x) denotes the hyperbolic distance from y to x.

Definition The Dirichlet domain centred at x is the set

Dx =
⋂

g∈G−{I}

Hg

Thus Dx consists of those points of H3 which are nearer to x than they are to any gx (g ∈ G− {I}).

This construction was introduced by Dirichlet in the 1850’s for the study of Euclidean groups, and later adapted
by Poincaré for the hyperbolic case.

Proposition 6.1 For any Kleinian group G, a Dirichlet domain Dx is a fundamental domain for the action of
G on H3

+.

Proof. We must prove that Dx satisfies conditions (i) and (ii) of the definition of a fundamental domain. We
first observe that

g(Dx) = {y : d(y, gx) < d(y, hx) ∀h ∈ G− {g}}

since
y ∈ g(Dx)⇔ g−1y ∈ Dx ⇔ d(g−1y, x) < d(g−1y, kx)⇔ d(y, gx) < d(y, gkx) ∀k ∈ G− {I}

Now take any y ∈ H3
+. Take g ∈ G (not necessarily unique) such that d(y, gx) is minimal. Then y ∈ g(D̄x) so

property (i) holds. Moreover it is clear that g(Dx) ∩ h(Dx) = ∅ if g 6= h so property (ii) holds too. QED
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Figure 10: Polygons (in the Poincaré disc model)

Recall that a subset X ⊂ H3
+ is said to be convex if given any x, y ∈ X the segment of geodesic joining x to y

is entirely contained in X.

Proposition 6.2 A Dirichlet domain Dx for a Kleinian group G is convex and locally finite (i.e. each compact
subset K of H3

+ meets only finitely many g(Dx)).

Proof. Convexity is obvious since Dx is defined to be an intersection of half-spaces, each of which is convex.
For local finiteness, take the Poincaré disc model of H3

+ and without loss of generality take x to be the origin
and K to be the closed ball with centre the origin and (hyperbolic) radius ρ. We claim that if g is any element
of G such that gD0∩K is non-empty then d(0, g0) ≤ 2ρ, which will prove local finiteness since G, being discrete,
contains only finitely many elements with d(0, g0) ≤ 2ρ (else the orbit of 0 would have an accumulation point
in H3

+, contradicting discontinuity of the action of G there). To prove the claim, take any y ∈ gD0 ∩K; then
d(0, y) ≤ ρ (since y ∈ K) and d(g0, y) ≤ d(0, y) (since y ∈ gD0) so d(0, g0) ≤ ρ+ ρ = 2ρ. QED

Definition A convex region P obtained as the intersection of countably many half spaces Hj in H3
+, with the

property that any compact subset of P meets only finitely many of the hyperplanes ∂Hj is called a polyhedron
(and a subset of H2

+ with the analogous property is called a polygon).

Thus Proposition 6.2 says that a Dirichlet domain is a polyhedron. Note that the proposition does not say that
Dx has only finitely many faces, at least it only says this when Dx is compact. When Dx has finitely many faces
(for some x) we say that G is geometrically finite.

Now consider any point y on the boundary of Dx, so y is on the boundary of Hg for one of the half-spaces
defining Dx, in other words d(y, x) = d(y, gx) for some g ∈ G. Then

d(g−1y, g−1x) = d(y, x) = d(y, gx) = d(g−1y, x)

so g−1y also lies in the boundary of Dx. Thus each face of Dx is carried to another face of Dx by an appropriate
element of G. We call these elements side-pairing transformations.

Example Consider the standard action of PSL(2,Z) on the complex upper half-plane. Then for any point iv on
the imaginary axis, with v > 1, the Dirichlet domain is the region {z ∈ H2

+ : |z| > 1, |Re(z)| < 1/2} illustrated
in Figure 9, and the side-pairing transformations on this domain are T : z → z + 1, S : z → −1/z. (Proof:
exercise.)

6.3 Poincaré’s Polyhedron Theorem

We have seen that given a Kleinian group G, Dirichlet’s construction allows us to find a fundamental domain
on which G acts by side-pairing transformations. Poincaré’s Polyhedron Theorem takes us in the opposite
direction: given a convex polyhedron in H3 (or polygon in H2) and a set of side-pairing transformations for that
polyhedron it gives us necessary and sufficient conditions for the group generated by those transformations to
be discrete (i.e. Kleinian) and for the given polyhedron to be a fundamental domain for the group action. The
precise conditions, though conceptually straightforward, are a little cumbersome to state, so we shall restrict
ourselves to the two-dimensional case for most of the time. Our main concern (in the next subsection) will be
to understand examples.

Let P be a polygon in H2
+. Note that the definition allows various possibilities. P may be compact (as on the

left in Figure 10), it may have ideal vertices (vertices on the boundary of H2
+, as in the middle in Figure 10),

or may have infinite area (as on the right in Figure 10).

31



Definition A side-pairing transformation of P is an isometry gs of H2
+, sending one side s of P bijectively to

another, s′, and such that gs(P ) ∩ P = s′.

Notation

For xj a vertex of P which lies inside H2
+ (and so the two edges of P meeting at xj meet at a non-zero angle),

we let Nj denote an ε-neighbourhood (in the hyperbolic metric) of xj intersected with P .

For yj be an ideal vertex of P (so the two edges of P ‘meeting’ at yj have angle zero between them), we let N ′j
denote an ε-neighbourhood (in the Euclidean metric) of yj intersected with P .

Theorem 6.4 (Poincaré’s Polygon Theorem) Let P be a polygon in H2
+, equipped with a set of side-pairing

transformations gs, one for each side of P and with gs′ = g−1s if gs pairs s with s′. If there exists a real ε > 0
such that:

• for each vertex x0 ∈ H2
+ of P there are vertices x1, ..., xn of P (not necessarily all different) and isometries

f0 = I, f1, ...fn, fn+1 = I such that

(i) each fj+1 = fjgs for some s, and

(ii) fj(Nj) are non-overlapping and have union the disc centre x0 radius ε

and

• for each ideal vertex y0 of P there are ideal vertices y1, ..., yn of P and isometries f0 = I, f1, ...fn+1 with fn+1

fixing y0 and parabolic, and such that

(i)′ each fj+1 = fjgs for some s, and

(ii)′ the fj(N
′
j) are contiguous and non-overlapping

then

the group G generated by the side-pairing transformations gs is discrete, P is a fundamental domain for the
action of G on H2

+, and all relations in G are consequences of cycles fn+1 = I corresponding to vertices of P
in H2

+.

For a proof of this theorem see Beardon’s book on discrete groups, or Ratcliffe or Maskit.

Comments

1. The condition on ideal vertices does not introduce any new relations, but it does ensure that P/G is complete
(or equivalently that the translates of P cover the whole of H2

+).

2. The version for H3
+ (Poincaré’s Polyhedron Theorem) is analogous. Now the ‘sides’ that are paired by the

gs are two-dimensional faces and instead of conditions (i) and (ii) we ask that neighbourhoods of edges of P fit
together neatly (neighbourhoods of vertices then automatically fit together properly). Around edges which end
at ideal vertices we ask that there be parabolic cycles (as in (i)′,(ii)′ above). Each edge which has ends inside
H3 gives rise to a relation between the gs and all relations in G are consequences of these.

6.4 Examples of Fuchsian and Kleinian groups

Examples in PSL(2,R) (Fuchsian groups)

1. PSL(2,Z) (the modular group)

Take our standard fundamental domain with side-pairings given by S : z → −1/z and T : z → z + 1. Around
x1 = (1 + i

√
3)/2 the picture is just that around x0 = (−1 + i

√
3)/2, conjugated by T . The vertex y0 = ∞ is

ideal, and T is parabolic (z → z + 1). Poincaré’s Polygon Theorem tells us that

PSL(2,Z) =< S, T : S2 = I, (ST )3 = I >
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Figure 11: A truncated triangle and its first three reflections (Poincaré disc model)

2. Surface groups

Let P be a regular octagon with vertex angles all π/4. (To find such an octagon in the Poincaré disc model,
just take a small regular octagon centred at the origin and blow it up steadily in size until the angles are π/4:
this case must occur, by continuity, since in the limiting case when all vertices are ideal the angles are 0). Mark
a pairing of the sides of P by labelling pairsof (oriented) sides such a way that one circuit anticlockwise around
the boundary reads ABA−1B−1CDC−1D−1. Now think of A as an isometry carrying the first side marked A
to the second side marked A etc. Then P is a fundamental domain for the group

G =< A,B,C,D : [A,B][C,D] = I >

(where [A,B][C,D] = ABA−1B−1CDC−1D−1). Note that H2
+/G is a surface of genus two. (Higher genus

surfaces may be obtained similarly.)

Comment. The octagon need not be regular: all that is really needed is that the angles add up to 2π and that
the sides paired be of the same length. This is the beginning of the Teichmüller theory of hyperbolic stuctures
on surfaces.

3. Triangle groups

Consider a triangle inH2
+ with angles π/p, π/q, π/r, where p, q, r are positive integers such that 1/p+1/q+1/r <

1. We can always draw such a triangle in H2
+ by taking a small Euclidean triangle at the origin in the Poincaré

disc model and gradually enlarging it until the angles are those desired. The (hyperbolic) area of such a triangle
is π minus the angle sum. Now let G be the group generated by reflections in the sides of the triangles, and let G0

be its orientation-preserving subgroup (products of even numbers of reflections). G0 has generators g1 = R2R3

and g2 = R3R1. By Poincaré’s Theorem G0 is discrete, a quadrilateral made up of the initial triangle and one
of its reflections is a fundamental domain for G0, and a presentation for G0 is

G0 =< g1, g2 : gp1 = gq2 = (g1g2)r = I >

(Note that if 1/p+ 1/q + 1/r > 1 we can construct a spherical triangle and the group G0 is then finite.)

4. Limit sets of triangle and truncated triangle groups

When the fundamental polygon for G is compact, the limit set of G is the entire boundary circle S1 of the
Poincaré disc (the translates of P get smaller and smaller in the Euclidean metric as we move towards the
boundary circle, so the orbit of any point inside the disc accumulates everywhere on S1).

When the fundamental domain has ideal vertices the limit set remains the entire circle, but we can go further
and take for example a ‘truncated triangle’ for our polygon P (see Figure 11). As before let G be the group
generated by reflections R1, R2, R3, and G0 be the orientation-preserving subgroup (generated by R2R3, R3R1).
Now R2R3 is hyperbolic and the ‘gap’ between its fixed points is in Ω(G0) ⊂ S1. hence Λ(G0) 6= S1, so Λ(G)
has empty interior in S1. Hence Λ(G) is totally disconnected, but Λ(G) is infinite, perfect, closed and bounded,
so Λ(G) is a Cantor set. Note that G0 is freely generated by R2R3 and R3R1: there are no vertices so no
relations.
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Figure 12: The limit set of a truncated tetrahedron group (picture by McMullen)

Examples in PSL(2,C) (Kleinian groups)

1. Tetrahedron groups

Our ‘polygon’ now becomes a tetrahedron in H3
+ rather than a triangle in H2

+, and we consider the group G
generated by reflections in its faces, and the orientation preserving subgroup G0.

A tetrahedron in H3
+ is determined by its six dihedral angles (the angles between adjacent faces). To satisfy the

conditions of Poincaré’s Theorem we require them all to be of the form π/n with n integer.

A vertex inside H3
+ must have 1/p1 + 1/p2 + 1/p3 > 1, an ideal vertex must have 1/p1 + 1/p2 + 1/p3 = 1, a

truncated vertex must have 1/p1 + 1/p2 + 1/p3 < 1 and where there is a truncated vertex the tetrahedron must
meet the boundary of H3

+ in a π/p1, π/p2, π/p3 triangle.

One can show that all combinations of dihedral angles are actually realised by tetrahedra or truncated tetrahedra.
If all the vertices are internal or ideal then Λ(G) = Ĉ. If one or more vertices is truncated then Λ(G) is a circle-
packing (we get a circle as limit set for the triangle group around the truncated vertex, and then other elements
of G move this circle around). See Figure 12 for a picture on the Riemann sphere and see Bullett and Mantica
(Nonlinearity 1992) for more pictures and explanations.

2. ‘Strings of beads’

Here C1, ..., Cn are circles in Ĉ, each of the same size, touching the circle on each side and orthogonal to the
unit circle S1. Let Rm denote inversion in Cm, and extend Rm to a reflection in the hemisphere Hm spanning
Cm in H3

+. Now, by Poincaré’s Theorem, the part of H3
+ remaining after ‘scooping out’ all the hemispheres is

a fundamental domain for the action of G =< R1, ..., Rn > and the only relations are R2
m = I >.

Note that the limit set here is S1, but that if we pull the circles Cm apart the limit set becomes a Cantor set,
and that if we perturb the sizes and positions of the circles Cm, but keeping them touching adjacent circles,
the limit set becomes a quasicircle (a fractal homeomorphic to a circle). Going up in dimension an anologous
construction can be used to obtain a group having limit set a wildly embedded circle in S3.

3. Schottky groups

Take g ≥ 1 pairs of mutually disjoint circles C1, C
′
1, . . . Cg, C

′
g in C with mutually disjoint interiors. For each

j choose any Mobius transformation Aj that maps Cj to C ′j and the interior of Cj to the exterior of C ′j . The
group G generated by {Aj}1≤j≤g is called a Schottky group of genus g. Writing Dj and D′j for the interiors of

Cj and C ′j in Ĉ bounded by Cj , it is easy to see that Ĉ− (
⋃
j Dj ∪

⋃
j D
′j) is a fundamental domain for G (so

in particular G is discrete) that Λ(G) is a Cantor set, that G is a free group on the generators {Aj} and that
Ω(G)/G is a surface Sg of genus g. The quotient H3

+/G = Mg is a handlebody, a 3-manifold Mg constructed
by adding g handles to a sphere. The boundary of Mg is Sg. (Observe that in this example the fundamental

domain on Ĉ is not a Dirichlet domain, indeed PSL(2,C) does not preserve any metric on Ĉ.)
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7 Quadratic maps and the Mandelbrot Set

7.1 The Mandelbrot set and its connectivity

Proposition 7.1 Every quadratic map f(z) = αz2 + βz + γ with α 6= 0 is conjugate to qc(z) = z2 + c for a
unique c.

Proof The conjugacy h must send ∞ to itself, and hence have the form h(z) = kz + l.

hf(z) = k(αz2 + βz + γ) + l qch(z) = (kz + l)2 + c

These are equal (for all z) if and only if kα = k2, kβ = 2kl and kγ+l = l2+c. Thus we must have k = α, l = β/2
and c = αγ + β/2− β2/4. QED

Another useful parametrisation of the quadratic maps is given by the logistic family

pλ(z) = λz(1− z)

Clearly pλ is conjugate to qc if and only if c = λ/2− λ2/4 (by Proposition 7.1).

The qc parametrisation is more convenient when we are dealing with critical points, and the pλ parametrisation
is more convenient when we are dealing with fixed points and their multipliers. Note that qc has critical points
0,∞, the latter a superattracting fixed point, and pλ has fixed points 0 and 1 − 1/λ, with multipliers λ and
2− λ respectively.

Definition The Mandelbrot set is the subset of parameter space defined by

M = {c : J(qc) connected} ⊂ C

Theorem 7.2 M is the set of values of the parameter c such that the orbit qnc (0) of the critical point 0 does
not tend to the point ∞

Proof If the orbit of 0 does not tend to∞ then there is no critical value other than∞ in the basin of attraction,
B(∞), of ∞, and so there is no obstruction to extending the Böttcher coordinate (Section 5 of these notes)
from a neighbourhood of ∞ to the whole of this basin. Hence B∞ is homeomorphic to the open unit disc and
its complement Ĉ \ B∞ is therefore connected, as is their common boundary ∂B∞. But ∂B∞ is closed and
completely invariant, and cannot contain any points of the Fatou set (since any point in ∂B∞ has bounded
orbits, yet arbitrarily close to it are points with orbits going to ∞). So ∂B∞ is the Julia set J(qc).

Conversely, if the orbit of 0 does go to ∞ then J(qc) is totally disconnected (a Cantor set) by the argument
sketched earlier for the example |c| large. QED

Definition The filled Julia set of qc is K(qc) = {z : qnc (z) 6→ ∞}

Note that ∂K(qc) = J(qc), and that if c 6∈M then K(qc) = J(qc) = Cantor set.

Theorem 7.3 (Douady and Hubbard 1982) The Mandelbrot set M is connected

Proof In fact Douady and Hubbard proved a much stronger result, that there is a conformal bijection between
the complement Ĉ − M of the Mandelbrot set and the complement Ĉ − D of the open unit disc. It is an
immediate consequence of this that M is connected.

When c ∈M , the Böttcher coordinate defines a conformal bijection

φc : Ĉ−K(qc)→ Ĉ− D
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Figure 13: The Mandelbrot set

φc(z0) = z0(1 +
c

z20
)1/2(1 +

c

z21
)1/4(1 +

c

z22
)1/8...

(conjugating qc to z → z2). When c 6∈ M the map φc, though not defined on the whole of the complement of
Kc, is nevertheless defined on a neighbourhood of ∞ and as far as the critical value c of qc. Define

Ψ : Ĉ−M → Ĉ− D

Ψ(c) = φc(c)

This is a conformal bijection (see Douady and Hubbard, Comptes Rendues 1982, for more details). QED

Conjecture (‘MLC’) M is locally connected

A set X is called locally connected if every x ∈ X has arbitrarily small connected open neighbourhoods. If
M is locally connected then by a theorem of Carathéodory the map Ψ−1 extends to a continuous map from
the boundary of Ĉ − D (a circle) onto the boundary ∂M of the Mandelbrot set. This would give us a purely
combinatorial description of ∂M and many open questions concerning M would be resolved.

Definition A component of the interior of M is said to be hyperbolic if for every c in the component the map
qc has an attracting or superattracting periodic orbit.

Conjecture (‘Hyperbolicity is dense’) Every component of the interior of M is hyperbolic

Douady and Hubbard showed in their 1985 Orsay lecture notes that ‘MLC’ implies ‘Hyperbolicity is dense’.

Both conjectures seem to be very difficult to resolve. Over the past 3 decades there has been a great deal
of work on them. The set of points of ∂M at which local connectivity is known to hold has been steadily
increased: Yoccoz proved it for ‘all but infinitely renormalizable points’ and Lyubich extended this to certain
of these. Most experts seem to believe that MLC should be true, but it is known that the analogous set for
cubics in place of quadratics is not locally connected (Lavaurs, Milnor), and that there exist quadratic maps qc
having non-locally-connected Julia sets. As far as ‘Hyperbolicity is dense’ is concerned, this has been proved
for components of M meeting the real axis (Lyubich, McMullen, Swiatek: see McMullen’s 1994 book ‘Complex
Dynamics and Renormalization’) but the general question is still unresolved. Shishikura’s proved in 1994 that
the boundary ∂M of the Mandelbrot set has Hausdorff dimension 2.

7.2 The geography of the Mandelbrot set

We examine some of the more prominent features of M (Figure 13).

36



Figure 14: Julia sets for c=-1, c=-0.5 and c=+0.25

Let

M0 = {c : qc has an attracting (or superattracting) fixed point}

= {c : J(qc) is a (topological) circle}

Lemma 7.4 M0 = {c : c = λ/2− λ2/4 for some λ with |λ| < 1}

Proof Consider the logistic map pλ. The multipliers of its fixed points are λ, 2− λ. Hence

M0 = {c : c = λ/2− λ2/4 for some λ with |λ| < 1 or |2− λ| < 1}

But λ/2− λ2/4 = (2− λ)/2− (2− λ)2/4. QED

Thus M0 is a cardioid (with a boundary that is smooth except at the cusp c = 1/4). Note that there is a
bijection between points of M0 and values of λ such that |λ| < 1. Thus M0 is parametrised by the multiplier of
the fixed point of qc. The maps qc with c ∈M0 \{0} are topologically conjugate to one another, indeed they are
quasiconformally conjugate to one another (as we shall see in Section 8). Note that they cannot be conformally
conjugate to one another as they have different multipliers at the fixed point. Note also that none of them can
be topologically conjugate to q0 : z → z2, since for q0 the critical point 0 is a fixed point, and this is not true
for any qc with c 6= 0.

7.2 The intersection of M with the real axis

We consider how the behaviour of qc varies as we vary the parameter c along the real axis. See Figure 14.

For c > 1/4, J(qc) is a Cantor set (it is an easy exercise to show that the orbit of 0 under qc tends to ∞).

At c = 1/4, there is a neutral fixed point z = 1/2, with multiplier 1.

For −3/4 < c < 1/4, qc has an attracting fixed point and J(qc) is a (topological, indeed quasi-conformal) circle,
with dynamics conjugate to that of the shift. In particular J(qc) contains a dense set of repelling periodic orbits.

At c = −3/4, both points on the repelling period 2 orbit collide with the attracting fixed point, at a neutral
fixed point (which has multiplier −1):

For −5/4 < c < −3/4, qc has an attracting period 2 orbit, and the topology of J(qc) is the same as that for the
(superattractive) case c = −1.

We digress briefly to justify the bounds −5/4 < c < −3/4:

Lemma 7.5 qc has an attracting period 2 orbit if and only if |1 + c| < 1/4
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Proof The points of period 1 or 2 are the solutions of q2c (z) = z. Expanding q2c (z)− z we have

qc(qc(z))− z = ((z2 + c)2 + c− z = (z2 − z + c)(z2 + z + 1 + c) = (z − α)(z − β)(z − u)(z − v)

where α, β are the fixed points and u, v is the period 2 cycle. The multiplier of the period 2 cycle is q′c(u)q′c(v) =
4uv = 4(1 + c). The period 2 cycle is attracting if and only if this has modulus less than 1. QED.

Returning to our journey in parameter space along the real axis:

For −2 < c < −5/4, as c decreases through this range, we have a sequence of period doublings until we reach the
Feigenbaum point (the ‘period-doubling limit point’. This is followed by the whole Milnor/Thurston sequence
of periods for real unimodal maps, familiar to dynamicists (in particular this contains all the natural numbers
in the Sarkovskii order). The most prominent component of int(M) along the axis after the period-doubling
limit is one corresponding to a period three attracting orbit, and we finish at c = −2 where the Julia set is the
real interval [−2,+2] (and qc is semi-conjugate to z → z2: see the exercise early on in these notes).

For c < −2, it is again easily proved that the orbit of the critical point 0 tends to ∞ and hence that the Julia
set is again a Cantor set.

The behaviour for c at different points along the real axis is is no surprise to real dynamicists since the quadratic
family is conjugate to the logistic family. However with c complex we can now leave the main cardioid M0 at
other points than just c = −3/4. When c is on the boundary of M0 at the point where λ = e2πip/q, qc
has a neutral periodic point with this as multiplier, and when c passes into the adjoining component qc has
an attracting period q orbit. There are then further bifurcations as we pass along a path through different
components of int(M). In the next subsection we shall find that studying the combinatorics of ‘external rays’
can give us a great deal of information about the overall structure of M

Exercise Compute the values of c where qc has a superattractive period three orbit (that is, where the point 0
has period three).

7.3 Internal and external rays: the ‘devil’s staircase’

When c ∈ M , for any θ ∈ [0, 1), the radial line arg(z) = 2πθ on Ĉ − D (where D is the unit disc) maps under

the inverse φ−1c of the Böttcher map to the external ray Rθ of argument 2πθ on Ĉ−K(qc).

Similarly, in the parameter plane, the radial line arg(z) = 2πθ on Ĉ − D maps under the inverse Ψ−1 of the

Douady-Hubbard map to the external ray Rθ of argument 2πθ on Ĉ−M .

A ray is said to land, if it accumulates at a unique point of J(qc) (in the dynamical case) or ∂M (in the parameter
case). If J(qc) (or ∂M respectively) is locally connected then all external rays land (by Carathéodory’s criterion).
Unfortunately there are examples where J(qc) is known not to be locally connected, and where certain external
rays do not land; moreover the conjecture ‘MLC’ is still unproved so we cannot be sure that all external rays
in the parameter space land.

An outline proof of the following theorem can be found in Carleson and Gamelin, and a full proof can be found
in the Douady-Hubbard Orsay notes.

Theorem 7.6 (Douady and Hubbard) Every parameter space external ray with rational angle θ lands at a
point c of ∂M . If θ is a rational with odd denominator then qc has a parabolic cycle. If θ is a rational with even
denominator then the critical point 0 of qc is strictly preperiodic.

We first consider the external rays which land on the boundary of the main cardioid, M0. Recall that M0 is
itself parametrised by the unit disc and we can therefore define internal rays inside M0. The internal ray of
argument ν is the set of values of c ∈ M0 for which the multiplier of the fixed point of qc has argument 2πν.
Consider the end point on ∂M0 of the internal ray of argument ν = 1/3. This is the value of c for which the
fixed point α of qc has multiplier e2πi/3 (this c lies at the top of the cardioid: it is where the first period-tripling
occurs). The external rays 1/7, 2/7, 4/7 in the dynamical plane landing at α are as shown in Figure 15.
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Figure 15: External rays landing at the α-fixed point of Douady’s rabbit

Note that we can pick out two particular rays, which together enclose the component of int(K(qc)) containing
the critical value. These we have labelled θ−(1/3) and θ+(1/3). It can be shown that in the parameter space
the corresponding external rays with the same arguments, θ−(1/3) and θ+(1/3), land at c (an example what
Douady called ‘ploughing in the dynamical plane but harvesting in the parameter plane’).

More generally, for c at the end of each internal ray in M0 of rational argument p/q, the map qc has a (neutral)
fixed point α of rotation number p/q and we can pick out the pair of external rays enclosing the component of
int(K(qc)) containing the critical value c. How do we compute the values of θ−(p/q) and θ+(p/q) ? Since α
is a fixed point of rotation number p/q there are necessarily q external rays landing at α and the effect of qc
on these rays is to permute them in cyclic order. But the action of qc on arguments of rays is simply that of
t → 2t (mod Z), so our search for candidates for θ±(p/q) is reduced to a search for finite orbits of t → 2t on
the unit circle R/Z, arranged in the same order around the circle as an orbit of a rigid rotation through 2πp/q.
This is a purely combinatorial question and was answered (though in a slightly different context) by Morse and
Hedlund in their pioneering work on symbolic dynamics in the 1930’s:

Theorem 7.7 For each rational p/q there is a unique finite forward invariant orbit Ap/q of t→ 2t of rotation
number p/q on the circle R/Z.

(For a proof of this and other results concerning order-preserving orbits of the shift, see Bullett and Sentenac,
Math. Proc. Cam. Phil. Soc. 1994.)

But supposing we have found this orbit Ap/q, how are we to know which of its points are the special points
θ±(p/q) ? This turns out to be very straightforward.

Lemma 7.8 Any ordered orbit of t→ 2t on the circle R/Z is contained in a semicircle

Proof Since t→ 2t doubles distance, any three points on the circle have images in the same order around the
circle if and only the three original points lie in a common semi-circle. QED

As a consequence it makes sense to refer to the least and greatest points of the orbit Ap/q. We identify the
points θ±(p/q) by observing that the dynamical picure requires that the least point of Ap/q be (θ+(p/q))/2
and the greatest be (θ−(p/q))/2 + 1/2 (see the picture above for the case p/q = 1/3: the inverse image of the
component of int(K(qc)) containing the critical value c is that containing the critical point 0).

Algorithm for θ±(p/q)

There is a simple algorithm constructing the binary sequence of each of θ+(p/q) and θ−(p/q):

Draw a line of slope p/q, through the origin in R2. To construct θ−(p/q), take the integer ‘staircase’ lying just
below this line, but not touching it, and starting at the point (1, 0) write 1 for each horizontal step which is
followed by a vertical step, 0 for a horizontal step followed by another horizontal one. To construct θ+(p/q) do
the same with the staircase touching the line.
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Figure 16: θ−(2/5) = .01001 = 9/31 θ+(2/5) = .01010 = 10/31

Figure 17: The devil’s staircase assigning internal angle to external angles around the cardioid M0.

Example p/q = 2/5: See Figure 16.

Every point on ∂M0 at the end of an internal ray of irrational argument ν corresponds to θν = limp/q→νθ±(p/q).
The assigment of internal angles to external angles as we make a circuit of the boundary of the cardioid M0

has graph a ‘devil’s staircase’ (see Figure 17). We draw the graph this way round (rather than that assigning
external angles to internal angles) in order to have a continuous function. It is not difficult to prove that the
horizontal steps in the graph above have total length 1. A ‘devil’s staircase’ is the graph of a continuous function
that is constant on a set of full measure without being globally constant. This particular devil’s staircase another
interesting property: it is a theorem due to Douady that every irrational ν corresponds to a transcendental θν
(see Bullett and Sentenac, Theorem 4).

7.4 External rays landing at points outside the main cardioid

Rational external rays can be used to give us an overall picture of the geography of M . The next step is
to consider those landing on the boundary of a component of int(M) immediately adjacent to M0, say that
corresponding to rotation number p/q. This component (which we shall label Mp/q) has the property that
corresponding maps qc each have an attractive period q orbit. We can parametrise Mp/q by the multiplier of
this orbit and hence define internal rays inside Mp/q in just the same way as we did for M0. The r/s internal
ray in Mp/q is the landing point of external rays θ±(p/q, r/s) obtained from θ±(r/s) by replacing the digit 0 by
the repeating block (of length q) from θ−(p/q) and the digit 1 by the repeating block from θ+(p/q).

Example
θ−(1/3, 1/2) = .001010 θ+(1/3, 1/2) = .010001

By repeating the same process (which is known as ‘tuning’) we can compute the arguments of external rays
landing on the boundary of any component which is accessible from M0 by a finite number of boundary crossings.
But there are of course components of int(M) which are much further away than this from M0: for example all
components beyond the Feigenbaum point on the real axis are an infinite number of boundary crossings away
from M0. Methods of assigning ‘internal addresses’ to all hyperbolic components, and algorithms relating these
addresses to ‘kneading sequences’ associated to external rays landing on the components, were developed by
Penrose (1990) and by Lau and Schleicher (1994).

7.5 The combinatorial Mandelbrot set

We sketch an algorithm due to Lavaurs (Comptes Rendues 1986) which, if ∂M is locally connected, gives M as
the quotient of the unit disc by an equivalence relation defined via a lamination.
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Figure 18: Lavaurs’ algorithm

Lavaurs’ Algorithm

Write every rational which has odd denominator in the form p/(2k − 1) with k as small as possible.

1. Connect 1/3 to 2/3 (on ∂D) by an arc in D.

2. Assuming all rationals of form p/(2k−1 − 1) have been connected in pairs, connect pairs of form p/(2k − 1),
starting with the smallest number not yet connected, and connecting it to the next smallest one possible
without crossing arcs already constructed (see Figure 18 for the construction up to and including k = 4). The
(combinatorial) Mandelbrot set is now obtained by shrinking each of the arcs to a point.
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8 Quasiconformal mappings: the Measurable Riemann Mapping
Theorem and its applications

8.1 The moduli space and the Teichmüller space of a torus

Given any two Riemann surfaces S1,S2 which are homeomorphic to a sphere, there is conformal homeomorphism
S1 → S2. This follows from the Uniformisation Theorem, which tells us that every Riemann surface has universal
cover Ĉ, C or D. But Riemann surfaces which are homeomorphic to the torus are another matter. Every such
surface S has universal cover C, and the group Γ of covering transformations of S is a subgroup of Aut(C)
isomorphic to Z×Z. Thus Γ is generated by two translations of C in directions which are linearily independent
over R. By conjugating by a scaling and a rotation of C we may assume that one of the translations is z → z+1
and the other is z → z + λ, some λ ∈ C− R.

Proposition 8.1
Let S1 be the torus C/Γ1, where Γ1 is generated by z → z + 1 and z → z + λ1, and let S2 be the torus C/Γ2,
where Γ2 is generated by z → z+1 and z → z+λ2. Then there is a conformal homeomorphism (i.e. an analytic
bijection) between S1 and S2 if and only if λ2 = g(λ1) for some g ∈ PSL(2,Z).

Proof First observe that if λ2 = λ1 + 1 then Γ2 = Γ1 so S1 and S2 are the same torus, and if λ2 = −1/λ1 then
the lattice Γ2 ⊂ C is obtained from the lattice Γ1 by rotating and rescaling C, so S2 is isomorphic to S1. Since
these two operations generate the action of PSL(2,Z) on λ1, it follows that if λ2 = g(λ1) for any g ∈ PSL(2,Z)
then S2 is isomorphic to S1.

Conversely, if S2 is isomorphic to S1 then by the Uniformisation Theorem there must exist an automorphism
of C, fixing the origin and conjugating the generators z → z + 1 and z → z + λ1 of Γ1 to a pair of generators
of Γ2, that is to say there must exist 0 6= µ ∈ C such that Γ2 is the group generated by z → µ and z → µλ1.
Since Γ2 is also generated by z → z + 1 and z → z + λ2 this implies there exist a, b, c, d ∈ Z with ad − bc = 1
such that (

λ2
1

)
=

(
a b
c d

)(
λ1
1

)
and so λ2 is the image of λ1 under an element of PSL(2,Z). QED

Thus we get a different complex structure on a topological torus for each different point λ in our fundamental
domain ∆ for the action of the modular group PSL(2,Z). The complex structures on the torus therefore
correspond to the points of the moduli space

M = H2
+/PSL(2,Z)

which is a sphere with a puncture point (corresponding to ∞), a cone point of angle π (corresponding to i) and
a cone point of angle 2π/3 (corresponding to (−1 + i

√
3)/2). Given a Riemann surface of genus 1, we can mark

it by choosing two homotopy classes of loops which generate the fundamental group. This corresponds in the
universal cover to choosing generators of the covering transformation group Γ = Z × Z. The marked complex
structures on the torus correspond to the points on the universal cover of M, the Teichmüller space T = H2

+.

Remark. For a genus g surface Sg, with g ≥ 2, the Teichmüller space T (Sg) is a copy of R6g−6 (one can
give explicit coordinates in terms of lengths of certain loops on Sg), and the moduli space is the qutioent of
Teichmüller space by the mapping class group of Sg.

However one can construct a homeomorphism from a Riemann surface of genus g to any other Riemann surface
of the same genus if we weaken the requirement of conformality to a requirement that the homeomorphism
should ‘send infinitesimal circles to infinitesimal ellipses having bounded ratios of internal to external diameter’.
Such homeomorphisms are called quasiconformal homeomorphisms.

Example Figure 19 illustrates a quasiconformal homeomorphism which sends the small circles on the left hand
torus to the small ellipses on the right hand torus.
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Figure 19: There is a quasiconformal homemorphism between these two tori

8.2 Quasiconformal homeomorphisms and the Measurable Riemann Mapping The-
orem

An invertible linear map R2 → R2 sends a circle centred at the origin to an ellipse centred at the origin, so a
C1-diffeomorphism f : R2 → R2 sends an infinitesimal circle at each point x ∈ R2 to an infinitesimal ellipse at
f(x).

Definition A homeomorphism f between open sets in C is said to be K-quasiconformal if it sends infinitesimally
small round circles to infinitesimally small ellipses which have ratio of semi-major axis length to semi-minor axis
length less than or equal to K. (Technical point: we do not require that f be C1, only that f have “distributional
derviatives in L1” . See Milnor, Appendix F.)

We can write f as a function of z and z̄ (if f were conformal it would just be function of z). We can then
associate to f the Beltrami form:

µ(f) =
∂f

∂z̄
/
∂f

∂z

and it is straightforward to prove that f is K-quasiconformal, with K = (1 + k)/(1 − k), if and only if µ(f)
is defined almost everywhere and has essential supremum ||µ||∞ = k < 1. (See, for example, Carleson and
Gamelin.)

Recall that the Riemann Mapping Theorem asserts that if U is a bounded open simply-connected subset of C,
then there exists a conformal orientation-preserving homeomorphism φ : U → D, where D denotes the open unit
disc in C. Clearly φ is unique up to post-composition by orientation-preserving conformal homeomorphisms of
D, that is to say fractional linear maps which send the unit disc D to itself.

The Measurable Riemann Mapping Theorem asserts the analogous result in the case that in addition to U we are
given an assigned complex dilatation µ(z) at every point z ∈ U (except possibly at points in a set of Lebesgue
measure zero) and rather than seeking a conformal homeomorphism φ from U to D, what we are looking for is
a quasiconformal homeomorphism f : U → D which has the prescribed dilatation µ(z) at almost every point
z ∈ U . We only require that the assignment z → µ(z) be measurable, not that it be continuous.

The Measurable Riemann Mapping Theorem is due to Morrey, Bojarski, Ahlfors and Bers. It has various versions
appropriate for different applications. The statement below is that of Théorème 5 in Douady’s paper in LMS
Lecture Notes Volume 274 ‘The Mandelbrot set. Theme and Variations’ (edited by Tan Lei): it is expressed in
terms of functions defined on the whole of C, but can be adapted to suit other situations, for example when the
domain of µ is a bounded simply-connected open subset U of C and we seek a quasiconformal homeomorphism
f : U → D or indeed when the domain of µ is the Riemann sphere Ĉ = C ∪ {∞} and we seek a quasiconformal

homeomorphism f : Ĉ→ Ĉ.

Theorem 8.2 (The Measurable Riemann Mapping Theorem.) Let µ be any L∞ function C→ C with
||µ||∞ = k < 1. Then there exists an orientation-preserving quasiconformal homeomorphism f : C → C which
has complex dilatation µ(f) equal to µ almost everywhere on C. This homeomorphism is unique if we require
that f(0) = 0 and f(1) = 1. Furthermore if µ depends analytically (respectively continuously) on a parameter λ
then the homeomorphism f also depends analytically (respectively continuously) on λ.
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8.3 1st Application: maps in the same hyperbolic component of the interior of
the Mandelbrot set are quasiconformally conjugate

For simplicity consider the component consisting of the interior of the main cardioid M0. We know that for
any c′ 6= c, both in int(M0), qc is not conformally conjugate to qc′ since they have different multipliers at the
attracting fixed point. However, provided both c and c′ are non-zero, qc′ is quasiconformally conjugate to qc. To
prove this, consider a small circle γ0 around the attracting fixed point of qc (sufficiently small that it does not
contain the critical value c). The circle γ0 and its image γ1 = qc(γ0) bound an annulus A; the map qc identifies
the outer boundary γ0 of A with its inner boundary γ1 and the quotient of A under this identification is a torus
S. Similarly for q′c we obtain an annulus A′ and a torus S ′. Although S ′ is not conformally homeomorphic
to S (since the multipliers of the two quadratic maps at their respective attracting fixed points are different),
they are quasiconformally homeomorphic, since this is true for any pair of Riemann surfaces of genus 1. Let h
be quasiconformal homeomorphism S → S ′. The derivative of h sends the field of infinitesimal circles on S to
a field of infinitesimal ellipses on S ′. We can ‘spread’ this field of ellipses to the whole of the attracting basin
int(K(qc′)) of the fixed point of qc′ by repeatedly applying qc′ and q−1c′ to the lift A′ of S ′. This ellipse field,

together with the infinitesimal round circle field on Ĉ− int(K(qc′)), provides us with an ellipse field on Ĉ which

is preserved by the map qc′ . Applying the Measurable Riemann Mapping Theorem to this ellipse field on Ĉ
yields a quasiconformal conjugacy from qc′ : Ĉ→ Ĉ to a map q : Ĉ→ Ĉ which is

(i) holomorphic (because q preserves the field of infinitesimal round circles),

(ii) a polynomial (because q(∞) =∞ = q−1(∞)), and

(iii) necessarily conformally conjugate to qc (because by construction q has the correct multiplier at its
attracting fixed point).

We can apply a similar argument to any hyperbolic component of the interior of the Mandelbrot set M ,
replacing ‘attracting fixed point’ by ‘attracting periodic cycle’ and ‘qc’ by ‘(qc)

n’. But note that each hyperbolic
component of int(M) contains one special value c0 where the attracting cycle is superattracting (i.e. the critical
point 0 is periodic), and that qc0 is not even topologically conjugate to the other qc’s: nevertheless the Julia set
J(qc0) for this ‘postcritically finite’ map qc0 is still quasiconformally homeomorphic to the other J(qc)’s, a fact
that can be proved by remembering that the Julia set is the closure of the set of all repelling periodic points,
and applying the theory of ‘holomomorphic motions’ to this set.

Remark Notice that when we have a periodic attractor, once we have deformed the complex structure on
the ‘fundamental torus’ A for the attractor, this determines the deformation everywhere in the basin of the
attractor. If there were to exist a ‘wandering component’ of the Fatou set F (qc) for some c, we would have
much more freedom to deform qc: in fact (as Sullivan proved) we would have an infinite dimensional space of
quadratic polynomials none of which would be conformally conjugate to another. This would contradict the
fact that up to conformal conjugacy there exists only a one-complex-dimensional family of qc’s. (See Milnor,
Appendix F, for the details of Sullivan’s proof).

8.4 2nd Application: Bers simultaneous uniformisation: matings between Fuch-
sian groups

Recall that a Fuchsian group is a discrete subgroup of PSL2(R). Let G1 be a geometrically finite Fuchsian group
(a Fuchsian group which has a fundamental domain with a finite number of sides). Then G1 acts (by fractional

linear maps) on the upper half U of the complex plane. Suppose the limit set of this action is R̂ = R∪{∞}. Of
course G1 also acts (by fractional linear maps) on the lower half plane L and the limit set of this action is also

R̂ = R∪{∞}. Let G2 be another geometrically finite discrete subgroup of PSL2(R), such that G2 is isomorphic
to G1 as an abstract group, and such that the action of G2 on U is topologically conjugate to that of G1 on U .

Theorem 8.3 (Bers’ Simultaneous Uniformisation Theorem)

Given subgroups G1 and G2 of PSL2(R) with the properties described above, there exists a discrete subgroup G

of PSL2(C) the action of which on the Riemann sphere Ĉ has the following properties:
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Figure 20: Fundamental domains for G1 and G2 on the upper and lower half-planes

(i) The limit set of the action is a quasicircle Λ ⊂ Ĉ.

(ii) On one component, U , of Ĉ− Λ the action of G is conformally conjugate to the action of G1 on U .

(iii) On the other component, L, of Ĉ− Λ the action of G is conformally conjugate to the action of G2 on L.

In the situation described by (i),(ii) and (iii) we might call the Kleinian group G (discrete subgroup of PSL2(C))
acting on Ĉ a mating between the Fuchsian group G1 (discrete subgroup of PSL2(R)) acting on U and the
Fuchsian group G2 acting on L. The action of G is a holomorphic realisation of the dynamical system obtained
by gluing together the actions of G1 on U and G2 on L by means of a (topological) homeomorphism from the
boundary ∂U of U to the boundary ∂L of L, which conjugates the action of G1 on ∂U to that of G2 on ∂L.

Bers’ Simultaneous Uniformization Theorem may be proved using the Measurable Riemann Mapping Theorem,
as we now outline. Since G1 is geometrically finite, the orbit space L/G1 is a Riemann surface with a finite
number of marked cone points and puncture points. The orbit space L/G2 is a Riemann surface with a combi-
natorially identical set of data. It follows by standard Riemann surface theory that there exists a quasiconformal
diffeomorphism h : L/G1 → L/G2, sending marked points to marked points. The complex dilatation µ of h,
when composed with the orbit projection, yields an L∞ function µ : L → C, which we may extend to the whole
of Ĉ by defining µ(z) to be zero on Ĉ − L = U . Equivalently, if one prefers to think in terms of measurable

fields of ellipses, the field of ellipses defined by µ on L/G1 is pulled back to L and extended to the rest of Ĉ
by the standard (round) circle field on U . By the measurable Riemann Mapping Theorem there now exists

a quasiconformal diffeomorphism φ : Ĉ → Ĉ having complex dilatation µ. But, as is easily verified by the
chain rule, each element of G = φG1φ

−1 has complex dilatation zero, and so maps infinitesimal round circles
to infinitesimal round circles. Thus G is a group of conformal automorphisms of Ĉ, that is to say a subgroup of
PSL2(C). The limit set of G is the set Λ = φ(R̂), which is a quasicircle by definition, since it is the image of a

round circle under a quasiconformal homeomorphism φ : Ĉ → Ĉ. Moreover φ provides a conformal conjugacy
between the actions of G1 on U and G on U = φ(U), and φ ◦ h−1 : L → L = φ(L) provides a conformal
conjugacy between the actions of G2 on L and G on L = φ(L), where here h : L → L denotes the lift of our
quasiconformal diffeomorphism h : L/G1 → L/G2.

A family of examples: once-punctured torus groups

Consider discrete representations of the free group F2 on two generators X,Y in PSL2(R). Let A and B be
elements of PSL2(R) representing X and Y , and restrict attention to the case that A and B are hyperbolic
and their commutator ABA−1B−1 is parabolic. A generic representation of this kind has fundamental domain
a quadrilateral in the upper half-plane, with all four vertices on the (completed) real line and all four sides
geodesics in the hyperbolic metric, that is to say arcs of semicircles orthogonal to the real line: the group
elements A and B identify pairs of opposite sides of this quadrilateral, and the orbit space is a punctured
torus. The cross-ratio of the four vertices of a fundamental domain is a conjugacy invariant of the group (as a
subgroup of PSL2(R)). Any two representations G1 and G2 of this kind (which in general will have different
have different cross-ratios) provide examples of groups to which we may apply Bers’ Theorem. We consider G1

acting on the upper half-plane and G2 acting on the lower (Figure 20). In general their actions will only match
combinatorially on their common limit set, the completed real axis, but if we glue them together combinatorially
the conclusion of Bers’ theorem tells us that we can realise this topological mating as a holomorphic dynamical
system, a Kleinian group (discrete subgroup of PSL2(C)) which has as its limit set a quasicircle in place of R̂.
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Figure 21: The Straightening Theorem

8.5 3rd Application: Polynomial-like mappings

In their paper On the dynamics of polynomial-like mappings (Ann Sci Ec Norm Sup 1985), Douady and Hubbard
defined the notion of a polynomial-like map. This is a proper holomorphic surjection p : V → U where U
and V are simply-connected open sets in C with U ⊃ V . Such a map has a well-defined filled Julia set
K(p) =

⋂
n≥0 p

−n(V ).

Theorem 8.4 (The Straightening Theorem of Douady and Hubbard) For every polynomial-like map-
ping p there is a genuine polynomial map P which is hybrid equivalent to p.

Here hybrid equivalent means that there is a quasiconformal conjugacy h between p and P on neighbourhoods of
K(p) and K(P ) such that the Beltrami form of h vanishes on K(p) (so in particular h is conformal on int(K(p)).
In the case that K(p) is connected, we can think of this as a mating between the polynomial-like map p on its
filled Julia set and the polynomial z → zn on its filled Julia set.

At the heart of the proof of the Straightening Theorem is the Measurable Riemann Mapping Theorem. The
idea is as follows. We suppose, for simplicity, that U and V are topological discs with smooth boundaries. A
polynomial-like map p has a well-defined degree (the number of times p winds ∂V around ∂U , or equivalently
the number of points in a generic p−1(z)). Suppose this degree is n. A = U − V is an annulus equipped with
a map p of degree n from its inner boundary onto its outer boundary. Let B be the annulus between a circle
γ0 of radius r > 1 in C centred at the origin and its image γ1 under z → zn. See Figure 21. It can be shown
that it is possible construct a quasiconformal homeomorphism h : A → B conjugating the boundary map on
A to the boundary map on B. Pull back the associated ellipse field on U − V to an ellipse field on U −K(p),
by repeatedly applying p−1, and extend it to the whole of U by using the standard field of round circles on
K(p). Now add the disc D = {z : |z| ≥ r} ∪ {∞} to U by pasting the annulus A to the annulus B using the
quasiconformal homeomorphism h to do the pasting. The maps p on V and z → zn on D fit neatly together
to give a map a degree n map Q : Ĉ→ Ĉ which preserves the ellipse field. Applying the Measurable Riemann
Mapping Theorem to the ellipse field yields a quasiconformal homeomorphism f : Ĉ → Ĉ straightening it to
the field of round circles and now fQf−1 : Ĉ→ Ĉ is a genuine polynomial with the desired properties. QED

Tuning, renormalisation and baby Mandelbrot sets

It turns out that there are many parameter values c in the Mandelbrot set M where in some region of the
dynamical plane the first return map (qc)

n is a quadratic-like map, which is then hybrid equivalent to some qc′ .
This process of ‘renormalisation’ is the dynamical counterpart to the phenomenon of ‘tuning’ (replacing digits
0 and 1 in external ray addresses by finite strings of digits θ− and θ+), discussed briefly in Section 7; it follows
from the Straightening Theorem that the Julia set of qc then contains copies of J(qc′). Families of quadratic-like
first return maps satisfying certain conditions are called ‘Mandelbrot-like families’ by Douady and Hubbard in
their paper (Ann Sci Ec Norm Sup 1985) : these give rise to ‘baby Mandelbrot sets’ - small copies of M on
finer and finer scales. Indeed every point on the boundary of the Mandelbrot set M is an accumulation point
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Figure 22: A quadratic rational map mating Douady’s rabbit with z → z2 − 1

Figure 23: A holomorphic correspondence mating z → z2 − 1 with the modular group

of baby Mandelbrot sets (see McMullen’s paper in the LMS Lecture Notes volume edited by Tan Lei).

Matings of polynomials

The construction described in the outline proof of Theorem 8.4 (the Straightening Theorem) can equally well
be used to mate qc with qc′ for any pair c, c′ in the interior of the cardioid M0, that is to construct a rational
map q of degree two which has Julia set J(q) a quasicircle and which is conformally conjugate to qc on one

component of Ĉ− J(q) and to qc′ on the other component. A more challenging task is to mate qc with qc′ for
c and c′ elsewhere in the Mandelbrot set, as J(qc) and J(qc′) are now quotients of the circle (in the case that
they are locally connected) and of course in general they will be different quotients. Mary Rees and Tan Lei
proved that hyperbolic quadratic polynomials qc, qc′ can be mated if and only if c′ is not in the conjugate limb
of M to that of c (the proof involves an application of Thurston’s criterion for when a topological branched
covering of the sphere is ‘equivalent’ to a rational map). See Figure 22. Finally we remark that if we extend our
notions of rational maps and Kleinian groups to include holomorphic correspondences, it becomes possible to
mate a hyperbolic quadratic polynomial with the modular group (Figure 23), but that is another story.... See
the forthcoming book of Bodil Branner and Núria Fagella for the technical details of ‘quasiconformal surgery’
and many more applications.

The list of ‘references’ on the next page contains only books. Relevant journal articles have been referred to
individually in the course of these Notes.
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Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Week 1 Exercises

1. For the angle-doubling map t → 2t mod 1 on the circle R/Z prove that the periodic points are the points
t ∈ [0, 1) of the form t = m/(2n − 1) (where 0 ≤ m < 2n − 1 with m,n ∈ N).

2. Show that h : z → z + 1/z is a semiconjugacy from f : z → z2 to g : z → z2 − 2 (that is, h is a surjection
satisfying hf = gh) and that h sends the Julia set of f (the unit circle) onto the real interval [−2,+2].

3. Find a Möbius transformation which sends the upper half planeH+ bijectively onto the unit disc D. Assuming
the structure of Aut(D) (Prop 2.9) prove that Aut(H+) = PSL(2,R) (Cor 2.10).

4. Let w = eiθ(z − a)/(1− āz) with θ ∈ R and a in the open unit disc D.

Show that
∣∣dw
dz

∣∣ = 1−|w|2
1−|z|2 and hence 2|dz|

1−|z|2 = 2|dw|
1−|w|2 . Deduce that the infinitesimal metric dρ = 2|dz|

1−|z|2 is

invariant under Aut(D).

(To verify that dρ is what we get when we transfer the Poincaré metric from the upper half-plane to D, it now
suffices to check that integrating dρ gives the distance between 0 and t ∈ D ∩ R to be ln |(0, t;−1,+1)|.)

5. Show that a rational map f of degree > 1 is conjugate to a polynomial of the form z → zn (some n > 1) if

and only if there exist distinct points z0, z1 ∈ Ĉ such that f−1(z0) = {z0} and f−1(z1) = {z1}.

6. Show that every degree 2 polynomial z → αz2 + βz + γ (α 6= 0) is conjugate to a (unique) one of the form
z → z2 + c.

7. Let f be the rational map

z → −2z − 1

z2 + 4z + 2

Find the critical points of f and their orbits. Deduce that f is conjugate to z → z2 − 1.

SB 18/2/13, corrected 21/2/13
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Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Week 2 Exercises

1. If f is a rational function with a fixed point at∞ show that the multiplier λ at∞ is equal to limz→∞ 1/f ′(z).
Deduce that the fixed point at ∞ is a superattractor if and only if limz→∞ f ′(z) = ∞. (Hint: consider the
power series expansion around ζ = 0 of σfσ, where σ(ζ) = 1/ζ).

2. Picard’s Theorem states that if a holomorphic function f : C→ C (i.e. an entire function) has the property
that there are at least two points of C that are not in the image of f , then f is constant. Deduce Picard’s
Theorem from Liouville’s Theorem and the fact that D is the universal cover of the thrice-punctured Riemann
sphere Ĉ. Write down a non-constant entire function the image of which omits just one point of C.

3. Let f be a rational map. Using the ‘normal families’ definition of the Fatou set, prove that the Fatou set of
f2 (i.e. f composed with f) is the same set as the Fatou set F (f) of F . Now consider f(z) = z2− 1. Show that
0,−1 and ∞ are attracting fixed points of f2 (i.e. f composed with f) and deduce that they are in different
components of the Fatou set F (f) of f . Deduce that F (f) contains infinitely many components. Let F0 denote
the component containing 0. Sketch the position of the components of f−n(F0) for n = 1, 2, 3, indicating how
they map to each other under f .

4. A non-identity element α ∈ PSL(2,R) is said to be:

elliptic if it has just one fixed point in the open upper half plane;

hyperbolic if it has two distinct fixed points on the extended real line R̂ = R ∪ {∞};

parabolic if it has just one fixed point in Ĉ (necessarily on R̂).

(i) Regarding α as a 2 × 2 real matrix of determinant 1, show that α is elliptic, hyperbolic, parabolic ⇔
|tr(α)| < 2, > 2, = 2 respectively (where the trace of a matrix is the sum of the entries on the main diagonal).

(ii) Show that if α is hyperbolic then it is conjugate in PSL(2,R) to z → λz for some non-zero λ ∈ R, and in
fact that we may require λ to be > 0.

(iii) Show that if α is parabolic then it is conjugate in PSL(2,R) to z → z + 1 or to z → z − 1.

(iv) Show that in the Poincaré disc model of the hyperbolic plane the elliptic isometries fixing the origin are
the Euclidean rotations.

5. On the hyperbolic plane a reflection is an orientation-reversing isometry β which fixes some geodesic pointwise.

(i) Show that every reflection β is an involution (i.e. β2 = I);

(ii) Show that for every reflection β there is an element of PSL(2,R) which conjugates β to ‘reflection in the
imaginary axis’, i.e. the map z → −z̄.

(iii) Show that every orientation-preserving isometry of the hyperbolic plane can be written as the composition
of a pair of reflections (by the previous question it will suffice to consider z → λz and z → z ± 1 on H+, and
z → eiθz on D). Deduce that every orientation-reversing isometry can be written as a composition of at most
three reflections.

(iv) Show that the orientation-reversing isometries of the hyperbolic plane are precisely the maps

z → az̄ + b

cz̄ + d
a, b, c, d ∈ R, ad− bc = −1

(Hint: composing an orientation-reversing isometry with a reflection will preserve orientation.) SB 25/2/13
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Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Week 3 Exercises

1. Recall that the quaternions are quadruples (x0, x1, x2, x3) ∈ R4 written in the form x0 + x1i + x2j + x3k
and equipped with the (non-commutive) product given by i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,

ki = −ik = j. An extension of the action of PSL(2,C) from Ĉ to H3
+ can be defined explicitly as follows.

Regard R3 as quaternions of the form x + yi + tj(+0k). Then, provided our matrix in PSL(2,C) has been
normalised to a form in which ad− bc ∈ R>0, the map

z + tj → a(z + tj) + b

c(z + tj) + d

sends the half-space
H3

+ = {z + tj : z ∈ Ĉ, t ∈ R>0}

to itself, extending the bijection

z → az + b

cz + d

on the boundary plane Ĉ.

Verify that the expression above agrees with the formulae (i),(ii) and (iii) for the action of PSL(2,C) on H3
+

(at the start of Section 5).

HINT: To express
a(z + tj) + b

c(z + tj) + d

in the standard quaternion form e+ fi+ gj + hk with e, f, g, h ∈ R one should multiply both top and bottom by
c̄(z̄ + d̄)− ctj on the right.

2. Prove that a Möbius transformation of the form

A =

(
a b
b d

)
ad− b2 = 1

satisfies JAJ = A−1 where J(z) = −z−1. Deduce that if a discrete group G is generated by elements of this
form then Λ(G) is invariant under J .

3. Let h(z) = (az + b)/(cz + d) where a, b, c, d ∈ R and ad− bc = 1.

(i) Show that Im(h(z)) = Im(z)/|cz + d|2.

(ii) Let ∆ = {z : Im(z) > 0, |Re(z)| < 1/2, |z| > 1}. If z ∈ ∆ show that |cz + d|2 > (|c| − |d|)2 + |cd| and
deduce from (i) that if a, b, c, d ∈ Z then Im(h(z)) < Im(z).

(iii) By applying (ii) to h and to h−1 deduce that if z ∈ ∆ then there is no I 6= h ∈ PSL(2,Z) such that
h(z) ∈ ∆.

(iv) Let v ∈ R, v > 1. Deduce from (iii) that ∆ = {z ∈ H2
+ : d(z, iv) < d(z, g(iv)) ∀I 6= g ∈ PSL(2,Z)} (where

d is the Poincaré metric).

SB 4/3/13, corrected 9/3/13
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Holomorphic Dynamics and Hyperbolic Geometry (Feb-March 2013)

Week 4 Exercises

These exercises are more open-ended. An answer to any one of questions 2,3 or 4 is an acceptable alternative
to the set of assessment exercises (an answer to question 1 is too easy to find in a textbook).

1. Prove that the area of a hyperbolic triangle with angles α, β, γ is π − (α+ β + γ). Deduce a formula for the
area of a hyperbolic polygon with a finite number of sides.

[HINT: In the half-plane model the area of a triangle A is
∫ ∫

A
dxdy
y2 . Start by calculating the area of a triangle

which has an ideal vertex, in which case you can assume that this vertex is at ∞. If it makes the calculation
easier assume the triangle has angle π/2 at one vertex. A general triangle can be expressed as the difference of
two triangles which have an ideal vertex.]

2(a) Consider a configuration of three circles of equal radii, C1, C2 and C3 in the plane, touching in pairs and
having disjoint interiors. Let Rj denote reflection in circle Cj , fixing it pointwise and exchanging its interior
with its exterior. Show that the group H of orientation-preserving conformal automorphisms generated by
R2R1 and R3R2 has limit set a circle, and that each of the discs in Ĉ bounded by this circle is mapped to itself
by H. Deduce that H is conjugate in Aut(Ĉ) to a Fuchsian group.

(b) Now add a fourth circle, C4, which touches C1, C2 and C3 and has interior disjoint from the their interiors.

Show that the limit set of the subgroup G of Aut(Ĉ) generated by the RjRk (j, k ∈ {1, 2, 3, 4}) is an Apollonian
circle-packing (a circle-packing obtained from three pairwise touching circles by iteratively adding a new circle
of maximal radius in each space bounded by three pairwise touching arcs of circles already drawn). Can you
interpret G as a ‘truncated tetrahedron group’?

3. (a) Show (or explain why) the external ray corresponding to the Feigenbaum point on the Mandelbrot set
(the period-doubling limit) has angle given by the Morse-Thue sequence: the sequence generated from the single
digit 0 by iteratively replacing 0 by 01 and 1 by 10.

(b) Show that the external ray associated to the golden mean (γ = (
√

5 − 1)/2) on the boundary of the main
cardioid M0 of the Mandelbrot set has angle θγ given by the sequence generated from the single digit 1 by
iteratively replacing each 1 with 10 and each 0 with 1.

(c) Find an algorithm generalising that in (b) to generate θν for every noble irrational ν (a noble irrational is one
for which the continued fraction expansion ends in an infinite sequence of 1’s). Consider possible generalisations.

4(a) (Shimuzu’s Lemma) Prove that if G is Fuchsian (i.e. a discrete subgroup of PSL(2,R)) and

A =

(
1 1
0 1

)
∈ G and

(
a b
c d

)
∈ G then :

(i) either c = 0 or |c| ≥ 1, and hence (ii) |tr(ABA−1B−1)− 2| ≥ 1.

[HINT: For part (i) let B0 = B and Bn+1 = BnAB
−1
n . Compute the entries an+1, bn+1, cn+1, dn+1 in terms

of an, bn, cn, dn and deduce that if |c| < 1 then Bn → A as n → ∞, contradicting discreteness. For part (ii)
compute the trace and apply part (i).]

(b) (Jorgenson’s inequality) Prove that for any elements A,B in a non-elementary discrete subgroup of SL(2,C):

|tr2(A)− 4|+ |tr(ABA−1B−1)− 2| ≥ 1

[HINT: In the case that A is parabolic this is part (a). If A is elliptic or hyperbolic, then without loss of generality
we may assume A is diagonal. Now consider the same sequence {Bn} as in part (a). You will find there are
various possibilities to consider and that some are easier than others.] SB 11/3/13

52



Holomorphic Dynamics and Hyperbolic Geometry (February-March 2013)

Assessment Exercises

These questions concerning Blaschke products are adapted from exercises in Milnor’s book. They are not intended
to be difficult. You can use any theorems from the course. You should send me your solutions - e.g. by e-mailing
scanned scripts to me at s.r.bullett@qmul.ac.uk - before the end of March.

1. Show that for any a ∈ D the map:

φa(z) =
z − a
1− āz

carries the unit circle to itself, and the origin to a point of D, and hence carries the unit disc D isomorphically
to itself. [HINT: Observe that dividing the numerator and denominator of φa(eiθ) by eiθ/2 gives an expression
of the form ζ/ζ̄.]

2. A finite product of the form

(B) f(z) = eiθφa1(z)φa2(z) . . . φan(z)

with a1, . . . , an ∈ D, is called a Blaschke product of degree n.

Show that f is a rational map which carries D onto D and Ĉ \ D onto Ĉ \ D. Deduce that the unit circle S1 is
completely invariant and hence that the Julia set J(f) ⊆ S1.

3. If g(z) = 1/f(z), where f is a Blaschke product, show that J(g) is also contained in the unit circle.

4. If f is a Blaschke product of the form (B) with n ≥ 2 and one of its factors is φ0(z) = z, show that:

(i) f has an attracting fixed point at 0.

(ii) 1/f(1/z) is also a Blaschke product with one of its factors φ0(z) = z, so f has an attracting fixed point at
∞ as well as at 0.

(iii) Deduce that J(f) is the entire circle. (You may assume without proof that for any attracting fixed point
z0 all points in the component of F (f) containing z0 have forward orbits which converge to z0.)

5. Suppose that

f(z) = z

(
z − a
1− az

)
with a ∈ R and |a| < 1 (so f satisfies the hypotheses of Question 4). Let ψ : Ĉ → Ĉ denote the map

ψ(z) = z+ 1/z. Show that there is a unique rational map F such that Fψ = ψf : Ĉ→ Ĉ. In this way construct
a 1-real-parameter family of non-conjugate quadratic rational maps with Julia set the real interval [−2,+2],
each with a fixed point at ∞. (You may assume that J(F ) = ψ(J(f)), or you can prove this.)

SB 6/3/13
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