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Introduction

Homological algebra emerged from algebraic topology as a tool to translate geometric intuition into
an algebraic formalism. Homological algebra shifts the focus from a direct descriptive approach
of a mathematical object X in some category C towards a study of that object in relation to all
others in the same category via the functors HomC(X,−) and HomC(−, X). This leads to new
invariants which in many situations describe obstructions regarding the existence and uniqueness
of objects and maps between objects with certain properties.

Homological methods can be applied to a wide range of mathematical objects, and hence some
basic category theoretic language is essential. The appendix contains a review of the terminology
and background material from category theory which we will use from the start.

The first three sections cover three key concepts of homological algebra, namely complexes,
homology, and homotopy. The focus in these sections is on methods how to manipulate chain
complexes and their invariants. We will then describe how chain complexes are attached to a variety
of mathematical objects, including algebras, groups, and topological spaces, and the interaction
between the structure of these objects and the homological invariants attached to them.
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1 Complexes

Definition 1.1. A graded object over a category C is a family X = (Xn)n∈Z of objects Xn in C.
Given two graded objects X = (Xn)n∈Z and Y = (Yn)n∈Z in C, a graded morphism of degree m is
a family f = (fn)n∈Z of morphisms fn : Xn → Yn+m in C. The category of graded objects over C
with graded morphisms of degree zero is denoted Gr(C).

The notion of a graded object makes sense for any category. We adopt the convention that a
graded object is a family of objects indexed by Z, but it is worth noting that here may be situations
where it is useful to specify gradings indexed by N or more general groups and monoids.

For instance, a graded vector space over a field k is an object in the category Gr(Vect(k)), and
a graded A-module is a graded object over the category Mod(A) of (left unital) A-modules, where
A is a ring or an algebra over a commutative ring. In an additive category in which direct sums
indexed by Z exist, such as in the categories Vect(k) and Mod(A), one writes sometimes ⊕n∈ZXn

instead of (Xn)n∈Z, where this notation is understood to include the structural monomorphisms
Xm → ⊕n∈ZXn.

The minimum requirement for the following definition of a (co-) chain complex over a category
C is the notion of a zero morphism between any two objects X and Y in C. The existence of zero
morphisms is ensured by the existence of a zero object. This is an object, typically denoted 0,
which is terminal and initial; that is, there are unique morphisms X → 0 and 0 → X for all
objects X. The zero morphism X → Y is the unique morphism which factors X → 0→ Y .

Definition 1.2. A chain complex over a category C with a zero object is a pair (X, δ) consisting
of a graded object X in C and a graded endomorphism δ of degree −1, called the differential of the
complex , satisfying δ ◦ δ = 0. Explicitly, δ is a family of morphisms δn : Xn → Xn−1 satisfying
δn−1 ◦ δn = 0. Dually, a cochain complex over a C is a pair (X, δ) consisting of a graded object
X = (Xn)n∈Z in C and a graded endomorphism δ = (δn : Xn → Xn+1)n∈Z, called differential of
the cochain complex, of degree 1 satisfying δ ◦ δ = 0, or equivalently, δn+1 ◦ δn = 0 for n ∈ Z.

One can visualise a chain complex as a possibly infinite sequence of morphisms in which the
composition of any two consecutive morphisms is zero.

· · · // Xn+1

δn+1 // Xn
δn // Xn−1

δn−1 // · · ·

For cochain complexes, the only difference is that the indices increase in the direction of the
differential:

· · · // Xn−1 δn−1
// Xn δn // Xn+1

δn+1
// · · ·

In order to distinguish between chain complexes and cochain complexes, the standard notational
convention is to use subscripts for chain complexes and superscripts for cochain complexes. One
can always switch from a chain complex to a cochain complex and vice versa by setting Xn = X−n
and δn = δ−n. Through this correspondence, any terminology in the context of chain complexes
has an analogue for cochain complexes.

3



Example 1.3. Let C be a category with a zero object. Let U , V be objects in C. Any morphism
f : U → V in C can be regarded as a chain or cochain complex of the form

· · · // 0 // U
f // V // 0 // · · ·

with U and V in any two consecutive degrees. A special case of this example arises for A an algebra
and c any element in A. Then the map f : A → A given by f(a) = ac for all a ∈ A (that is, f
is given by right multiplication with c) is an A-module endomorphism, giving rise to a two-term
complex of the form

· · · // 0 // A
f // A // 0 // · · ·

Tensor products (to be defined) of complexes of this form yield Koszul complexes.

Definition 1.4. Let C be a category with a zero object. A chain map between two chain complexes
(X, δ), (Y, ε) over C is a graded morphism of degree zero f = (fn : Xn → Yn)n∈Z satisfying

f ◦ δ = ε ◦ f ,

or equivalently,
fn−1 ◦ δn = εn ◦ fn

for all n ∈ Z. Cochain maps are defined similarly. The chain complexes, together with chain maps,
form the category Ch(C) of chain complexes over C.

A chain map can be visualised as a commutative ladder of the form

· · · // Xn+1

δn+1 //

fn+1

��

Xn
δn //

fn

��

Xn−1

δn−1 //

fn−1

��

· · ·

· · · // Yn+1

εn+1 // Yn
εn // Yn−1

εn−1 // · · ·

If the differential of a complex (X, δ) is clear from the context, we adopt the notational abuse
of just calling X a chain complex. We have a forgetful functor Ch(C) → Gr(C) mapping a chain
complex (X, δ) to its underlying graded object X. We have a functor from Gr(C)→ Ch(C) sending
a graded object X to the complex (X, 0) with zero differential; when composed with the forgetful
functor this yields the identity functor on Gr(C). Note that complexes and chain maps can be
defined in any category with a zero object.

For the next concept we need slightly more structure, namely that C is an additive category (so
that in particular morphism sets have an abelian group structure). For any integer i, we define the
shift automorphism [i] of Ch(C) as follows. For (X, δ) a chain complex, we define a graded object
X[i] by setting

X[i]n = Xn−i ;

this becomes a chain complex together with the differential δ[i] defined by

δ[i]n = (−1)iδn−i ,
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for n ∈ Z. Note the sign convention here (this is where we need C to be additive, so that morphism
sets between objects are abelian groups; the minus sign amounts to taking the inverse with respect
to the abelian group structure of the relevant morphism space). This defines the shift functor on
graded objects and on chain complexes. We need to define the shift functor on chain maps. For
f : X → Y a chain map, we define f [i] : X[i]→ Y [i] by setting

f [i]n = fn−1

for all n ∈ Z. We define a shift functor on the category of cochain complexes analogously; that is,
for (X, δ) a cochain complex, we define (X[i], δ[i]) by X[i]n = Xn+i and δ[i]n = (−1)iδn+i for all
n ∈ Z.

A chain complex X is called bounded above if Xn = 0 for n large enough; we denote by Ch+(C)
the full subcategory of Ch(C) consisting of all bounded above chain complexes over C. A chain
complex X is called bounded below if Xn = 0 for n small enough; we denote by Ch−(C) the full
subcategory of Ch(C) consisting of all bounded below chain complexes over C. A chain complex X
is called bounded if Xn = 0 for all but finitely many i; we denote by Chb(C) the full subcategory
of Ch(C) consisting of all bounded chain complexes over C.

Exercise 1.5. Let C be a category, and let X, Y , Z be graded objects over C. Let f : X → Y be
a graded map of degree i, and let g : Y → Z be a graded map of degree j. Show that g ◦ f is a
graded map of degree i+ j.

Exercise 1.6. Let C be an additive category, and let X, Y be bounded chain complexes over C.
Show that there are only finitely many integers i such that the space HomH(C)(X,Y [i]) of chain
maps from X to Y [i] is nonzero.

Exercise 1.7. Let C be an additive category, let i, j ∈ Z. Show that for any chain complex X
over C we have X[i + j] = (X[i])[j]. Show that this is an equality of functors [i + j] = [j] ◦ [i].
Deduce that [i] and [−i] are inverse functors.

Exercise 1.8. Show that if C is an abelian category (e. g. the module category Mod(A) of an
algebra A), then Ch(C) is again an abelian category. More precisely, show that for any chain map f
from a complex (X, δ) to a complex (Y, ε), the differential δ restricts to a differential on the graded
object ker(f) = (ker(fn : Xn → Yn))n∈Z, and the resulting chain complex (ker(f), δ|ker(f)) is a
kernel of f ; similarly, show that ε induces a differential on the cokernel of f as graded morphism,
which yields a cokernel of f in the category Ch(C). Deduce that f is a monomorphism (resp.
epimorphism) in Ch(C) if and only if all fi are monomorphisms (resp. epimorphisms) in C. Show
finally that the categories Ch+(C), Ch−(C), and Chb(C) are full abelian subcategories of Ch(C).

2 Homology

The content of this section could be formulated for arbitrary abelian categories. For expository
purpose, we consider module categories, keeping in mind that this is no loss of generality, thanks
to the Freyd-Mitchell embedding theorem, which says that any abelian category is equivalent to a
full subcategory of a module category.

5



Throughout this section, A is an algebra over a commutative ring k. For a complex (X, δ) of
A-modules, the condition δ ◦ δ = 0 means that we have an inclusion Im(δ) ⊆ ker(δ). The cokernel
ker(δ)/Im(δ) of this inclusion is defined to be the homology of X.

Definition 2.1. The homology of a chain complex (X, δ) of A-modules is the graded A-module
H∗(X, δ) = ker(δ)/Im(δ); more explicitly,

Hn(X, δ) = ker(δn)/Im(δn+1)

for n ∈ Z. If the differential δ is clear from the context we write H∗(X) instead of H∗(X, δ). If
H∗(X) = {0} then X is called exact or acyclic . Similarly, the cohomology of a cochain complex
(Y, ε) of A-modules is the graded A-module ker(ε)/Im(ε); explicitly,

Hn(Y, ε) = ker(εn)/Im(εn−1)

for n ∈ Z. As before, if ε is clear from the context we write H∗(Y ), and if H∗(Y ) = {0} then Y is
called exact or acyclic.

The homology Hn(X) in a fixed degree n of a chain complex X is a subquotient of Xn.

Exercise 2.2. Let (X, δ) be a chain complex of A-modules. Show that if δ = 0, then H∗(X, δ) = X,
or equivalently, Hn(X, δ) = Xn for all n ∈ Z.

Example 2.3. Any A-module M can be viewed as a complex ‘concentrated in degree 0’ by setting
X0 = M and Xn = {0} for any nonzero integer n, with the zero differential. The homology of this
complex is isomorphic to the graded object X because the differential is zero.

Example 2.4. Any short exact sequence of A-modules can be viewed as bounded exact complex.

Taking homology or cohomology is functorial:

Proposition 2.5. Let f : (X, δ)→ (Y, ε) be a chain map of chain complexes of A-modules. Then
f restricts to graded maps ker(δ) → ker(ε) and Im(δ) → Im(ε). In particular, f induces a graded
homomorphism of graded A-modules H∗(f) : H∗(X)→ H∗(Y ). The assignments X 7→ H∗(X) and
f 7→ H∗(f) define a functor from the category of chain complexes Ch(Mod(A)) to the category of
graded A-modules Gr(Mod(A)).

Proof. Let n be an integer. Let x ∈ ker(δn). We have εn(fn(x)) = fn−1(δn(x)) = 0, hence f(x) ∈
ker(εn). Thus f sends ker(δ) to ker(ε). Let y ∈ Im(δn+1). Write y = δn+1(z) for some z ∈ Xn+1.
We have fn(y) = fn(δn+1(z)) = εn+1(fn+1(z)) ∈ Im(εn+1), and hence f sends Im(δ) to Im(ε).
Since H∗(f) is induced by f , one verifies easily that given two composable chain maps f , g, we
have H∗(g ◦ f) = H∗(g) ◦H∗(f).

We have the obvious analogous statement for cohomology. The functor induced by taking
homology is very different from the forgetful functor Ch(C)→ Gr(C).

Definition 2.6. Let C be an abelian category and X, Y chain complexes. A chain map f : X → Y
is called a quasi-isomorphism if the induced map on homology H∗(f) is an isomorphism H∗(X) ∼=
H∗(Y ) in Gr(C).
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Note that if f : X → Y is a quasi-isomorphism, there need not be a chain map g : Y → X
inducing the inverse isomorphism H∗(Y ) ∼= H∗(X). The relation of two complexes X, Y being
quasi-isomorphic is the smallest equivalence relation ∼ satisfying X ∼ Y if there is a quasi-
isomorphism X → Y . Similarly for cochain maps between cochain complexes.

Example 2.7. Let 0 // U
f // V

g // W // 0 be a short exact sequence of A-modules;
that is, f is injective, Im(f) = ker(g) and g is surjective. Then in particular g ◦ f = 0, and hence
the following diagram is commutative:

· · · // 0 //

��

U
f //

��

V //

g

��

0 //

��

· · ·

· · · // 0 // 0 // W // 0 // · · ·

is commutative. This diagram represents a chain map from the top row to the bottom row, viewed
as chain complexes with V , W in degree zero, with U in degree 1, and all other terms zero. This
chain map is a quasi-isomorphism: the homology of the top row in degree zero is V/Im(f) =
V/ker(g) ∼= Im(g) = W . In all other degrees the homology of the top row is zero (using that f is
injective). The homology of the bottom row is also W in degree 0 and zero in all other degrees.
Thus g induces a quasi-isomorphism. In general, there is no quasi-isomorphism from the bottom to
the top row. In fact, there is such a quasi-isomorphism if and only if the exact sequence we started
out with is split. To see this, observe first that any A-homomorphism s : W → V determines
a chain map from the bottom to the top row (which is zero in all nonzero degrees). Such an s

is a quasi-isomorphism if and only if the composition of maps W
s // V // V/Im(f) is an

isomorphism. This composition is injective if and only of s is injective and Im(s) ∩ Im(f) = {0}.
This composition is surjective if and only if Im(f) + Im(s) = V . Thus this is an isomorphism if
and only if s is injective and if V = Im(s)⊕ Im(f), so if and only if g is split surjective.

One might hope that if X is a subcomplex of a chain complex Y , then the homology of Y can
be calculated in terms of that of X and Z. It is not quite as simple as that. One of the fundamental
features of complexes over an abelian category is that short exact sequences of complexes give rise
to long exact (co-)homology sequences. We state and prove this for module categories, as this
will be sufficient for this course. For general abelian categories, one can either directly modify the
proofs, or use Freyd’s embedding theorem, saying that any abelian category can be fully embedded
into a module category.

Theorem 2.8. Let A be a k-algebra. Any short exact sequence of chain complexes of A-modules

0 // X
f // Y

g // Z // 0

induces a long exact sequence

· · · // Hn(X)
Hn(f) // Hn(Y )

Hn(g) // Hn(Z)
dn // Hn−1(X) // · · ·

depending functorially on the short exact sequence.
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The functorial dependence in this theorem means that given a commutative diagram of chain
complexes with exact rows

0 // X
f //

a

��

Y
g //

b
��

Z //

c

��

0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0

we get a commutative ‘ladder’ of long exact sequences

· · · // Hn(X)
Hn(f) //

Hn(a)

��

Hn(Y )
Hn(g) //

Hn(b)

��

Hn(Z)
dn //

Hn(c)

��

Hn−1(X)
Hn−1(f)//

Hn−1(a)

��

Hn−1(Y ) //

Hn−1(b)

��

· · ·

· · · // Hn(X ′)
Hn(f ′)

// Hn(Y ′)
Hn(g′)

// Hn(Z ′)
d′n

// Hn−1(X ′)
Hn−1(f ′)

// Hn−1(Y ) // · · ·

The morphism dn is called connecting homomorphism. Theorem 2.8 translates verbatim to cochain
complexes, except that the connecting homomorphism dn : Hn(Z)→ Hn+1(X) is of degree 1.

Proof of Theorem 2.8. Denote by δ, ε, ζ the differentials of X, Y , Z, respectively. The short exact
sequence in the statement is a commutative diagram of the following form.

�� �� ��
0 // Xn+1

fn+1 //

δn+1

��

Yn+1

gn+1 //

εn+1

��

Zn+1
//

ζn+1

��

0

0 // Xn
fn //

δn

��

Yn
gn //

εn

��

Zn //

ζn

��

0

0 // Xn−1

fn−1 //

δn−1

��

Yn−1

gn−1 //

εn−1

��

Zn−1
//

ζn−1

��

0

0 // Xn−2

fn−2 //

��

Yn−2

gn−2 //

��

Zn−2
//

��

0

where the horizontal sequences are exact; that is, fn is injective, gn is surjective, and Im(fn) =
ker(gn) for all n ∈ Z.

We define dn : Hn(Z)→ Hn−1(X) as follows. By the very definition of Hn(Z) = ker(ζn)/Im(ζn+1),
any element in Hn(Z) is of the form

z + Im(ζn+1)
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for some z ∈ ker(ζn). Since g is surjective in each degree, there is y ∈ Yn such that

gn(y) = z .

Since ζn(z) = 0 we get that

gn−1(εn(y)) = ζn(gn(y)) = ζn(z) = 0 .

Thus εn(y) ∈ ker(gn−1) = Im(fn−1), where we use the exactness of the sequence in the statement.
Thus there is x ∈ Xn−1 satisfying fn−1(x) = εn(y). Moreover,

fn−2(δn−1(x)) = εn−1(fn−1(x)) = εn−1(εn(y)) = 0 .

Since fn−2 is a monomorphism, this shows that δn−1(x) = 0, or equivalently, we have

x ∈ ker(δn−1) .

Hence x+ Im(δn) is an element in Hn−1(X). In order to show that the assignment

z + Im(ζn+1) 7→ x+ Im(δn)

yields a well-defined map one needs to verify that if z ∈ Im(ζn+1) then x ∈ Im(δn). Suppose that
z ∈ Im(ζn+1). Write z = ζn+1(s) for some s ∈ Zn+1. Since gn+1 is surjective there is t ∈ Yn+1

such that gn+1(t) = s. Then

gn(εn+1(t)) = ζn+1(gn+1(t)) = ζn+1(s) = z = gn(y)

and hence y − εn+1(t) ∈ ker(gn) = Im(fn). Write y − εn+1(t) = fn(w) for some w ∈ Xn. We have

fn−1(δn(w)) = εn(fn(w)) = εn(y − εn+1(t)) = εn(y) = fn−1(x)

Since fn−1 is injective, this implies that x = δn(w) belongs to Im(δn). This implies that there is
indeed a well-defined map dn : Hn(Z)→ Hn−1(X) such that

dn(z + Im(ζn+1)) = x+ Im(δn)

with x and z as above.

We need to show the exactness of the the sequence in three places. We start with Im(Hn(f)) =
ker(Hn(g)). We have

Im(Hn(f)) = {fn(x) + Im(εn+1) | x ∈ ker(δn)}

ker(Hn(g)) = {y + Im(εn+1) | y ∈ ker(εn), gn(y) ∈ Im(ζn+1)}

The inclusion Im(Hn(f)) ⊆ ker(Hn(g)) is clear because g◦f = 0, hence Hn(g)◦Hn(f) = Hn(g◦f) =
0 by the functoriality of Hn. For the reverse inclusion, let y ∈ ker(εn) such that gn(y) ∈ Im(ζn+1).
Thus gn(y) = ζn+1(z′) for some z′ ∈ Zn+1. Since gn+1 is surjective, there is y′ ∈ Yn+1 such that
gn+1(y′) = z′. Then

gn(y − εn+1(y′)) = gn(y)− gn(εn+1(y′)) = ζn+1(z′)− ζn+1(gn+1(y′)) = ζn+1(z′)− ζn+1(z′) = 0
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Thus y − εn+1(y′) ∈ ker(gn) = Im(fn). Write y − εn+1(y′) = fn(x′) for some x′ ∈ Xn. Then
y + Im(εn+1) = fn(x′) + Im(εn+1) ∈ Im(Hn(f)).

We need to show next that Im(Hn(g)) = ker(dn). We have

Im(Hn(g)) = {gn(y) + Im(ζn+1) | y ∈ ker(εn)}

For ker(dn) we need to determine all z ∈ ker(ζn) such that the element x ∈ ker(δn−1) constructed
above lies actually in Im(δn), so that x represents 0 in Hn−1(X). Write as before z = gn(y) for
some y ∈ Yn and εn(y) = fn−1(x) for some x ∈ ker(δn−1), so that x+ Im(δn) = dn(z + Im(εn+1)
as described above. Suppose that z + Im(εn+1) ∈ Im(Hn(g)). That is, we have z + Im(εn+1) =
gn(y)+Im(εn+1) for some y ∈ ker(εn). Then 0 = εn(y) = fn−1(x), which shows that x = 0 as fn−1

is injective. This shows the inclusion Im(Hn(g)) ⊆ ker(dn). Suppose conversely that z+Im(ζn+1) ∈
ker(dn). This is equivalent to x ∈ Im(δn). Write x = δn(x′) for some x′ ∈ Xn. Set y′ = fn(x′).
Then

ε(y′) = ε(fn(x′)) = fn−1(δn(x′)) = fn−1(x)

and
gn(y − y′) = gn(y)− gn(fn(x′)) = gn(y) = z

The above implies

εn(y − y′) = εn(y)− εn(y′) = fn−1(x)− fn−1(x) = 0

and thus z = gn(y−y′) and y−y′ ∈ ker(εn) which means exactly that the class of z is in the image
of Hn(g).

The last verification for the exactness is Im(dn) = ker(Hn−1(f)). By the construction of dn, Im(dn)
consists of all classes x+ Im(δn) such that fn−1(x) = ε(y) for some y ∈ Yn satisfying gn(y) = z ∈
ker(ζn). We have

ker(Hn−1(f)) = {x+ Im(δn) | x ∈ ker(δn), fn−1(x) ∈ Im(εn)}

The inclusion Im(dn) ⊆ ker(Hn−1(f)) is clear from this description. For the converse, suppose
that fn−1(x) = εn(y) for some y ∈ Yn. Consider z = gn(y). We have

ζn(z) = ζn(gn(y)) = gn−1(εn(y)) = gn−1(fn−1(x)) = 0

and hence z ∈ ker(ζn), which shows the equality as required.

This concludes the proof of the exactness statement. It remains to verify the naturality of the
connecting homomorphisms. Let

0 // X
f //

a

��

Y
g //

b
��

Z //

c

��

0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0
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be a commutative diagram of chain maps such that the rows are exact. We need to show that the
ladder above is commutative. The squares which involve only Hn are commutative because Hn is
a functor; that is, we have a commutative diagram

Hn(X)
Hn(f) //

Hn(a)

��

Hn(Y )
Hn(g) //

Hn(b)

��

Hn(Z)

Hn(c)

��
Hn(X ′)

Hn(f ′)

// Hn(Y ′)
Hn(g′)

// Hn(Z ′)

It remains to show the commutativity of the diagram

Hn(Z)
dn //

Hn(c)

��

Hn−1(X)

Hn−1(a)

��
Hn(Z ′)

d′n

// Hn−1(X ′)

Let x, y, z are as above in the construction of dn; that is, z ∈ ker(ζn), z = gn(y), and fn−1(x) =
εn(y). We need to show that the images an−1(x), bn(y), cn(z) of x, y, z are the corresponding
elements required in the construction of d′n evaluated at the class of cn(z). That is, we need to
verify that

g′n(bn(y)) = cn(z)

and that
f ′n−1(an−1(x)) = ε′n(bn(y))

The first equation holds because g′n(bn(y)) = cn(gn(y)) = cn(x). The second equation holds because
f ′n−1(an−1(x)) = bn−1(fn−1(x)) = bn−1(εn(y)) = ε′n(bn(y)). This shows the commutativity in the
ladder above for the square involving dn, completing the proof.

Exercise 2.9. State the cohomology version of Theorem 2.8.

Corollary 2.10. Let A be a k-algebra and let

0 // X
f // Y

g // Z // 0

be a short exact sequence of chain complexes of A-modules.

(i) f is a quasi-isomorphism if and only if Z is acyclic.

(ii) g is a quasi-isomorphism if and only if X is acyclic.

(iii) If two of the complexes X, Y , Z are acyclic, so is the third.

Proof. The long exact homology sequence shows that if Hn+1(Z) = Hn(Z) = {0}, then Hn(f)
is an isomorphism, and if Hn(f), Hn−1(f) are isomorphisms, then the maps Hn(g), dn are zero,
hence Hn(Z) = {0}. This shows (i), and the rest follows similarly.
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The following observation is used to compare the long exact homology sequences via a commu-
tative ladder as above:

Proposition 2.11 (The 5-Lemma). Let A be a k-algebra and let

X1
f1 //

a1

��

X2
f2 //

a2

��

X3
f3 //

a3

��

X4
f4 //

a4

��

X5

a5

��
Y1 g1

// Y2 g2
// Y3 g3

// Y4 g4
// Y5

be a commutative diagram of A-modules with exact rows. If a1, a2, a4, a5 are isomorphisms then
a3 is an isomorphism.

Proof. Let x ∈ ker(a3). Then a4(f3(x)) = g3(a3(x)) = 0, hence f3(x) = 0 as a4 is an isomorphism.
Thus x ∈ ker(f3) = Im(f2), and so there is y ∈ X2 such that f2(y) = x. Then g2(a2(y)) =
a3(f2(y)) = a3(x) = 0, hence a2(y) ∈ ker(g2) = Im(g1), and so there is z ∈ Y1 satisfying g1(z) =
a2(y). As a1 is an isomorphism, there is w ∈ X1 such that a1(w) = z. Then a2(f1(w)) =
g1(a1(w)) = g1(z) = a2(y). Since a2 is an isomorphism this implies that f1(w) = y. But then x =
f2(y) = f2(f1(w)) = 0, and so a3 is injective. For the surjectivity of a3, let y ∈ Y3. Then g3(y) ∈ Y4.
Since a4 is an isomorphism, there is v ∈ X4 such that a4(v) = g3(y). Then a5(f4(v)) = g4(a4(v)) =
g4(g3(y)) = 0. Thus f4(v) = 0 as a4 is an isomorphism. It follows that v ∈ ker(f4) = Im(f3).
Write v = f3(u) for some u ∈ X3. Then g3(a3(u)− y) = g3(a3(u))− g3(y) = a4(f3(u))− g3(y) =
a4(v) − g3(y) = 0. Thus a3(u) − y ∈ ker(g3) = Im(g2). Write a3(u) − y = g2(w) for some w ∈
y2. Since a2 is an isomorphism there is r ∈ X2 such that a2(r) = w. Then a3(v) − y = g2(w) =
g2(a2(r)) = a3(f2(r)). This shows that y = a3(v − f2(r)), and hence that a3 is surjective.

Corollary 2.12. Let A be an algebra over a commutative ring k and let

0 // X
f //

a

��

Y
g //

b
��

Z //

c

��

0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0

be a commutative diagram of chain complexes of A-modules with exact rows. If two of a, b, c are
quasi-isomorphisms, so is the third.

Proof. Apply the 5-Lemma to the five terms in the commutative ladder following Theorem 2.8.

Exercise 2.13. Describe the connecting homomorphism in the long exact cohomology sequence
associated with a short exact sequence of cochain complexes.

3 Homotopy

Definition 3.1. Let C be an additive category and let (Xδ), (Y, ε) be complexes over C. A (chain)
homotopy from X to Y is a graded morphism h : X → Y of degree 1; that is, h is a family of
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morphisms hn : Xn → Yn+1 in C, for any n ∈ Z. Two chain morphisms f, f ′ : X → Y are called
homotopic , written f ∼ f ′, if there is a homotopy h : X → Y such that

f − f ′ = h ◦ δ + ε ◦ h ,

or equivalently, if
fn − f ′n = hn−1 ◦ δn + εn+1 ◦ hn

for any n ∈ Z.

Note that there is no requirement for a homotopy to be compatible with the differentials.

Exercise 3.2. Let (X, δ), (Y, ε) be chain complexes over an additive category C. Show that if
h : X → Y is a homotopy, then the graded map f = h ◦ δ + ε ◦ h is a chain map. Deduce that the
chain maps from X to Y which are homotopic to the zero chain map are exactly all chain maps of
the form h ◦ δ + ε ◦ h with h running over all homotopies from X to Y .

For cochain complexes, we define analogously a cochain homotopy to be a graded morphism of
degree −1 (so the degree of a homotopy is always opposite to that of the differential). One can
visualise a homotopy between chain complexes by a diagram of the form

· · · // Xn+1

δn+1 //

hn+1

||

Xn
δn //

hn

||

Xn−1

δn−1 //

hn−1

||

· · ·

· · · // Yn+1

εn+1 // Yn
εn // Yn−1

εn−1 // · · ·

Definition 3.3. Let C be an additive category and let (X, δ), (Y, ε) be complexes over C. A chain
map f : X → Y is a homotopy equivalence if there is a chain map g : Y → X such that g ◦f ∼ IdX
and f ◦ g ∼ IdY ; in that case, g is called a homotopy inverse of f , and the complexes X, Y are
said to be homotopy equivalent, written X ' Y .

Proposition 3.4. For a chain complex X over an additive category C we have X ' 0 (the zero
complex) if and only if IdX ∼ 0 (the zero chain map on X).

Proof. We have X ' 0 if and only if there are maps g : 0→ X and f : X → 0 such that g◦f ' IdX
and f ◦g = Id0. Since the zero chain maps are the only chain maps between X and the zero complex
0 in either direction, this holds if and only if the zero map 0 on X is homotopic to IdX .

Definition 3.5. Let C be an additive category and let (Xδ) be a complex over C. If X ' 0 (the
zero complex), then X is called contractible.

The terminology comes from topology (complexes calculating the singular homology of a con-
tractible topological space are contractible chain complexes).

Proposition 3.6. Let X, Y be chain complexes over an additive category C. The relation ∼ on
the set of HomCh(C)(X,Y ) of chain maps from X to Y is an equivalence relation, compatible with
sums and compositions of chain maps.
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Proof. Denote by δ, ε the differentials of X, Y . Let f , f ′, f ′′ : X → Y be chain maps. The
relation ∼ is reflexive: we have f ∼ f , using the zero homotopy. The relation ∼ is symmetric: if
f ∼ f ′ then f ′ ∼ f ; indeed, if h is a homotopy satisfying f − f ′ = h ◦ δ + ε ◦ h, then f ′ − f =
(−h) ◦ δ+ ε ◦ (−h). Finally, the relation ∼ is transitive: if f − f ′ = h ◦ δ+ ε ◦h for some homotopy
h and f ′−f ′′ = k ◦ δ+ ε◦k for some homotopy k, then h+k is a homotopy from X to Y satisfying
f − f ′′ = f − f ′ + f ′ − f ′′ = (h + k) ◦ δ + ε ◦ (h + k). If g, g′ : X → Y are chain maps and if
f ∼ f ′ and g ∼ g′, then f + g ∼ f ′ + g′; this follows from taking sums of homotopies. If (Z, ζ) is a
third chain complex and g, g : Y → Z are chain maps such that f ∼ f ′ and g ∼ g′ via homotopies
h : X → Y and h′ : Y → Z, then a short calculation shows that g ◦ f ∼ g′ ◦ f ′ via the homotopy
g ◦ h+ h′ ◦ f ′.

Exercise 3.7. Show that a direct summand (in the category of chain complexes over some additive
category) of a contractibe complex is contractible.

Proposition 3.8. Let A be an algebra over a commutative ring k and let f , f ′ : (X, δ) → (Y, ε)
be chain maps of complexes of A-modules.

(i) For any homotopy h : X → Y , the graded morphism h ◦ δ + ε ◦ h : X → Y is a chain map
inducing the zero morphism from H∗(X) to H∗(Y ).

(ii) If f ∼ f ′ then H(f) = H(f ′) : H∗(X)→ H∗(Y ).

(iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.

(iv) If X ' 0 then X is acyclic.

Proof. The first part of the first statement was noted in an exercise above. We have

ε ◦ (h ◦ δ + ε ◦ h) = ε ◦ h ◦ δ = (h ◦ δ + ε ◦ h) ◦ δ ,

hence h ◦ δ + ε ◦ h is a chain map from X to Y . Moreover, the induced map

ker(δ)→ ker(ε)

by h◦δ+ε◦h is equal to the map induced by ε◦h and hence has image contained in Im(ε) ⊂ ker(ε),
which shows that it induces the zero map on homology. This proves (i). If f ∼ f ′ then by (i), the
difference f − f ′ induces the zero map on homology and thus H(f) = H(f ′), which proves (ii).
Suppose f has a homotopy inverse g. Then, by (ii), we have IdH∗(X) = H(g ◦ f) = H(g) ◦H(f),
thus H(g) and H(f) are inverse, proving (iii). If X ' 0, then X is quasi-isomorphic to zero by
(iii), which is equivalent to H∗(X) = 0, whence (iv).

Remark 3.9. Let A, B be two algebras over a commutative ring k and let F : Mod(A) →
Mod(B) a k-linear (not necessarily exact) functor. Since F sends A-modules to B-modules and
A-homomorphisms to B-homomorphisms, it extends to a functor, denoted by the same letter,
F : Ch(Mod(A)) → Ch(Mod(B)). This functor need not send a quasi-isomorphism to a quasi-
isomorphism. But it sends a homotopy h : X → Y between chain complexes of A-modules X
and Y to a homotopy F(h) : F(X) → F(Y ) between the chain complexes of B-modules F(X)
and F(Y ). Thus homotopic chain maps from X → Y are sent to homotopic chain maps from
F(X)→ F(Y ). In particular, F sends a homotopy equivalence X ' Y to a homotopy equivalence
F(X) ' F(Y ), and hence F sends contractible chain complexes of A-modules to contractible chain
complexes of B-modules.
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Exercise 3.10. Show that a chain complex over some additive category of the form

· · · // 0 // U
IdU // U // 0 // · · ·

is contractible, where the two terms equal to the same object U are in two arbitrary consecutive
degrees. (One can show that any contractible chain complex is a direct sum of complexes of this
form.)

Exercise 3.11. Show that a short exact sequence of A-modules is split if and only if it is con-
tractible when regarded as a chain complex.

Definition 3.12. Let A be an algebra over a commutative ring k. The homotopy category of
complexes over Mod(A) is the category K(Mod(A)) whose objects are the complexes over Mod(A)
and and whose morphisms are the homotopy equivalence classes

HomK(Mod(A))(X,Y ) = HomCh(Mod(A))(X,Y )/ ∼

of chain maps, for any two complexes X, Y over C. The composition of morphisms in K(Mod(A))
is induced by that in Ch(Mod(A)). We denote by K+(Mod(A)), K−(Mod(A)), Kb(Mod(A)) the
full subcategories of K(Mod(A)) consisting of left bounded, right bounded, bounded complexes of
A-modules, respectively.

Slightly more explicitly, the composition in K(Mod(A)) is defined as follows. If f : X → Y
and g : Y → Z are chain maps, and if we denote by [f ] the class of all chain maps homotopic
to f , then [f ] : X → Y is a morphism in the category K(Mod(A)), and we have [g] ◦ [f ] =
[g ◦ f ]. For this to be well-defined we need the observation from 3.6 that ∼ is compatible with
the composition of chain maps. If f , f ′ : X → Y are chain maps, then the equality [f ] = [f ′]
is equivalent to f − f ′ ∼ 0. Thus if we denote by Hom0

Ch(Mod(A))(X,Y ) the k-submodule of all
chain maps f : X → Y satisfying f ∼ 0, or equivalently, [f ] = [0], then HomK(Mod(A))(X,Y ) is
the quotient space

HomK(Mod(A))(X,Y ) = HomCh(Mod(A))(X,Y )/Hom0
Ch(Mod(A))(X,Y ) .

Remark 3.13. Let A be an algebra over a commutative ring. The categories K(Mod(A)) and
Ch(Mod(A)) have the same objects, but morphisms in K(Mod(A)) are classes of morphisms in
Ch(Mod(A)). Thus we have a functor

Ch(Mod(A))→ K(Mod(A))

which is sends any chain complex X to itself and any chain map f : X → Y to the homotopy
class [f ] of f . Taking homology yields a functor H∗ : Ch(Mod(A))→ Gr(Mod(A)). It follows from
3.8 that for f a chain map, the induced map H(f) on homology depends only on the homotopy
class [f ] of f , and therefore this functor factors through the canonical functor Ch(Mod(A)) →
K(Mod(A)); that is, we have a commutative diagram of canonical functors

Ch(Mod(A)) //

H∗ ((

K(Mod(A))

ww
Gr(Mod(A))
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Remark 3.14. Let A be an algebra over a commutative ring. If two chain maps f , f ′ : X → Y of
complexes of A-modules are homotopy equivalent via a homotopy h : X → Y , then for any integer
i, the “shifted” chain maps f [i], f ′[i] : X[i] → Y [i] are homotopic via the homotopy h[i] given by
h[i]n = hn−i for any n ∈ Z. In other words, the shift automorphism [i] of Ch(Mod(A)) induces an
automorphism, still denoted by [i], of the homotopy category K(Mod(A))). This automorphism
preserves any of the subcategories K+(Mod(A)), K−(Mod(A)), Kb(Mod(A)).

Remark 3.15. Let A be an algebra over a commutative ring. Two homotopic chain maps f ,
f ′ : X → Y between complexes of A-modules may have different kernels and cokernels. Therefore,
in the category K(Mod(A)) there is no well-defined notion of kernel and cokernel of a morphism.
In particular, the category K(Mod(A)) is additive but not abelian - there is no notion of exactness.
The search for a replacement of short exact sequences is what led to the concept of a triangulated
category.

The following theorem shows that although a bounded below complex of projective A-modules
is not a projective object in the category of chain compelxes, it does have a lifting property with
respect to quasi-isomorphisms. Similarly, bounded above complexes of injective A-modules have
the extension property with respect to quasi-isomorphisms.

Theorem 3.16. Let P be a complex of projective A-modules, I a complex of injective objects
A-modules, and let

0 // X
f // Y

g // Z // 0

be a short exact sequence of complexes of A-modules.

(i) Suppose that X is acyclic and that one of P , Y is bounded below. The map

HomCh(Mod(A))(P, Y )→ HomCh(Mod(A))(P,Z)

given by composition with g is surjective and induces an isomorphism

HomK(Mod(A))(P, Y ) ∼= HomK(Mod(A))(P,Z) .

(ii) Suppose that Z is acyclic and that one of Y , I is bounded above. The map

HomCh(Mod(A))(Y, I)→ HomCh(Mod(A))(X, I)

given by precomposition with f induces an isomorphism

HomK(Mod(A))(Y, I) ∼= HomK(Mod(A))(X, I) .

Proof. (i) Denote by δ, ε, ζ, π the differentials of X, Y , Z, P , respectively. We first show the
surjectivity of the map

HomCh(Mod(A))(P, Y )→ HomCh(Mod(A))(P,Z)

sending a chain map p : P → Y to the chain map g ◦ p : X → Z. Let q : P → Z be a chain map.
We need to construct a chain map p : P → Y satisfying g ◦ p = q. We construct such a chain map
p inductively, by induction over the degree. In order to start an inductive argument, we will need
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the hypothesis that one of P or Y is bounded below. (Note that if Y is bounded below, then so is
Z by the surjectivity of g.) This hypothesis ensures that we have qi = 0 for all sufficiently small
integers i, so we may simply take pi = 0 for i sufficiently small. Let n be an integer. Suppose we
have already constructed morphisms pi : Pi → Yi satisfying

gi ◦ pi = qi

εi ◦ pi = pi−1 ◦ πi
for i < n. We construct pn as follows. Since gn is an epimorphism and Pn is projective, there is a
morphism p′n : Pn → Yn such that gn ◦ p′n = qn. That is, p′n satisfies the first of the two conditions
above, but we may have to adjust p′n to make sure, that it is compatible with the differentials as
in the second condition. We have

gn−1 ◦ (εn ◦ p′n − pn−1 ◦ πn) = ζn ◦ gn ◦ p′n − gn−1 ◦ pn−1 ◦ πn = ζn ◦ qn − qn−1 ◦ πn = 0

because q is a chain map. Thus we have

Im(εn ◦ p′n − pn−1 ◦ πn) ⊂ ker(gn−1) = Im(fn−1)

Consequently, since fn−1 is a monomorphism, there is a morphism σ : Pn → Xn−1 such that

fn−1 ◦ σ = εn ◦ p′n − pn−1 ◦ πn

Moreover, we have

fn−2 ◦ δn−1 ◦ σ = εn−1 ◦ fn−1 ◦ σ = εn−1 ◦ εn ◦ p′n − εn−1 ◦ pn−1 ◦ πn = −pn−2 ◦ πn−1 ◦ πn = 0

and hence
δn−1 ◦ σ = 0

as fn−2 is a monomorphism. Therefore we have

Im(σ) ⊂ ker(δn−1) = Im(δn) ,

where the last equality holds as X is acylic. Since Pn is projective, the morphism σ : Pn → Im(δn)
lifts to a morphism ρ : Pn → Xn; that is, σ = δn ◦ ρ. Set pn = p′n − fn ◦ ρ. We still have

gn ◦ pn = gn ◦ p′n − gn ◦ fn ◦ ρ = gn ◦ p′n = qn ,

and we now also have the compatibility with the differentials

εn◦pn = εn◦p′n−εn◦fnρ = εn◦p′n−fn−1◦δn◦ρ = εn◦p′n−fn−1◦σ = εn◦p′n−(εn◦p′n−pn−1◦πn) = pn−1◦πn

as required. This shows the surjectivity of the map given by composition with g.

We need to show that p ∼ 0 if and only if q ∼ 0. If p ∼ 0 there is a homotopy h : P → Y such
that

p = ε ◦ h+ h ◦ π .
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Composing with g yields

q = g ◦ p = g ◦ ε ◦ h+ g ◦ h ◦ π = δ ◦ g ◦ h+ g ◦ h ◦ π ,

where we have used that g is a chain map. Thus q ∼ 0 via the homotopy g◦h : P → X. Conversely,
suppose that q ∼ 0. We need to show that then p ∼ 0. The first part of the argument shows that
we may assume that q = 0. To see this, observe first that since gn+1 is an epimorphism, any
morphism Pn → Xn+1 lifts to a morphism Pn → Yn+1, and thus every homotopy P → X lifts to
some homotopy P → Y . This means that if q ∼ 0, there is some chain map p′ : P → Y such that
p′ ∼ 0 and g ◦ p′ = q, but p′ need not be equal to p. It suffices to show that p − p′ ∼ 0. Since
g ◦ (p− p′) = 0, we may therefore assume that q = 0. Then g ◦ p = q = 0, hence

Im(p) ⊂ ker(g) = Im(f) .

This implies that there is a chain map u : P → X such that f ◦ u = p. It suffices to show that
u ∼ 0. This is again done inductively. Given an integer n, suppose that we have morphisms
hi : Pi → Xi+1 satisfying ui = δi+1 ◦ hi + hi−1 ◦ πi for any i < n. Using this equality for i = n− 1
we get

δn◦(un−hn−1◦πn) = δn◦un−δn◦hn−1◦πn = δn◦un−(un−1−hn−2◦πn−1)◦πn = δn◦un−un−1◦πn = 0 .

as u is a chain map. Thus

Im(un − hn−1 ◦ πn) ⊂ ker(δn) = Im(δn+1) .

As Pn is projective, there is hn : Pn → Xn+1 such that

δn+1 ◦ hn = un − hn−1 ◦ πn

as required. This completes the proof of (i). The proof of (ii) is obtained by dualising the arguments
(reversing all arrows and exchanging monomorphisms and epimorphisms).

The above theorem holds verbatim for arbitrary abelian categories instead of module cate-
gories; the only adjustment in the proof is that inclusion maps need to replaced by canonical
monomorphisms.

Remark 3.17. The condition that X is acyclic is equivalent to g being a quasi-ismorphism. In
addition, in the statement of 3.16, the chain map g is surjective in each degree. One can show that
for the second isomorphism in (i), the surjectivity of g is not necessary. That is, one can show that
if g : Y → Z is any quasi-isomorphism, then composition with g induces an isomorphism

HomK(Mod(A))(P, Y ) ∼= HomK(Mod(A))(P,Z) .

Similary, for any quasi-isomorphism f : X → Y , precomposition with f induces an isomorphism

HomK(Mod(A))(Y, I) ∼= HomK(Mod(A))(X, I) .

In both cases, this is played back to Theorem 3.16 by adding a contractible complex to Y which
maps onto Z or which admits a degreewise injective map X → Y , so that g (resp. f) can be

18



assumed to be surjective (resp. injective) in each degree. One way to achieve this uses the cone
of a chain complex X; this is a contractible complex which admits a degreewise injective chain
map X → C(X) and a degreewise surjective chain map C(X) → X[1]. See the exercises at the
end of this section. We will come back to this in the last section, where we show that homotopy
categories are triangulated.

Corollary 3.18. Let P be a complex of projective A-modules, let I be a complex of injective
A-modules, and let X be an acyclic complex of A-modules.

(i) If one of X, P is bounded below, then HomK(C)(P,X) = {0}.
(ii) If one of X, I is bounded above, then HomK(C)(X, I) = {0}.

Corollary 3.19. Let X be a complex over A-modules.

(i) X is acyclic if and only if HomK(C)(P,X) = {0} for any bounded below complex P of projective
A-modules.

(ii) X is acyclic if and only if HomK(C)(X, I) = {0} for any bounded above complex I of injective
A-modules.

Proof. (i) If X is acyclic then HomK(C)(P,X) = {0} for any bounded below complex P of projective
A-modules by 3.18. If X is not acyclic, there is an integer n such that Hn(X) is not zero, or
equivalently, such that the canonical monomorphism Im(δn+1) ⊂ ker(δn) is not an isomorphism,
where δ is the differential of X. Let P be the complex which is zero in any degree other than n
and which is a projective A-module such that there is an epimorphism π : Pn → ker(δn). Then π
defines a chain map from P to X which cannot be homotopic to zero, because π does not factor
through δn+1. This shows (i). By dualising the above proof, one shows (ii).

The following two observations describe the homology and cohomology of complexes in terms
of homotopy classes of chain maps. Both of these observations are very easy - but they have an
important consequence: since chain maps can be composed, the interpretation of (co-)homology
in terms of chain maps introduces extra structure on (co-)homology. We will see later that the
graded algebra structure of Ext-algebras is induced in this way.

Proposition 3.20. Let X be a chain complex of A-modules and let n be an integer. There is a
natural isomorphism

Hn(X) ∼= HomK(Mod(A))(A[n], X) ,

where A[n] is the complex equal to A in degree n and zero in all other degrees.

Proof. A chain map A[n]→ X is represented by a commutative diagram of the form

· · · // 0 //

��

A //

f

��

0 //

��

· · ·

· · · // Xn+1
δn+1

// Xn
δn

// Xn−1
// · · ·

for some A-homomorphism f : A → Xn satisfying δn ◦ f = 0, where δ is the differential of X.
Thus any such A-homomorphism f maps A to ker(δn), and and any such A-homomorphism is

19



uniquely determined by the the image of 1A in ker(δn). A homotopy from A[n] to X is zero except
in degree n, where it is a map A → Xn+1. The chain map determined by the homomorphism
f is homotopic to zero if and only if f factors through δn+1. A necessary condition for that to
happen is that Im(f) ⊆ Im(δn+1). This condition is also sufficient because A is projective as an
A-module, so every A-homomorphism A → Im(δn+1) lifts through the surjective map Xn+1 →
Im(δn+1). Thus the map sending x ∈ ker(δn) to the unique chain map A[n] → X sending 1A to
x induces an isomorphism as stated. The naturality statements just means that this defines an
isomorphism of functors Hn(−) ∼= HomK(Mod(A))(A[n],−) from Ch(Mod(A)) to Mod(A); this is
an easy verification. The result follows.

For (X, δ) a chain complex of A-modules and V an A-module, applying the contravariant
functor HomA(−, V ) to (X, δ), written as a chain of morphisms,

· · · // Xn+1

δn+1 // Xn
δn // Xn−1

// · · ·

yields a cochain complex HomA(X,V ) of k-modules of the form

· · · // HomA(Xn−1, V )
δn−1

// HomA(Xn, V )
δn // HomA(Xn+1, V ) // · · · ;

that is, the cochain complex HomA(X,V ) is defined by

HomA(X,V )n = HomA(Xn, V )

with differential
δn : HomA(Xn, V )→ HomA(Xn+1, V )

given by δn(α) = α ◦ δn+1 for any α ∈ HomA(Xn, V ). The cohomology of this cochain complex is
as follows.

Proposition 3.21. Let X be a chain complex of A-modules, and let V be an A-module. For any
integer n we have a natural isomorphism of k-modules

Hn(HomA(X,V )) ∼= HomK(Mod(A))(X,V [n]) .

Proof. A chain map from X to V [n] is a commutative diagram of the form

· · · // Xn+1
δn+1

//

��

Xn
δn

//

α

��

Xn−1
//

��

· · ·

· · · // 0 // V // 0 // · · ·

This is a chain map if and only if α ◦ δn+1 = 0, thus if and only of δn(α) = 0. This shows that

ker(δn) = HomCh(Mod(A))(X,V [n]) .

Any homotopy between the above complexes is zero except possibly in degree n − 1, where it is
homomorphism h : Xn−1 → V . Thus α determines a chain map which is homotopic to zero if and
only if α = h ◦ δn for some h : Xn−1 → V ; that is, if and only if α ∈ Im(δn−1) The naturality
statements is easily verified; this means that the contravariant functors Hn(HomA(−, V )) and
HomK(Mod(A))(−, V [n]) from Ch(Mod(A)) to Mod(k) are isomorphic.
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The right side in the isomorphism in this proposition depends only on the homotopy category
K(Mod(A)), so any isomorphism in this category preserves the left side as well:

Corollary 3.22. Let f : X → Y be a chain homotopy equivalence of chain complexes of A-modules,
let n be an integer and V an A-module. Then f induces an isomorphism

Hn(HomA(Y, V )) ∼= Hn(HomA(X,V )) .

Exercise 3.23. Let (X, δ) be a chain complex of A-modules. Show the following statements.
(1) There is a chain complex, denoted C(X) and called the cone of X, with the following properties:
for any integer n, the term in degree n of C(X) is given by

C(X)n = Xn−1 ⊕Xn

and the differential of C(X) in degree n is given by

∆n =

(
−δn−1 0
IdXn−1

δn

)
: Xn−1 ⊕Xn → Xn−2 ⊕Xn−1 ;

that is, δn(x, y) = (−δn−1(x), x+ δn(y)) for any x ∈ Xn−1 and any y ∈ Xn.
(2) The cone C(X) is a contractible chain complex. (Hint: consider a homotopy which identifies
the summand Xn of C(X)n with the summand Xn of C(X)n+1.)
(3) The canonical inclusions Xn → Xn−1 ⊕ Xn define a chain map iX : X → C(X), and the
canonical projections Xn−1⊕Xn → Xn−1 define a chain map C(X)→ X[1] such that the sequence
of chain maps

0 // X
iX // C(X)

pX // X[1] // 0

is exact.
(4) Use the previous exercise and Theorem 3.16 to prove the statements in Remark 3.17.
(5) The forgetful functor Ch(Mod(A)) → Gr(Mod(A)) sends the exact sequence in (3) of chain
complexes to a split exact sequence of graded A-modules.
(6) Give an example where the exact sequence in (3) does not split (as a sequence of chain
complexes).
(7) The exact sequence in Exercise (3) is split, as a sequence of chain complexes, if and only if X
is contractible.

Remark 3.24. The sign of −δn−1 in the definition of the differential of C(X) ensures that ∆
is indeed a differential; that is, ∆n−1 ◦ ∆n = 0. Thus, for pX to be a chain map, we need an
earlier sign convention by which the differential of the complex X[1] is the negative of the shifted
differential of X.

Exercise 3.25. Use the previous exercise to show that a chain complex of A-modules is projective
as an object of the category of chain complexes Ch(Mod(A)) if and only if it is a contractible
complex of projective A-modules.
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4 Ext and Tor

Let A be an algebra over a commutative ring k. Informally, a bounded below chain complex of
A-modules of the form

· · · // P2
δ2 // P1

δ1 // P0
π // U // 0

is called a projective resolution of U if it is exact and all Pi are projective. An exact complex as
above can be viewed as a chain map obtained from ‘bending down’ the map π and viewing U as a
chain complex concentrated in degree zero:

· · · // P2
δ2 //

��

P1
δ1 //

��

P0

π

��

// 0 // · · ·

· · · // 0 // 0 // U // 0 // · · ·

The exactness of the above sequence is equivalent to this chain map being a quasi-isomorphism be-
cause the homology of both rows is concentrated in degree 0, where it is isomorphic to P0/Im(δ0) =
P0/ker(π) ∼= U . For convenience, we will denote the A-homomorphism P0 → U and the induced
chain map P → U by the same letter, if no confusion arises. The formal definition of a projective
resolution is as follows.

Definition 4.1. A projective resolution of an A-module U is a pair (P, µ) consisting of a complex
P of projective A-modules such that Pi = 0 for i < 0 and a quasi-isomorphism µ : P → U .

If µ is clear from the context or not needed in a particular statement, we suppress it and
simply say ‘Let P be a projective resolution of U ..’, implicitly assuming that there is such a quasi-
isomorphism µ. Similarly, the informal version of an injective resolution of U is an exact bounded
below cochain complex of the form

0 // U
ι // I0 δ0 // I1 δ1 // I2 δ2 // · · ·

where the modules Ii are injective. As before, we view the A-homomorphism ι as a quasi-
isomorphism of cochain complexes, again denoted by the same letter whenever convenient,

· · · // 0 //

��

U //

ι
��

0 //

��

· · ·

· · · // 0 // I0 δ0 // I1 δ1 // · · ·

and this is the formal definition of an injective resolution.

Definition 4.2. An injective resolution of an A-module U is a pair (I, ι) consisting of a cochain
complex I of injective A-modules such that Ii = 0 for i < 0 and a quasi-isomorphism ι : U → I.

Every A-module has a projective resolution P ; in fact, the resolution can be taken to be free;
that is, all Pi are free A-modules. This follows from the fact that every A-module is a quotient of
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a free A-module. Thus there is a free A-module P0 such there exists a surjective A-homomorphism
µ : P0 → U . Applied to ker(µ), there exists a free A-module P1 and a surjective A-homomorphism
δ1 : P1 → ker(µ). One constructs P inductively by taking for Pn a free A-module and for δn
a surjective A-homomorphism Pn → ker(δn−1) composed with the inclusion ker(δn−1) ⊆ Pn−1,
where n ≥ 2. Every A-module also has an injective resolution. This follows from the fact that
every A-module is a submodule of an injective A-module, and hence dualising the construction of
a projective resolution one can construct an injective resolution inductively.

Examples 4.3.

(1) Let n be a positive integer. We have an obvious exact sequence of Z-modules

0 // Z a 7→an // Z // Z/nZ // 0

Thus a projective resolution of Z/nZ is the pair consisting of the 2-term complex Z a7→an // Z with
nonzero differential given by multiplication with n, together with the canonical map Z → Z/nZ
starting at the second term of this complex.

(2) An abelian group A is called divisible if for any a ∈ A and any positive integer n there is
b ∈ A such that nb = a. One can show that the divisible abelian groups are exactly the injective
Z-modules. In particular, Q and Q/Z are injective Z-modules. The obvious short exact sequence

0 // Z // Q // Q/Z // 0

shows that an injective resolution of Z is the pair consisting of the 2-term complex Q → Q/Z,
together with the inclusion Z → Q. For n a positive integer, the subgroup of Q/Z generated by
1
n +Z is isomorphic to Z/nZ. The group Q/Z is the colimit of these subgroups, and every element
in Q/Z has finite order; that is, Q/Z is a torsion abelian group. By contrast, the torsion subgroup
of Q is trivial.

(3) Hilbert’s Syzygy Theorem shows that every module U over a polynomial algebra k[x1, x2, .., xn]
in n ≥ 1 indeterminates over a field k has a projective resolution of length at most n (that is, with
at most n + 1 nonzero terms). For n = 1 this follows from tensoring the obvious short exact
sequence

0 // k[x]
f 7→xf // k[x] // k // 0

by − ⊗k U . This yields a short exact sequence in which the first two terms are the free k[x]-
modules k[x] ⊗k U , and the third term is k ⊗k U ∼= U . For n > 1, one way to see this is to note
that k[x1, x2, .., xn] is isomorphic to the tensor product of the algebras k[xi] and then tensor the
above two-term complexes together for 1 ≤ i ≤ n; this yields a complex with n + 1 terms. (One
needs to extend the tensor product to complexes for this argument).

(4) Here is an example of a projective resolution of infinite length. Set A = k[x]/(x2). That is, A
has a k-basis {1, x̄} such that x̄2 = 0. Note that Ax̄ is an ideal in A and that A/Ax̄ ∼= k, viewed as
an A-module with x̄ acting as zero on k. Multiplication by x̄ on A is an endomorphism of A with
image Ax̄ and also kernel Ax̄, since x̄2 = 0. Moreover, we have Ax̄ ∼= k. Thus we get an infinite
projective resolution of the form

· · · // A
x̄ // A

x̄ // k // 0
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where the superscript x̄ means multiplication by x̄. One can in fact show that any projective
resolution of k is infinite.

Definition 4.4. Let U , V be A-modules. For any nonegative integer n we define a k-module
ExtnA(U, V ) as follows. Let P be a projective resolution of U with differential π. Applying
HomA(−, V ) yields a cochain complex HomA(P, V )

HomA(P0, V )
π0
// HomA(P1, V )

π1
// HomA(P2, V ) // · · ·

that is, HomA(P, V ) is in degree n ≥ 0 equal to HomA(Pn, V ) with differential πn : HomA(Pn, V )→
HomA(Pn+1;V ) given by πn(α) = α ◦ πn+1 for n ≥ 0. We set

ExtnA(U, V ) = Hn(P, V ) .

Proposition 4.5. Let U , V be A-modules, P a projective resolution of U , and let n be an integer.
we have a natural isomorphism of k-modules

ExtnA(U, V ) ∼= HomK(Mod(A))(P, V [n]) .

Proof. This is a special case of Proposition 3.21.

We will use Proposition 4.5 to show that ExtnA(U, V ) does not depend on the choice of P and
that ExtnA(U, V ) is contravariant functorial in U and covariantly functorial in V .

Proposition 4.6. Let P , Q be projective resolutions of A-modules U , V , respectively. We have
canonical isomorphisms

HomA(U, V ) ∼= Ext0
A(U, V ) ∼= HomK(Mod(A))(P,Q) .

This isomorphism sends α : U → V to the homotopy class of a chain map ϕ : P → Q such that
α ◦ µ ∼ ν ◦ ϕ as chain maps from P to V .

Proof. With the notation of Definition 4.4, we have Ext0
A(U, V ) = ker(π0). This is the space of

all A-homomorphisms α : P0 → V such that α ◦ π1 = 0, that is, all A-homomorphisms α such
that Im(π1) ⊆ ker(α). Any such homomorphism factors uniquely through the canonical surjection
P0 → P0/Im(π1). Denote by µ : P → U a quasi-isomorphism; that is, µ is determined by a sur-
jective A-homomorphism (still denoted µ) from P0 to V such that ker(µ) = Im(π1). Thus ker(π0)
can be canonically identified with the space of A-homomorphisms from P/ker(µ) = U to V . This
shows the first isomorphism. Since the projective resolution Q comes with a quasi-isomorphism
ν : Q → V , composing with ν induces by Theorem 3.16 an isomorphism HomK(Mod(A))(P,Q) ∼=
HomK(Mod(A))(P, V ) = Ext0

A(U, V ) The compatibility with µ and ν follows from the explicit de-
scriptions of these two isomorphisms.

There is a structural way to look at this result: attaching a projective resolution to an A-module
is a functorial construction through which the module category Mod(A) gets fully embedded into
the chain homotopy category K−(Mod(A)) of bounded below chain complexes.

Corollary 4.7. For any two projective resolutions (P, µ), (P ′, µ′) of an A-module U there is a
homotopy equivalence β : P ' P ′ such that µ′ ◦ β = µ. Moreover, β is unique up to homotopy.
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Proof. Applying 4.6 with U = V and P ′ = Q shows that IdU corresponds to the homotopy class
of a chain map β : P → P ′ satisfying µ′ ◦ β ∼ IdU ◦ µ = µ. Exchanging the roles of P and P ′

yields a chain map, unique up to homotopy, γ : P ′ → P satisfying µ ◦ γ = µ′. Thus µ ◦ γ ◦ β = µ.
But also µ ◦ IdP = µ. Since, again by Theorem 3.16, composition with µ induces an isomorphism
HomK(Mod(A))(P, P ) ∼= HomK(Mod(A))(P,U), it follows that γ◦β ∼ IdP . A similar argument shows
that β ◦ γ ∼ IdP ′ , and hence that P ' P ′ as stated.

This Corollary is more precise than merely stating that two projective resolutions P , P ′ of U
are homotopy equivalent as chain complexes; it says that there is a homotopy equivalence P ' P ′

which is unique up to homotopy with the property that it is compatible with the second component
of what makes a projective resolution, namely the quasi-isomorphisms µ and µ′. That is, in an
appropriate category of pairs consisting of a chain complex and a chain map from this complex to
U , the pairs (P, µ) and (P ′, µ′) are uniquely isomorphic.

Theorem 4.8. Let U , V be A-modules with projective resolutions P , Q, iand injective resoluitions
I, J , respectively. Let n ≥ 0 be an integer. We have a natural k-linear isomorphism

ExtnA(U, V ) ∼= HomK(Mod(A))(P, V [n])
∼= HomK(Mod(A))(P,Q[n])
∼= HomK(Mod(A))(P, J [n])
∼= HomK(Mod(A))(U, J [n])
∼= HomK(Mod(A))(I, J [n])

Proof. The first isomorphism is from 4.5. Let ν : Q → V be a quasi-isomorphism, and ν is sur-
jective. Then ν[n] : Q[n] → V [n] is a quasi-isomorphism, hence induces by Theorem 3.16 an
isomorphism HomK(Mod(A))(P,Q[n]) ∼= HomK(Mod(A))(P, V [n]). This shows the second isomor-
phism. The third isomorphism is induced by the quasi-isomorphism V [n] → J [n], the fourth
isomorphism is induced by the quasi-isomorphism P → U , and the last isomorphism is induced by
the quasi-isomorphism U → I. The naturality is an easy verification.

The isomorphisms in this theorem are determined by the quasi-isomorphisms P → U → I
and Q→ V → J , which are a structural part of the data which make up projective and injective
resolutions. The interpretation of Ext in terms of homotopy classes of chain maps has one important
consequence: we can compose chain maps, and this introduces ring and module structures on Ext-
spaces as follows.

Proposition 4.9. Let U , V be A-modules. Then the graded k-module

Ext∗A(U,U) = ⊕n≥0 ExtnA(U,U)

is a graded unital associative k-algebra, and the graded k-module

Ext∗A(U, V ) = ⊕n≥0 ExtnA(U, V )

is an Ext∗A(V, V )-Ext∗A(U,U)-bimodule, through composition of chain maps.
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Proof. Let P , Q be projective resolutions of U , V , respectively. For

ζ ∈ ExtnA(U, V ) = HomK(Mod(A))(P,Q[n])

τ ∈ ExtmA (U,U) = HomK(Mod(A))(P, P [m])

define the product ζ ∪ τ in Extm+n
A (U, V ) by

ζ ∪ τ = ζ[m] ◦ τ ∈ Extn+m
A (U, V ) = HomK(Mod(A))(P,Q[n+m]) .

For the special case V = U and Q = P this defines a graded product on Ext∗A(U,U) which is
associative because it is induced by composition in a category (which is always associative as part
of the definition of a category). The map IdU , viewed as an element of Ext0

A(U,U), is the unit
element of this multiplication. For arbitrary V this defines a right module structure of Ext∗A(U,U)
on Ext∗A(U, V ), and there is an obvious analogue of this argument which defines a left End∗A(V, V )-
module structure on Ext∗A(U, V ).

The product in Ext∗A(U,U) is called cup product.

Remark 4.10. Theorem 4.8 shows that in the definition of ExtnA(U, V ) we could have used injective
resolutions of V instead of projective resolutions of U and would have ended up with the same
concept. In some circumstances, calculating an injective resolution may be easier than calculating
a projective resolution. There are cases - such as in the category of sheaves - where every object
has an injective resolution but not a projective resolution.

The bifunctors ExtnA, for n ∈ Z, are defined using the bifunctor HomA(−,−) applied to ap-
propriate resolutions and taking cohomology. A similar construction, using the bifunctor −⊗A −,
yields the bifunctors TorAn (−,−).

Definition 4.11. Let V be an A-module and W a right A-module. Let Q be a projective resolution
of V . For n ≥ 0 we set

TorAn (W,V ) = Hn(W ⊗A Q) .

That is, TorAn (W,V ) is the homology in degree n of the chain complex W ⊗A Q obtained
from applying the covariant functor W ⊗A − to the projective resolution Q of V . Since any
two projective resolutions of V are homotopy equivalent and since any functor maps homotopy
equivalent complexes to homotopy equivalent complexes, it follows as in the case of Ext that
TorAn (W,V ) does not depend on the choice of Q. One can show that TorAn (W,V ) is also isomorphic
to the homology in degree n of the chain complex R ⊗A V obtained from applying the functor
−⊗A V to a projective resolution of the right A-module W . The use of the notation ‘Tor’ for this
concept comes from the following fact (stated without proof).

Theorem 4.12. Let A be an abelian group. Then Tor1
Z(Q/Z, A) is isomorphic to the torsion

subgroup of A.

Definition 4.13. Let U be an A-module. The projective dimension of U , denoted by pdim(U), is
the smallest nonnegative integer n such that U has a projective resolution P satisfying Pi = 0 for
i > n, with the convention pdim(U) = ∞ if every projective resolution of U is unbounbded. The
injective dimension of U , denoted by idim(U), is the smallest nonnegative integer n such that U
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has an injective resolution I satisfying Ii = 0 for i > n, with the convention idim(U) = ∞ if every
injective resolution of U is unbounbded. The global dimension of A is equal to

gldim(A) = sup{pdim(U) | U ∈ Mod(A)}

Thus gldim(A) =∞ unless every A-module U has a finite projective dimension which bounded
by some fixed integer, independent of U . Note that gldim(A) is defined in terms of left A-module;
there is an obvious analogue of a right global dimension. Left and right global dimension of
an algebra need not coincide. The following result shows that we could have defined the global
dimension using injective dimensions of modules.

Theorem 4.14. We have

gldim(A) = sup{idim(U) | U ∈ Mod(A)}
= sup{d ∈ N | ExtdA(U, V ) 6= 0 for some U, V ∈ Mod(A)}

Proof. Let d ≥ 0 and U , V ∈ Mod(A) such that ExtdA(U, V ) 6= 0. Let P be a projective resolution
of U . Since ExtdA(U, V ) ∼= HomK(Mod(A))(P, V [d]) 6= 0, there must be a nonzero A-homomorphism
Pd → V . In particular, Pd 6= 0. This shows pdim(U) ≥ d, hence gldim(A) is greater or equal
to the supremum of all such d. Let I be an injective resolution of V . Since ExtdA(U, V ) ∼=
HomK(Mod(A))(U, I[d]) 6= 0, there must be a nonzero A-homomorphism U → Id. In particular,

Id 6= 0. This shows idim(U) ≥ d, hence sup{idim(U) | U ∈ Mod(A)} is greater or equal than the
supremum of all such d. For the converse inequality, suppose that d ≥ 0 satisfies ExtdA(U, V ) = 0
for all U , V ∈ Mod(A). We need to show that pdim(U) and idim(U) are both bounded by d. We
do this for pdim(U); the argument for idim(U) is similar. Let P be a projective resolution of U ,
with differential π. Set V = Im(πd); this is a submodule of Pd−1. Consider the map πd : Pd →
V as a chain map P → V [d]. Since 0 = ExtdA(U, V ) = HomK(Mod(A))(P, V [d]) this chain map is
homotopic to zero. Since a homotopy from P to V [d] is zero except possible in degree d− 1, this
is equivalent to the existence of an A-homomorphism ϕ : Pd−1 → V satisfying πd = ϕ ◦ πd.

· · · // Pd+1

πd+1 //

��

Pd

πd

��

πd // Pd−1
//

ϕ
|| ��

· · · // P0
// 0

· · · // 0 // V // 0 // · · ·

Thus
ϕ ◦ πd = πd = IdV ◦ πd

That means that ϕ restricts to the identity map on V = Im(πd). Thus V is a direct summand of
Pd−1, hence Pd−1/V is projective. Note that V = Im(πd−1) = ker(πd−1), and hence πd−1 induces
an injective map ι : Pd−1/V → Pd−2. It follows that there is a projective resolution of U of the
form

· · · // 0 // Pd−1/V
ι // Pd−2

πd−2 // · · · // P1
π1 // P0

where ι is the injective map induced by πd−1. Thus pdim(U) ≤ d as required.
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Examples 4.15. We have gldim(Z) = 1 and gldim(k[x]) = 1, where k is a field. More generally,
any principal ideal domain which is not a field has global dimension 1. A field k has global
dimension 0 because any k module is a k-vector space, hence has a basis, or equivalently, is free.
Thus any k-module U is its own projective resolution concentrated in degree 0, together with the
identity map IdU . By earlier calculations, we have gldim(k[x]/(x2) = ∞.

Remark 4.16. Work of B. Osofsky in the 1970s explores surprising interactions between set theory
and global dimensions of rings. For instance, a consequence of Osofsky’s work is that the algebra
R(x, y, z) of real rational functions in three variables viewed as a module over the polynomial
subalgebra R[x, y, z] has global dimension 2 if and only if the continuum hypothesis holds. It was
conjectured by J. H. C. Whitehead that for A an abelian group, Ext1

Z(A,Z) is zero if and only if A
is a free abelian group. Work of S. Shelah from the 1970s shows that the truth of this conjecture
depends on the set theory being used.

5 Hochschild cohomology

Let A be an algebra over a commutative ring k. In what follows we will work with the category
of A-A-bimodules. This category can be identified with the category of modules over the algebra
A⊗k Aop, where Aop is the opposite algebra of A. That is, Aop = A as a k-module, with product
a · b = ba, where the expression a · b is the product in Aop and ba is the product in A. More
precisely, an A-A-bimodule M can be viewed as an A⊗k Aop-module via

(a⊗ b) ·m = amb ,

where a, b ∈ A, m ∈ M . Given a left A ⊗k Aop-module M , the same equation can be used to
define a bimodule structure on M . The advantage of working with A ⊗k Aop-modules is that it
makes all the module theoretic machinery available for bimodules - such as projective and injective
resolutions, Ext and Tor, for instance. Note that A is itself an A-A-bimodule, hence an A⊗ Aop-
module, through left and right multiplication by A on itself. The tensor product A⊗k A endowed
with left multiplcation by A on the first copy of A and right multiplication on the second copy of
A becomes in this way an A-A-bimodule. When viewed as an A⊗k Aop-module, this is then equal
to the free A ⊗k Aop-module of rank 1 because the right action of A on the second copy of A is
the same as the left action of Aop on Aop. We start by observing that there is a canonical chain
complex (X, d) of A⊗k Aop-modules of the form

· · · // A⊗k A⊗k A
d1 // A⊗k A

d0 // A // 0

with differential d constructed as follows. Multiplication in A induces a surjective homomorphism
of A-A-bimodules

d0 : A⊗k A→ A, a⊗ b 7→ ab, (a, b ∈ A)

Tensoring this map on the right and left by A and taking the difference of the two resulting maps
yields an A-A-bimodule homomorphism

d1 : A⊗k A⊗k A→ A⊗k A , a⊗ b⊗ c 7→ ab⊗ c− a⊗ bc
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The sign of the right term ensures that the image of this map is equal to the kernel of the first map
given by multiplication in A. We can iterate this construction, and we will show that we obtain in
the process a resolution of A as an A-A-bimodule of the form

· · · // A⊗3 // A⊗2 // 0

together with the quasi-isomorphism given by the multiplication map A⊗2 → A. Here the notation
is

A⊗n = A⊗k A⊗k A⊗k · · · ⊗k A ,

where we tensor n ≥ 1 copies of A over k. For later use we adopt the convention A⊗0 = k. For
n ≥ 1 we regard A⊗n as an A-A-bimodule in such a way that A acts on the left by left multiplication
on the first copy of A in this tensor product and A acts on the right by right multiplication on
the last copy of A. The intermediate copies of A matter for this bimodule structure only as far as
their k-module structure is concerned.

Proposition 5.1. For n ≥ −1 set Xn = A⊗n+2 and for n ≥ 0 denote by dn : Xn → Xn−1 the
A⊗k Aop-homomorphism given by

dn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =

n∑
i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 .

Set Xn = 0 for n ≤ −2 and dn = 0 for n ≤ −1. Then X = (Xn, dn)n∈Z is an acyclic complex as
A⊗k Aop-modules. More precisely, (Xn, dn) is contractible as a complex of left A-modules and as
a complex of right A-modules.

Proof. For n ≥ −1 and i satisfying 0 ≤ i ≤ n define the A⊗kAop-homomorphism dn,i : A⊗(n+2) →
A⊗(n+1) by setting

dn,i(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = a0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 .

Then dn =
∑n
i=0 (−1)idn,i. The maps dn,i and hence dn are bimodule homomorphisms. For n ≥ 0

we have

dn−1 ◦ dn =

n−1∑
j=0

n∑
i=0

(−1)i+jdn−1,j ◦ dn,i .

We show that the terms in this sum can be paired with opposite signs. If j ≥ i, then dn−1,j ◦dn,i =
dn−1,i ◦ dn,j+1. If j < i, then dn−1,j ◦ dn,i = dn−1,i−1 ◦ dn,j . Thus pairing the summand indexed
(i, j) with that indexed by (j + 1, i) if j ≥ i and with (j, i − 1) if j < i shows that all summands
cancel. This shows that (Xn, dn) is a chain complex of A⊗Aop-modules.

Define homomorphisms of right A-modules hn : Xn → Xn+1 by

hn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1

for n ≥ −1 and hn = 0 for n ≤ −2. We will shows that (Xn, dn) is contractible as a complex of
right A-modules with the homotopy h. We need to show that

IdXn
= dn+1 ◦ hn + hn−1 ◦ dn
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for all n ∈ Z. We have

(hn−1 ◦ dn + dn+1 ◦ hn)(a0 ⊗ a1 ⊗ · · · ⊗ an+1) =

= hn−1(

n∑
i=0

(−1)ia0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1) + dn+1(1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1) =

=

n∑
i=0

(−1)i1⊗ a0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 +

a0 ⊗ a1 ⊗ · · · ⊗ an+1 +

n∑
i=0

(−1)i+11⊗ a0 ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 =

= a0 ⊗ a1 ⊗ · · · ⊗ an+1 .

This shows that (Xn, dn) is contractible as a complex of right A-modules. In particular, this
complex is acyclic. A similar argument, using a homotopy of left A-modules sending a0 ⊗ a1 ⊗
· · · ⊗ an+1 to a0 ⊗ a1 ⊗ · · · ⊗ an+1 ⊗ 1 shows that this complex is also contractible as a complex of
left A-modules.

Definition 5.2. Suppose that A is projective as a k-module. Let M be an A-A-bimodule. The
Hochschild cohomology of A with coefficients in M is the graded k-module

HH∗(A;M) = Ext∗A⊗kAop(A,M)

and the Hochschild cohomology of A is the graded k-algebra

HH∗(A) = HH∗(A;A) = Ext∗A⊗kAop(A,A)

By earlier results, HH∗(A;M) is a graded right HH∗(A)-module. In order to calculate
Hochschild cohomology, we will need a projective resolution P of A as an A ⊗k Aop-module,
to which we then apply the functor HomA⊗kAop(−,M) and take the cohomology of the resulting
cochain complex. The complex (Xn, dn) is not always a projective resolution of A as an A⊗k Aop-
module. We will need the extra condition on A in the definition to ensure this: we will need to
assume that A is projective as a k-module. Then A⊗n is projective as a k-module (because the
tensor product of two free k-modules is again free). Thus A⊗n+2 = A⊗k A⊗n ⊗k A is a projective
A ⊗k Aop-module. It follows that the chain complex P with Pn = Xn = A⊗n+2 for n ≥ 0 with
differential dn : Pn → Pn−1 for n > 0 together with the quasi-isomorphism d0 : P0 → A given
by multiplication in A is a projective resolution of A as an A ⊗k Aop-module. This resolution is
called the bar resolution of A and can be used to calculate the Hochschild cohomology of A with
coefficients in any A⊗k Aop-module M as

HHn(A;M) = Hn(HomA⊗kAop(P,M))

We will describe the cochain complex HomA⊗Aop(P,M) more explicitly; this will in particular yield
interpretations of low degree Hochschild cohomology. The term in degree n ≥ 0 of the cochain
complex HomA⊗kAop(P,M) is equal to HomA⊗kAop(A⊗n+2,M). This can be simplified as follows.
We make use of the convention A⊗0 = k.
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Lemma 5.3. For n ≥ 0 we have a canonical isomorphism

HomA⊗kAop(A⊗n+2,M) ∼= Homk(A⊗n,M) .

This isomorphism sends an A⊗k Aop-homomorphism ζ : A⊗n+2 → M to the unique k-linear map
τ : A⊗n → M defined for n > 0 by τ(a1 ⊗ a2 ⊗ · · · ⊗ an) = ζ(1 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ an ⊗ 1) and for
n = 0 by τ(1) = ζ(1⊗ 1).

Proof. To show that this is an isomorphism, we describe explicitly an inverse map as follows. Let
τ : A⊗n →M be a k-linear map. Define ζ : A⊗n+2 →M by setting ζ(a0⊗a1⊗a2⊗· · ·⊗an⊗an+1) =
a0τ(a1 ⊗ a2 ⊗ · · · ⊗ an)an+1; this expression is well-defined: the element in the middle belongs to
M , and since M can be regarded as a bimodule, we can multiply this element on the left by a0 and
on the right by an+1. A trivial verification shows that ζ defined this way is an A ⊗k Aop-module
homomorphism and that the given assignment is inverse to that described in the statement.

The above Lemma is a special case of the Tensor-Hom adjunction. In particular, the degree
zero term of the complex HomA⊗kAop(P,M) can be identified as

HomA⊗kAop(A⊗k A,M) ∼= HomA⊗kAop(k,M) ∼= M ,

where the first isomorphism is from Lemma 5.3, and the second isomorphism sends a linear map
τ : k → M to τ(1). The composition of these two isomorphisms sends a bimodule homomorphism
ζ : A⊗kA→M to the element ζ(1⊗1) in M . With this identification, we can describe the cochain
complex HomA⊗kAop(P,M) as follows.

Theorem 5.4. Let M be an A⊗k Aop-module. Define k-modules Cn(A;M) for n ≥ 0 by setting

Cn(A,M) = Homk(A⊗n,M)

Define maps δn : Homk(A⊗n;M)→ Homk(A⊗n+1;M) for n ≥ 0 by by setting

δn(f)(a0 ⊗ a1 ⊗ · · · ⊗ an) =

= a0f(a1⊗ · · ·⊗ an) +

n∑
i=1

(−1)if(a0⊗ · · ·⊗ ai−1ai⊗ · · ·⊗ an) + (−1)n+1f(a0⊗ a1⊗ · · ·⊗ an−1)an

for any f ∈ Homk(A⊗n,M). Then (Cn(A;M), δn) is a cochain complex which is isomorphic to
HomA⊗Aop(P ;M), where P is the bar resolution of A as before. In particular, the cohomology of
this cochain complex is the Hochschild cohomology of A.

Proof. By Lemma 5.3, Cn(A;M) is isomorphic to the term in degree n of HomA⊗kAop(P ;M). One
needs to chase the differential through these isomorphisms; this yields the maps as described. For
n ≥ 0, we have from 5.3 an isomorphism

HomA⊗kAop(A⊗n+2,M) ∼= Homk(A⊗n,M) .

Let f ∈ Homk(A⊗n,M). Through the previous isomorphism, this corresponds to the homomor-

phism f̂ ∈ HomA⊗kAop(A⊗n+2,M) given by the formula

f̂(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = a0f(a1 ⊗ · · · ⊗ an)an+1 .
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By the definition of δn, we have δn(f̂) = f̂ ◦ δn+1 ∈ HomA⊗kAop(A⊗n+3;M), and δn(f) is then

obtained from restricting f̂ ◦ δn+1 to 1⊗A⊗n+1 ⊗ 1. So we need to calculate

(f̂ ◦ δn+1)(1⊗ a0 ⊗ · · · ⊗ an+1 ⊗ 1)

and this is the expression as in the statement of the theorem. Note that in the expression 1⊗ a0⊗
· · · ⊗ an+1 ⊗ 1 the term ai is now in the component i+ 1 because of the first component equal to
1; this is the reason why in the sum, the term indexed by i multiplies ai−1ai and not aiai+1.

Remark 5.5. With the notation of the previous theorem, we have C0(A;M) = Homk(k,m) ∼=
M , because a k-linear map τ : k → M is uniquely determined by its value τ(1k). If we identify
C0(k;M), then the differential δ0 : M → Homk(A,M) sends m ∈ M to the map δ0(m) : A →
M given by δ0(m)(a) = am−ma. Thus the cochain complex calculating Hochschild cohomology
takes the form

· · · // 0 // M
δ0 // Homk(A,M)

δ1 // Homk(A⊗k A,M) // · · ·

We can use this cochain complex to calculate Hochschild cohomology in low degrees. For M
an A-A-bimodule we set MA = {m ∈ M | am = ma for all a ∈ A}. Note that MA is a left and
right Z(A)-submodule of M and that Z(A) = AA.

Proposition 5.6. We have a canonical isomorphism HH0(A;M) = MA. In particular, we have
HH0(A) ∼= Z(A).

Proof. With the notation of 5.4 and the identification C0(A;M) = M , we have

HH0(A;M) = ker(δ0) = {m ∈M | am−ma = 0 for all a ∈ A} = MA .

Since AA = Z(A), the second statement follows.

The Hochschild cohomology in degree 1 has an interpretation in terms of derivations.

Definition 5.7. For M an A-A-bimodule, a k-linear map f : A → M is called a derivation if
f(ab) = af(b) + f(a)b for all a, b ∈ A.

The set Der(A;M) of derivations A→ M is a k-subspace of Homk(A,M).

Exercise 5.8. Let M be an A-A-bimodule. Show that for a fixed element m ∈M , the map [−,m]
sending a ∈ A to the additive commutator [a,m] = am−ma is a derivation.

Definition 5.9. Any derivation A → M which is equal to [−,m] for some m ∈ M is called an
inner derivation.

The set IDer(A) of inner derivations from A to M is a subspace of Der(A;M). If A = M we
set IDer(A) = IDer(A;A) and Der(A) = Der(A;A).

Proposition 5.10. We have a canonical isomorphism HH1(A;M) ∼= Der(A;M)/IDer(A;M).
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Proof. With the notation of 5.4, we have

HH1(A;M) = ker(δ1)/Im(δ0) .

It suffices to verify that
ker(δ1) = Der(A;M)

and
Im(δ0) = IDer(A;M) .

Let f ∈ Homk(A;M). Then δ1(f) ∈ Homk(A⊗kA;M) is defined by δ1(f)(a⊗b) = af(b)−f(ab)+
f(a)b. Thus f belongs to ker(δ1) if and only if

f(ab) = af(b) + f(a)b

for all a, b in A, hence if and only if f is a derivation. This shows that ker(δ1) = Der(A;M).
We have f ∈ Im(δ0) if and only if there exists m ∈ M such that f = δ0(m), that is, if and only
if f(a) = am −ma for all a ∈ A, which is equivalent to f ∈ IDer(A;M). This shows Im(δ0) =
IDer(A;M), whence the result.

Exercise 5.11. Let f , g : A→ A be derivations. Show that [f, g] = f ◦ g − g ◦ f is a derivation.
Show that if c ∈ A and g = [−, c], then [f, g] = [−, f(c)].

Remark 5.12. There is a lot more structure on Hochschild cohomology. The previous exercise
shows that the space of derivations Der(A) on A is a Lie subalgebra of Endk(A) with the bracket
[f, g] = f ◦ g − g ◦ f , and that IDer(A) is an ideal in the Lie algebra Der(A). Thus HH1(A) ∼=
Der(A)/IDer(A) is a Lie algebra. It was shown by Gerstenhaber that this Lie algebra structure
extends to a graded Lie algebra structure of degree −1 on HH∗(A) If A is a finite-dimensional
algebra over C, then its outer automorphism group Out(A) is an algebraic group. The tangent
space of the connected component of this algebraic group is the Lie algebra HH1(A). See for
instance Keller [5] for an application and references for this point of view. For an algebra A over
an algebraically closed field of prime characteristic p it is still true that Out(A) is an algebraic
group, but its tangent space need not be HH1(A).

One can use any projective resolution P of A as an A ⊗k Aop-module to obtain projective
resolutions of an arbitrary A-module U simply by tensoring with U over A.

Proposition 5.13. Let (P, µ) be a projective resolution of A as an A ⊗k Aop-module. Regard P
as a complex of A-A-bimodules. Let U be an A-module which is projective as a k-module. Then
(P ⊗A U, µ⊗ IdU ) is a projective resolution of U . The map sending a chain map ζ : P → P [n] to
the chain map ζ ⊗ IdU : P ⊗A U → (P ⊗ U)[n] induces a homomorphism of graded algebras

HH∗(A)→ ExtA(U,U)

Proof. We first note that the statement makes sense. Applying the functor − ⊗A U to P yields
a chain complex P ⊗A U . The terms of P are projective as bimodules, hence direct summands
of free bimodules, so direct summands of sums of copies of the free rank one bimodule A ⊗k A.
Thus the terms of P ⊗A U are direct summands of sums of copies of the left A-module A ⊗k U .
Now U is projective as a k-module, to isomorphic to a direct summand of a free k-module, hence
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a direct summand of a sum of copies of k. Thus, as a left A-module, A⊗k U is a direct summand
of a sum of copies of A ⊗k k ∼= A. This shows that the terms of P ⊗k U are all projective as A-
modules. The quasi-isomorphism µ is the surjective A⊗k Aop-homomorphism A⊗k A→ A given
by multiplication in A. Thus µ⊗ IdU is a surjective A-homomorphism A⊗k A⊗A U → A⊗A U .
After identifying A ⊗A U = U , this is the surjective A-homomorphism ν : A ⊗k U → U sending
a⊗u to au, where a ∈ A and u ∈ U . If we restrict attention to the right A-module structure on P ,
then (P, µ) remains a projective resolution of A as a right A-module. Since A is projective (even
free of rank 1) as a right A-module, A itself with the identity IdA is its own projective resolution
as a right A-module. Since projective resolutions are unique up to homotopy, it follows that then
map µ, when considered as a homomorphism of right A-modules, induces a homotopy equivalence
P ' A as chain complexes of right A-modules. But then tensoring by −⊗U implies that ν induces
a homotopy equivalence P ⊗AU ' A⊗AU ∼= U as complexes of k-modules. Bringing back the left
A-module structure, this shows that ν is indeed a quasi-isomorphism P ⊗AU → U as required.

The k-module HH2(A;M) parametrises associative algebra structures on A⊕M such that the
canonical projection A⊕M → A is an algebra homomorphism and such that M becomes an ideal
which squares to zero. That is, the multiplication in A⊕M is given by

(a,m)(b, n) = (ab, an+mb+ α(a, b))

where a, b ∈ A, m, n ∈ M and α(a, b) ∈ M . This defines a bilinear map α : A×A→ M . A short
verification shows that the associativity of this multiplication is equivalent to

α(a, b)c+ α(ab, c) = aα(b, c) + α(a, bc)

for all a, b, c ∈ A. If we extend α If we extend α to the unique linear map α : A⊗k A → M and
bring all terms in the previous equality to one side, then this reads

aα(b⊗ c)− α(ab, c) + α(a, bc)− α(a, b)c = 0

which is equivalent to α ∈ ker(δ2). Thus a linear map α yields an associative multiplication on
A⊕M as above if and only if α ∈ ker(δ2). We denote this algebra by Tα(A;M).

Exercise 5.14. With the notation above, let α, α′ ∈ ker(δ2). Show that there is an isomorphism
of algebras

Tα(A⊕M) ∼= Tα′(A⊕M)

which induces the identity on the ideals M and on the quotients A if and only if α and α′ determine
the same class in HH2(A;M).

The zero class in HH2(A;M) corresponds to what is called the trivial extension algebra T (A⊕
M) = A⊕M , with multiplication given by (a,m)(b, n) = (ab, an+mb).

Theorem 5.15 (Gerstenhaber). The algebra HH∗(A) is graded-commutative; that is, for integers
m, n ≥ 0 and ζ ∈ HHm(A), η ∈ HHn(A), we have ηζ = (−1)mnζη.

Thus if one of m, n is even, then η and ζ commute, and if m is odd, then ζ2 = −ζ2, so ζ2 = 0
unless A is an algebra over a field of characteristic 2. In particular, the even part HHev(A) =
⊕i≥0 HH

2i(A) of Hochschild cohomology is strictly commutative, and if A is an algebra over a
field of charatceristic 2, then HH∗(A) is commutative.
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6 Cohomology of groups

Let k be a commutative ring and G a group. The group algebra kG of G over k is the algebra
which is the free k-module having the set of elements of G as a k-basis, endowed with the unique
k-bilinear multiplication induced by the group multiplication of G. More explicitly, the elements
of kG are the formal sums

∑
x∈G λxx, where λx ∈ k for all x ∈ G, with only finitely many of the

coefficients λx nonzero. The sum in kG is given componentwise by the formula

(
∑
x∈G

λxx) + (
∑
x∈G

µxx) =
∑
x∈G

(λx + µx)x ,

the scalar multiplication in kG is given by

λ(
∑
x∈G

λxx) =
∑
x∈G

(λλx)x,

and the product in kG is given by the formula

(
∑
x∈G

λxx)(
∑
x∈G

µxx) =
∑
x,y∈G

λxµyxy =
∑
z∈G

(
∑

x,y∈G,xy=z

λxµy)z ,

where as before the coefficients λx, µx, λ are in k, with only finitely many of the λx and the µx
nonzero. The unit element 1kG of the algebra kG is the image in kG of the unit element 1G of the
group G. The images in kG of the elements of the group G become invertible in the algebra kG
in such a way that the image in kG of the inverse x−1 in G of an element x ∈ G is the inverse of
the image of x in kG. We tend not to notationally distinguish the elements of G from their images
in kG unless this is needed to avoid confusion. The associativity of the product in G implies that
the multiplication in kG is associative.

The ring k has a trivial kG-module structure, with all group elements acting as identity. This
does not mean that all elements of kG act as identity: the action of an element

∑
x∈G λxx on k is

given by multiplication with the scalar
∑
x∈G λx. This is well-defined, as only finitely many of the

λx are nonzero. We call k endowed with this module structure the trivial kG-module, and denote
it again by k, if no confusion arises. The structural homomorphism η : kG→ k determined by the
trivial module sends an element

∑
x∈G λxx in kG to the scalar

∑
x∈G λx in k. This is a surjective

algebra homomorphism, called the augmentation homomorphism. Its kernel, denoted I(kG), is the
augmentation ideal in kG.

Definition 6.1. The cohomology in degree n ≥ 0 of G with coefficients in a kG-module M is
defined as

Hn(G;M) = ExtnkG(k,M)

The cohomology in degree n ≥ 0 of G with coefficients in an abelian group A is defined as

Hn(G;A) = ExtnZG(Z;A)

More explicitly, Hn(G,M) = Hn(HomkG(P,M)), where P is a projective resolution of the
trivial kG-module k. Thus, in order to calculate group cohomology, we need to describe a projective
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resolution of the trivial kG-module k. As in the case of Hochschild cohomology, there is a canonical
projective resolution, called the bar resolution of the trivial kG-module. Applying the functor
HomkG(−,M) to this resolution yields a cochain complex whose cohomology is then cohomology
of G with coefficients in M . Hochschild cohomology offers a shortcut to this programme. Thanks
to Proposition 5.13, tensoring the bimodule bar resolution of kG by − ⊗kG k yields a projective
resolution of k. This can be described explicitly as follows.

Theorem 6.2. Let G be a group and M a kG-module which is projective as a k-module. For n ≥
0 set

Cn(G;M) = {α : Gn →M}

where Gn is the direct product of n copies of G, with the convention C0(G;M) = M . For n ≥ 0
define a k-linear map

δn : Cn(G;M)→ Cn+1(G;M)

by setting
δn(α)(x0, x1, . . . , xn) =

x0α(x1, . . . , xn) +

n∑
i=1

(−1)iα(x0, .., xi−1xi, .., xn) + (−1)n+1α(x0, .., xn−1)

with the convention δ0(m)(x) = xm−m Here x and the xi are elements in G.

Proof. The multiplication map µ : kG⊗k kG→ kG has the property that upon tensoring it with
− ⊗kG k, it yields the augmentation map. Indeed, after identifying kG ⊗kG k = k, we get that
µ ⊗ IdkG : kG ⊗k k = kG → k is equal to the augmentation map η. Consider the bar resolution
P of kG. Applying − ⊗kG k yields a projective resolution P ⊗kG k of the trivial kG-module k.
The term in degree n of this resolution is HomkG((kG)⊗n+1,M), where we use the identification
kG⊗kG k = k. Just as in Lemma 5.3, we have an isomorphism

HomkG((kG)⊗n+1,M) ∼= Homk((kG)⊗n,M)

where the passage from the right side gto the left side sends a linear map τ : (kG)⊗n → M to the
kG-homomrophism α : (kG)⊗n+1 → M given by α(x0 ⊗ x1 ⊗ · · · ⊗ xn) = x0τ(x1 ⊗ · · · ⊗ xn). The
space Homk((kG)⊗n,M) is clearly isomorphic to Cn(G;M), since any map α : Gn → M extends
uniquely to a linear map (kG)⊗n → M . Through these identifications, the differential is as stated
in the theorem.

The last term α(x0, .., xn−1) in the differential of 6.2 is seemingly different from the correspond-
ing last term in the differential of the Hochschild cohomology f(a0⊗a1⊗· · ·⊗an−1)an in 5.4. This
is because x⊗ 1 and 1⊗ 1 are equal in kG⊗k k for any x ∈ G, and hence the right multiplication
by an in 5.4 gets ‘absorbed’ by tensoring with −⊗kG k.

Remark 6.3. Theorem 6.2 describes group cohomology H∗(G;M) as the cohomology of a cochain
complex of the form

· · · // 0 // M
δ0 // C1(G;M)

δ1 // C2(G;M) // · · ·
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The first few differentials are explicitly given by

δ0(m)(x) = xm−m,

δ1(β)(x, y) = xβ(y)− β(xy) + β(x),

δ2(α)(x, y, z) = xα(y, z)− α(xy, z) + α(x, yz)− α(x, y),

where x, y, z ∈ G, m ∈ M , and β : G → M and α : G × G → M are maps. This allows us to
calculate low degree group cohomology and give it interpretations.

Exercise 6.4. Let G be a group and M a kG-module. Show that

H0(G;M) = MG = {m ∈M | xm = m for all x ∈ G}

H1(G;M) = ker(δ1)/Im(δ0)

where
ker(δ1) = {β : G→M | β(xy) = xβ(y) + β(x) for all x, y ∈ G}

Im(δ0) = {β : G→M | there exists m ∈M such thatβ(x) = xm−m for all x ∈ G}

In particular, show that if G acts trivially on M , then H1(G,M) = Hom(G,M), the set of all group
homomorphisms from G to the additive group (M,+); that is, the group of all maps β : G → M
satisfying β(xy) = β(x) + β(y) for all x, y ∈ G.

Let A be an abelian group acted upon by a group G. That is, A is a ZG-module. We write A
and G both multiplicatively, and we write the action of x ∈ G on a ∈ A by xa. Any short exact
sequence of groups of the form

1 // A // H
f // G // 1

gives rise to an action of G on A as follows. For x ∈ G, choose an element x̂ ∈ H such that
f(x̂) = x. Note that x̂ is unique up to multiplication by an element in A. Since A is abelian, the
conjugation action of a ∈ A on A is trivial, and hence the conjugation action of x̂ and x̂a on A is
the same. That is, we have a well-defined action of G on A by setting xa = x̂ax̂−1. Let now x,
y ∈ G. Then x̂y and x̂ŷ are two elements which satisfy f(x̂y) = xy = f(x̂ŷ), and therefore there
is an element α(x, y) ∈ A such that

x̂ŷ = x̂yα(x, y) .

Using the associativity (x̂ŷ)ẑ = x̂(ŷẑ) for all x, y, z ∈ G, a short calculation shows that

α(x, y)α(xy, z) = xα(y, z)α(x, yz)

and that is exactly saying that α ∈ ker(δ2); that is, α represents a class in H2(G;A). For a given
fixed action of G on A, we consider the set of equivalence classes of group extensions of the form

1 // A // H
f // G // 1

with two such extensions

1 // A // H
f // G // 1
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1 // A // H ′
f ′ // G // 1

being equivalent if there is a group isomorphism ϕ : H ∼= H ′ making the diagram

1 // A //

IdA

��

H
f //

ϕ

��

G //

IdG

��

1

1 // A // H ′
f ′ // G // 1

commutative.

Exercise 6.5. With the notation above, show that there is a bijection between the equivalence
classes of group extensions

1 // A // H
f // G // 1

of G by A for a given action of G on A and the set of classes H2(G;A). Show that the zero class
in H2(G;A) corresponds to the split extension where H = AoG.

Definition 6.6. Let G be a finite group. The Schur multiplier of G is the abelian group
H2(G;C×) = Ext2

Z(Z;C×), where C× = C\{0} is the the multiplicative group of nonzero complex
numbers considered with the trivial action of G.

The Schur multiplier H2(G;C×) of a finite group G parametrises central extensions of G.
Moreover, H2(G;C×) is a finite abelian group. Slightly more precisely, we have the following
result.

Theorem 6.7. Let G be a finite group and k an algebraically closed field. Then the abelian group
H2(G; k×) is finite, where we consider the multiplicative group k× = k\{0} with G acting trivially.
Moreover, |G| annihilates H2(G; k×).

Proof. From the description of group cohomology in Theorem 6.2 written multiplicatively, we get
that H2(G; k×) = Z/B, where

Z = {α : G×G→ k× | α(xy, z)α(x, y) = α(x, yz)α(y, z) for all x, y, z ∈ G}

B = {α : G×G→ k× | there exists β : G→ k× such that α(x, y) = β(x)β(y)β(xy)−1 for all x, y ∈ G}

Let α ∈ Z. Define a map µ : G→ k× by setting

µ(x) =
∏
y∈G

α(x, y)

for all x ∈ G. For x, y, z ∈ G, we have the 2-cocycle identity

α(xy, z)α(x, y) = α(x, yz)α(y, z) .

Taking the product over all z ∈ G yields the identity

µ(xy)α(x, y)|G| = µ(x)µ(y) .
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Thus
α(x, y)|G| = µ(x)µ(y)µ(xy)−1

showing that α|G| ∈ B, and hence |G| annihilates Z/B = H2(G; k×). Since k is algebraically
closed, every element in k× has a |G|-th root, and hence there is a map δ : G → k× such that
δ(x)|G| = µ(x) for all x ∈ G. Define a map β : G×G→ k× by setting

β(x, y) = α(x, y)δ(x)−1δ(y)−1δ(xy)

for all x, y ∈ G. Then α and β represent the same class in H2(G; k×) because they differ by an
element in the subgroup B of Z. And now we also have β(x, y)|G| = 1 for all x, y ∈ G. Thus β is
a map from G×G to the finite subgroup of |G|-th roots of unity in k×, so there are only finitely
many such maps β. Thus H2(G; k×) is a quotient of the finite subgroup

U = {β : G×G→ k× | β(x, y)|G| = 1 for all x, y ∈ G}

of Z, and the result follows.

Proposition 6.8. Let G be a finite group. The functor − ⊗kG k induces a homormophism of
graded algebras HH∗(kG)→ H∗(G; k) which is split surjective.

Proof. The splitting is constructed as follows: consider the diagonal subgroup ∆G = {(x, x) | x ∈
G} of G×G. Then the induced module IndG×G∆G (k) = k(G×G)⊗k∆G k is isomorphic to kG viewed
as a k(G×G) module with (x, y) ∈ G×G acting on z ∈ kG by xzy−1. Through the isomorphism
k(G × G) ∼= kG ⊗k (kG)op sending (x, y) to x ⊗ y−1, this is kG viewed as a kG-kG-bimodule.
The induction functor IndG×G∆G is exact and maps projective kG-modules to projective k(G×G)-
modules, hence sends a projective resolution of the trivial kG-module to a projective resolution
of the bimodule kG. It follows that this functor induces a map H∗(G; k) → HH∗(kG), andone
checks that this is a splitting as stated.

Proposition 6.9. Let G be a finite group. We have an isomorphism of graded k-modules

H∗(kG) = ⊕x H∗(CG(x); k) ,

where x runs over a set of representatives of the conjugacy classes in G.

This isomorphism is not an isomorphism as graded algebras. The product in HH∗(kG) can
be expressed explicitly in terms of the cohomology rings of centralisers of elements; this is due to
Siegel and Witherspoon [8].

Remark 6.10. Using the above additive decomposition of HH∗(kG) and the classification of finite
simple groups, one can show that HH1(kG) is nonzero whenever k is a field of prime characteristic
dividing the order of G.
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7 Singular cohomology of topological spaces

Definition 7.1. For n a non negative integer, the standard topological n-simplex is the compact
subspace of Rn+1 defined by

∆n = {(x0, x1, .., xn) ∈ Rn+1 | xi ≥ 0,

n∑
i=0

xi = 1}

For 0 ≤ i ≤ n the i-th face map is the map

di : ∆n−1 → ∆n

sending (x0, x1, .., xn−1) ∈ ∆n−1 to (x0, x1, .., xi−1, 0, xi, .., xn−1) ∈ ∆n.

Thus if X is a topological space and n a positive integer, then precomposing with any of the
n + 1 different face maps sends any continuous map ∆n → X to a continuous map ∆n−1 → X.
Assembling these maps yields singular homology.

Definition 7.2. Let X be a topological space. For n ≥ 0 denote by Sn(X) the free Z-module
having as a basis the set of all continuous maps f : ∆n → X. For n ≥ 1 define a k-linear map
δn : Sn(X)→ Sn−1(X) by setting

δn(f) =

n−1∑
i=0

(−1)if ◦ di

for any continuous map f : ∆n → X, where di : ∆n−1 → ∆n is the face map defined above. We
set δ0 = 0 for notational convenience. One checks that δn ◦ δn+1 = 0. We denote by S∗(X) the
chain complex thus obtained. The n-th singular homology of X is the Z-module

Hn(X) = ker(δn)/Im(δn+1)

For A an abelian group, we set Sn(X;A) = HomZ(Sn(X), A) and denote by δn : Sn(X;A) →
Sn+1(X;A) the map induced by precomposition with δn+1, with the notational conovention δ−1 =
0. The n-th singular cohomology of X with coefficients in A is the Z-module

Hn(X; k) = ker(δn)/Im(δn−1)

Exercise 7.3. Let X = {∗} be a single point. Show that Sn(X) = Z for n ≥ 0, and that δn =
IdZ for n even and δn = 0 for n odd. Show that there is a chain homotopy equivalence S∗(X) '
Z, where Z is regarded as the chain complex concentrated in degree 0. Deduce that Hn(X) is zero
for n > 0 and Z for n = 0.

Definition 7.4. Let X, Y be topological spaces and let f , g : X → Y be continuous maps. We
say that f and g are homotopic and write f ∼ g if there is a continuous map F : [0, 1]×X → Y ,
such that F (0, x) = f(x) and F (1, x) = g(x) for all x ∈ X.

A continuous map F : X → Y is called a homotopy equivalence if there exists a continuous map
g : Y → X such that g ◦f ∼ IdX and f ◦g ∼ IdY . In that case we say that X and Y are homotopy
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equivalent, and we write X ' Y . A space X is called contractible if it is homotopy equivalent to
a point {∗}. The following two theorems, stated here without proof (which can be found in many
standard sources on algebraic topology), collect some of the fundamental properties of singular
homology.

Theorem 7.5.

(1) Singular homology is functorial; that is, for n ≥ 0, any continuous map f : X → Y induces
a canonical chain map S(f) : S∗(X) → S∗(Y ) by composition with f and hence a map Hn(f) :
Hn(X)→ Hn(Y ) both of which are functorial.

(2) Singular homology is compatible with homotopy; that is, if f, g : X → Y are homotopic
continuous maps, then the induced chain maps S(f), S(g) : S∗(X) → S∗(Y ) are homotopic chain
maps, and we have Hn(f) = Hn(g) for all n ≥ 0.

(3) If f : X → Y is a homotopy equivalence, then S(f) : S∗(X) → S∗(Y ) is a chain homotopy
equivalence. In particular, if X is contractible, then S∗(X) ' Z.

For X a topological space and A a subspace, we denote by A◦ the set of interior points in A;
this is the set of all elements a ∈ A which have an open neighbourhood in X which is contained in
A.

Theorem 7.6 (Mayer-Vietoris). Let X be a topological space and A, B subspaces of X such that
A◦ ∪B◦ = X. There is a long exact singular homology sequence

· · · // Hn(A ∩B) // Hn(A)⊕Hn(B) // Hn(X) // Hn−1(A ∩B) // · · ·

ending at the map H0(X)→ 0.

Given a sphere Sn = {(x0, x1, .., xn) ∈ Rn+1 |
∑n
i=0 x

2
i = 1}, we can use the above results to

calculate its cohomology.

Theorem 7.7. For n ≥ 0 and i > 0 such that i 6= n we have Hi(S
n) = 0. For n > 0 we have

Hn(Sn) ∼= H0(Sn) ∼= Z, and we have H0(S0) ∼= Z⊕ Z.

Proof. Since S0 = {−1, 1} is the disjoint unsion of two one-point spaces, we have H0(S0) ∼= Z⊕Z
and Hn(S0) =) for n > 0. Whenever we puncture a sphere Sn, n > 0, by removing a single point,
we obtain a contractible space. Denote by An the subspace of Sn obtained by removing the ‘south
pole’ (0, 0, .., 0,−1) and by Bn the space obtained by removing the ‘north pole’ (0, 0, .., 0, 1) of Sn.
For n = 1, the Mayer-Vietoris sequence takes the following form

0 // H1(S1) // Z⊕ Z // Z⊕ Z // H0(S1) // 0

The map Z ⊕ Z → Z ⊕ Z is easily seen to be nonzero but not injective, so has a kernel and
cokernel isomorphic to Z, which shows that H1(S1) ∼= H0(S1) ∼= Z. For n ≥ 1, one shows that the
intersection An ∩ Bn is homotopic to Sn−1. Thus using the Mayer-Vietoris repeatedly proves the
theorem.

We illustrate some of the concepts and methods with an example describing the use of homology
to prove Brouwer’s fixpoint theorem.

41



Theorem 7.8 (Brouwer’s fixpoint theorem). Let m be a positive integer. Any continuous map
f : Dm → Dm has a fixpoint (that is, there is x ∈ Dm such that f(x) = x).

Proof. For m = 1 this is an easy application of the intermediate value theorem. Suppose that m ≥
2. Suppose the theorem is not true; that is, there is a continuous map f : Dm → Dm such that
f(x) 6= x for any x ∈ Dm. Since f(x) is a point different from x in the disc Dm, there is a unique
line starting from f(x) and passing through x. This line intersects the boundary Sm−1 of Dm in a
point which we denote by g(x). One verifies that the map x 7→ g(x) is a continuous map g : Dm →
Sm−1. If x is on that boundary Sm−1, then clearly g(x) = x. That is, g : Dm → Sm−1 restricts
to the identity map on Sm−1. In other words, if we denote by a : Sm−1 → Dm the inclusion map,
then g ◦ a = IdSm−1 . Applying Hn for any n ≥ 0 and using the functoriality properties of Hn

yields Hn(g) ◦Hn(a) = IdHn(Sm−1). For n = m− 1 this yields a contradiction: the right side is the
identity map on the nonzero abelian group Hm−1(Sm−1), but the map Hm−1(a) is zero, because
Hm−1(Dm) is zero, and so Hn(g) ◦Hn(a) is zero as well.

There are other statements that can be proved in a similar way: for n > 0, the sphere Sn−1 is
not contractible, two spheres Sn−1, Sm−1 for positive integers m, n are isomorphic if and only if
n = m, and Rn, Rm are isomorphic as topological spaces if and only if n = m.

8 Triangulated categories

A triangulated category is an additive category with an additional structure of exact triangles,
which should be thought of as a replacement for short exact sequences. This concept, which we
will introduce in the present section, has been developed independently by J.L. Verdier, and, in a
topological context, by D. Puppe. We will show in the next section that homotopy categories of
chain complexes are triangulated.

Given an additive category C and an additive functor Σ : C → C on C, we call a triangle in C a
sequence of the form

X
f // Y

g // Z
h // Σ(X)

where X, Y , Z are objects in C and f , g, h are morphisms in C. The triangles in C form the objects
of a category: a morphism of triangles is a triple (u, v, w) of morphisms in C making the diagram

X
f //

u

��

Y
g //

v

��

Z
h //

w

��

Σ(X)

Σ(u)

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// Σ(X ′)

commutative, where the two rows are triangles in C.

Definition 8.1. A triangulated category is a triple (C,Σ, T ) consisting of an additive category C,
a covariant additive self equivalence Σ : C → C and a class T of triangles in C - called exact or
sometimes also distinguished triangles in C - fulfilling the axioms T1, T2, T3, T4 below.
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T1: For any object X in C, the triangle 0 // X
IdX // X // 0 is exact (i.e., belongs to the

class T ), for any morphism f : X → Y in C there is an exact triangle of the form

X
f // Y

g // Z
h // Σ(X)

for some object Z in C and some morphisms g, h, any triangle in C which is isomorphic to an exact
triangle is itself exact (i.e., the class T is closed under isomorphisms).

T2: Any commutative diagram in C of the form

X
f //

u

��

Y
g //

v

��

Z
h // Σ(X)

X ′
f ′
// Y ′

g′
// Z ′

h′
// Σ(X ′)

whose rows are exact triangles, can be completed to a commutative diagram

X
f //

u

��

Y
g //

v

��

Z
h //

w

��

Σ(X)

Σ(u)

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// Σ(X ′)

for some morphism w.

T3: If the triangle X
f // Y

g // Z
h // Σ(X) in C is exact, so is the triangle

Y
g // Z

h // Σ(X)
−Σf // Σ(Y )

T4: Given any sequence of two composable morphisms X
f // Y

g // Z in C there is a com-
mutative diagram in C whose first two rows and middle two columns are exact triangles:

X
f // Y

k //

g

��

U //

u

��

Σ(X)

X
gf

// Z //

��

V //

v

��

Σ(X)

Σ(f)

��
W

w

��

W
w
//

��

ΣY

Σ(Y )
Σ(k)

// Σ(U)
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Remark 8.2. The axiom T4 describes in which way the three triangles over f , g, g ◦ f are
connected. This axiom is called the octahedral axiom for the following reason: if we rewrite a

triangle X
f // Y

g // Z
h // Σ(X) in the form

Z
h[1]

��
X

f
// Y ,

g

``

where [1] means that h “is of degree 1”, then the diagram in T4 takes the following form:

X

gf

��

f

��
Y

g

zz

// U

��

[1]

gg

Z

$$

// V

��

[1]

[[

W

[1]

SS

[1]

BB

Proposition 8.3. Let X
f // Y

g // Z
h // Σ(X) be an exact triangle in a triangulated

category C, and let U be an object in C.

(i) We have g ◦ f = 0 and h ◦ g = 0.

(ii) Given any morphism j : Y → U there is a morphism i : Z → U satisfying i ◦ g = j if and only
if j ◦ f = 0.

(iii) Given any morphism q : U −→ Y there is a morphism p : U → X satisfying f ◦ p = q if and
only if g ◦ q = 0.

Proof. By T1 the triangle 0 // X X // 0 is exact, and hence, by T3, the triangle

X X // 0 // Σ(X) is exact. Applying T2 yields the existence of a commutative
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diagram

X X //

f

��

0 //

��

Σ(X)

X
f
// Y

g
// Z // Σ(X)

which shows that g ◦ f = 0. The same argument, after turning the triangle by means of T3, shows
that h◦g = 0, whence (i). If j ◦f = 0, then it follows from T1 and T2 that we have a commutative
diagram

X
f //

��

Y
g //

j

��

Z
h //

i

��

Σ(X)

��
0 // U U // 0

for some morphism i, which means that i◦g = j. Conversely, if there is a morphism i : Z → U such
that i◦g = j, then j ◦f = i◦g ◦f = 0, since g ◦f = 0 by (i). This proves (ii). The last statement is

proved by applying a dual argument to the exact triangle Y
g // Z

h // Σ(X)
−Σ(f) // Σ(Y ) .

Lemma 8.4. Let (C,Σ, T ) be a triangulated category, and let

Y
g //

v

��

Z

0

��
X ′

f ′ //

0

��

Y ′
g′ //

v′

��

Z ′
h′ // Σ(X ′)

X ′′
f ′′
// Y ′′

be a commutative diagram in C whose middle row is an exact triangle. We have v′ ◦ v = 0.

Proof. Since g′ ◦ v = 0 there is, by 8.3, a morphism p : Y → X ′ such that f ′ ◦ p = v. Similiarly,
since v′ ◦ f ′ = 0 there is a morphism i : Z ′ → Y ′′ such that v′ = i ◦ g′. Together we obtain v′ ◦ v =
i ◦ g′ ◦ f ◦ p = 0, since g′ ◦ f ′ = 0 by 8.3.

Proposition 8.5. Let (C,Σ, T ) be a triangulated category and let

X
f //

u

��

Y
g //

v

��

Z
h //

w

��

Σ(X)

Σ(u)

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// Σ(X ′)

be a commutative diagram in C whose rows are exact triangles. If u, v are isomorphisms, so is w.
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Proof. By applying T2 to u−1 and v−1 we may assume that X = X ′, Y = Y ′, Z = Z ′, f = f ′,
g = g′, h = h′, u = IdX , and v = IdY . Thus we are down to considering the endomorphism

(IdX , IdY , w) of the exact triangle X
f // Y

g // Z
h // Σ(X) , and we have to show that w

is an automorphism. Clearly (IdX , IdY , IdZ) is an endomorphism of this triangle, too, thus taking
the difference of the two endomorphisms yields an endomorphism (0, 0, IdZ − w). Using T3 and
8.4 shows that (IdZ − w)2 = 0, or equivalently, IdZ = w ◦ (2IdZ − w), which implies that w is
invertible with inverse 2IdZ − w.

Corollary 8.6. Let (C,Σ, T ) be a triangulated category. If the triangle

Y
g // Z

h // Σ(X)
−Σf // Σ(Y )

is exact in C, so is the triangle

X
f // Y

g // Z
h // Σ(X)

Proof. By T1, there is an exact triangle in C of the form X
f // Y

g′ // Z ′
h′ // Σ(X) . We

turn this triangle three times, and the first triangle in the statement twice; this yields two exact
triangles in C

ΣX
−Σf // ΣY

−Σg′ // ΣZ ′
−Σh′ // Σ2(X)

Σ(X)
−Σf // Σ(Y )

−Σg // ΣZ
−Σh // Σ2(X)

and by Proposition 8.5, these two triangles are isomorphic. Since Σ is an equivalence, it follows
that the triangles

X
f // Y

g′ // Z ′
h′ // Σ(X)

X
f // Y

g // Z ′
h // Σ(X)

are isomorphic, and as the first one is exact, so is the second by T1.

Corollary 8.7. Let (C,Σ, T ) be a triangulated category, and let

X
f // Y

g // Z
h // Σ(X)

be an exact triangle in C.

(i) f is an isomorphism if and only if Z = 0.

(ii) g is an isomorphism if and only if X = 0.

(iii) h is an isomorphism if and only if Y = 0.
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Proof. If f is an isomorphism, then, by 8.5 and T1, the given exact triangle is isomorphic to the

exact triangle X X // 0 // Σ(X) , thus Z = 0. Conversely, if Z = 0, turning the

triangle by T3 shows that Σ(f) is an isomorphism, and hence f is so, too, as Σ is an equivalence.
This shows (i), and the other statements follow from (i) with T3 and the fact, that Σ is an
equivalence.

Corollary 8.8. Let (C,Σ, T ) be a triangulated category and let

X
f // Y

g // Z
h // Σ(X)

be an exact triangle in C. For any object U in C, the functors HomC(U,−) and HomC(−, U) induce
long exact sequences of abelian groups

· · · → HomC(U,Σ
n(X))→ HomC(U,Σ

n(Y ))→ HomC(U,Σ
n(Z))→ HomC(U,Σ

n+1(X))→ · · ·

· · · → HomC(Σ
n+1(X), U)→ HomC(Σ

n(Z), U)→ HomC(Σ
n(Y ), U)→ HomC(Σ

n(X), U)→ · · ·

Proof. By 8.3, the sequence HomC(U,X) → HomC(U, Y ) → HomC(U,Z) is exact. Turning the
triangle by means of T3 and its converse 8.6 yields the first of the two long exact sequences. An
analogous argument shows the exactness of the second sequence.

Proposition 8.9. Let (C,Σ, T ) be a triangulated category and let f : X → Y be a morphism in C.

(i) f is an epimorphism if and only if f has a right inverse.

(ii) f is a monomorphism if and only if f has a left inverse.

(iii) f is an isomorphism if and only if f is both an epimorphism and a monomorphism.

Proof. If f has a right inverse, f is trivially an epimorphism. Conversely, suppose that f is an
epimorphism. Consider an exact triangle of the form

X
f // Y

g // Z
h // Σ(X)

Since g ◦ f = 0 and since f is an epimorphism, we have g = 0. Thus g ◦ IdY = 0. Thus there is
r : Y → X such that f ◦ r = IdY , which shows that r is a right inverse of f . This shows (i), and a
dual argument shows statement (ii). If f is both an epimorphism and a monomorphism, it has a
right inverse r and a left inverse l, and then l = l◦f ◦r = r, which shows that f is an isomorphism.
The converse in (iii) is trivial.

This shows that epimorphisms and monomorphisms in a triangulated category are all split. As
a consequence, a triangulated category is abelian if and only if it is semisimple. There are, however,
nontrivial examples of proper abelian subcategories of triangulated categories arising in the context
of central p-extensions of finite groups. See [7] for a systematic treatment of triangulated categories.
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9 Homotopy categories are triangulated

If C is an additive category, then the chain homotopy category K(C) together with the shift functor
[1] is triangulated. To see this we need to define a suitable class of exact triangles.

Definition 9.1. Let C be an additive category and let f : (X, δ) → (Y, ε) be a chain map of
complexes over C. The mapping cone of f is the complex C(f) over C given by C(f)n = Xn−1⊕Yn
with differential ∆

∆n =

(
−δn−1 0
fn−1 εn

)
: Xn−1 ⊕ Yn → Xn−2 ⊕ Yn−1

for any integer n. The mapping cone comes along with canonical chain maps i(f) : Y → C(f)
given by the canonical monomorphims Yn ↪→ Xn−1 ⊕ Yn and p(f) : C(f) → X[1] given by the
canonical projections Xn−1 ⊕ Yn � Xn−1 = X[1]n for any integer n.

One checks that ∆ ◦∆ = 0. The cone C(X) of a chain complex X is the mapping cone of the
identity chain map IdX .

Associated with any chain map f : X → Y we have a triangle in (Ch(C), [1]) given by the
“mapping cone sequence”

X
f // Y

i(f) // C(f)
p(f) // X[1]

and we denote by T the class of all triangles in K(C) isomorphic to the image of a triangle in
Ch(C) of this form. We are going to show that this yields a structure of a triangulated category
for K(C).

Theorem 9.2. Let C be an additive category. Then K(C), endowed with the shift functor [1] and
the class T of triangles induced by mapping cone sequences, is a triangulated category. Moreover,
the categories K+(C), K−(C), Kb(C) are full triangulated subcategories in K(C).

Axiom T1 holds trivially: by definition, any chain map is part of a mapping cone sequence,
and the mapping cone of the zero map 0 → X is just X again, so the mapping cone sequence
degenerates to 0→ X → X → 0. The following Proposition shows, that T2 holds:

Proposition 9.3. Let

X
f //

u

��

Y

v

��
X ′

f ′
// Y ′

be a commutative diagram of chain complexes over an additive category C. Then there is a chain
map w : C(f)→ C(f ′) making the diagram

X
f //

u

��

Y
i(f) //

v

��

C(f)
p(f) //

w

��

X[1]

u[1]

��
X ′

f ′
// Y ′

i(f ′)

// C(f ′)
i(f ′)

// X ′[1]

homotopy commutative.
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Proof. Since v ◦ f ∼ f ′ ◦ u, there is a homotopy h : X → Y ′ such that v ◦ f − f ′ ◦ u = ε′ ◦ h+ h ◦ δ,
where δ and ε′ are the differentials of X and Y ′, respectively. Set

wn =

(
un−1 0
hn−1 vn

)
: Xn−1 ⊕ Yn → X ′n−1 ⊕ Y ′n

for any n ∈ Z. A straightforward verification shows that w = (wn)n∈Z is a chain map from C(f)
to C(f ′) which makes the middle and right square in the above diagram commutative.

The next Proposition describes in which way the mapping cones C(f), C(i(f)), C(p(f)) are
connected, implying in particular, that the axiom T3 holds for the class T in K(C):

Proposition 9.4. Let f : X → Y be a chain map of chain complexes over an additive category
C. Denote by q(f) : C(i(f)) → X[1] the graded map given by the canonical projections q(f)n =
(0, IdXn−1

, 0) : Yn−1 ⊕ (Xn−1 ⊕ Yn) → Xn−1, for any n ∈ Z. Denote by s(f) : C(p(f)) → Y [1]
the graded map given by s(f)n = (0, IdYn−1

, fn−1) : Xn−2 ⊕ Yn−1 ⊕Xn−1 → Yn−1, for any n ∈ Z.
Then q(f) and s(f) are homotopy equivalences making the following diagram of chain complexes
homotopy commutative:

Y
i(f) // C(f)

i(i(f))// C(i(f))
p(i(f)) //

q(f)

��

Y [1]

X
f // Y

i(f) // C(f)
p(f) // X[1]

−f [1] // Y [1]
−i(f)[1]// C(f)[1]

C(f)
p(f)

// X[1]
i(p(f))

// C(p(f))
p(p(f))

//

−s(f)

OO

C(f)[1]

Proof. The verification, that both q(f), s(f) are chain maps, is straightforward. We construct
homotopy inverses r(f), t(f) of q(f), s(f), respectively, as follows. Set

r(f)n =

−fn−1

IdXn−1

0

 : Xn−1 → Yn−1 ⊕Xn−1 ⊕ Yn

for any integer n. Then r(f) is a chain map satisfying q(f) ◦ r(f) = IdX[1]. In order to show that
r(f) ◦ q(f) ∼ IdC(i(f)), we define the homotopy h on C(i(f)) by

hn =

0 0 IdYn

0 0 0
0 0 0

 : Yn−1 ⊕Xn−1 ⊕ Yn → Yn ⊕Xn ⊕ Yn+1

for any integer n. If ∆ denotes the differential of C(i(f)), we have ∆ ◦ h + h ◦ ∆ = IdC(i(f)) −
r(f) ◦ q(f). This shows also the homotopy commutativity of the upper part of the diagram, since
q(f) ◦ i(i(f)) = p(f) and p(i(f)) ◦ r(f) = −f [1]. We proceed similarly for t(f). Set

t(f)n =

 0
IdYn−1

0

 : Yn−1 → Xn−2 ⊕ Yn−1 ⊕Xn−1
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for any integer n. Clearly t(f) is a chain map satisfying s(f) ◦ t(f) = IdY [1]. In order to show that
t(f) ◦ s(f) ∼ IdC(p(f)), we define the homotopy k on C(p(f)) by

kn =

0 0 IdXn−1

0 0 0
0 0 0

 : Xn−2 ⊕ Yn−1 ⊕Xn−1 → Xn−1 ⊕ Yn ⊕Xn

for any integer n. If Π denotes the differential of C(p(f)), we have Π◦k+k◦Π = IdC(p(f))−t(f)◦s(f).
This shows also the homotopy commutativity of the lower part of the diagram, since s(f) ◦ p(f) =
f [1] and p(p(f)) ◦ t(f) = i(f)[1].

It remains to show, that the octahedral axiom T4 holds:

Proposition 9.5. Given two composable chain maps X
f // Y

g // Z of complexes over an
additive category C, there are chain maps u, v making the following diagram of chain complexes
commutative

X
f // Y

i(f) //

g

��

C(f)
p(f) //

u

��

X[1]

X
gf

// Z
i(gf)

//

i(g)

��

C(gf)
p(gf)

//

v

��

X[1]

f [1]

��
C(g)

p(g)

��

C(g)
p(g)

//

w

��

Y [1]

Y [1]
i(f)[1]

// C(f)[1]

and there is a homotpy equivalence t(u) : C(g)→ C(u) such that the diagram

C(f)
u // C(gf)

v // C(g)
w //

t(u)

��

C(f)[1]

C(f)
u
// C(gf)

i(u)
// C(u)

p(u)
// C(f)[1]

is homotopy commutative.

Proof. For any n ∈ Z set

un =

(
IdXn−1

0
0 gn

)
: Xn−1 ⊕ Yn → Xn−1 ⊕ Zn ,

vn =

(
fn−1 0

0 IdZn

)
: Xn−1 ⊕ Zn → Yn−1 ⊕ Zn ,

wn =

(
0 0

IdYn−1
0

)
: Yn−1 ⊕ Zn → Xn−2 ⊕ Yn−1 .
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A straightforward verification shows that u = (un)n∈Z, v = (vn)n∈Z and w = (wn)n∈Z are chain
maps which make the first diagram in the statement commutative. For t(u) we take the morphism
given by the obvious split monomorphisms

Yn−1 ⊕ Zn // (Xn−2 ⊕ Yn−1)⊕ (Xn−1 ⊕ Zn)

and we define a morphism s(u) : C(u)→ C(g) given by the projections

(Xn−2 ⊕ Yn−1)⊕ (Xn−1 ⊕ Zn) // Yn−1 ⊕ Zn

for any n ∈ Z. Then s(u) ◦ t(u) = IdC(g), and it remains to show that t(u) ◦ s(u) ∼ IdC(u). For
this we consider on C(u) the homotopy h given, for any n ∈ Z, by the map

hn : (Xn−2 ⊕ Yn−1)⊕ (Xn−1 ⊕ Zn)→ (Xn−1 ⊕ Yn)⊕ (Xn ⊕ Zn+1) ,

where hn is zero on the summands Xn−2, Yn−1, Zn, and hn maps Xn−1 identically to its canonical
image in C(u)n+1. Then in the second diagram in the statement, the left and middle square are
commutative. Clearly p(v) ◦ s(u) = p(u); thus the right square is homotopy commutative, as s(u)
is a homotopy inverse to t(u).

This completes the proof of Theorem 9.2. We note some immediate consequences.

Corollary 9.6. Let C be an additive category, let f : X → Y be a chain map of complexes over C,

and consider the mapping cone sequence X
f // Y

i(f) // C(f)
p(f) // X[1] .

(i) We have i(f) ◦ f ∼ 0.

(ii) f is a homotopy equivalence if and only if C(f) ' 0.

(iii) i(f) is a homotopy equivalence if and only if X ' 0.

(iv) p(f) is a homotopy equivalence if and only if Y ' 0.

(v) If two of X, Y , C(f) are homotopic to zero, so is the third.

Proof. Statement (i) follows from 8.3 (i), but one can see this also directly: the canonical monomor-
phisms Xn ↪→ Xn ⊕ Yn+1 define a homotopy h : X −→ C(f) through which i(f) ◦ f becomes
homotopic to the zero map. The statements (ii), (iii), (iv) are all particular cases of 8.7. Finally,
(v) follows from (ii) and (iii).

Corollary 9.7. Let C be an additive category, f : X → Y a chain map of complexes over C, and
let U be a complex over C.

(i) The covariant functor HomK(C)(U,−) induces a long exact sequence

· · · → HomK(C)(U,X[n])→ HomK(C)(U, Y [n])→ HomK(C)(U,C(f)[n])→ HomK(C)(U,X[n+1])→ · · ·

(ii) The contravariant functor HomK(C)(−, U) induces a long exact sequence

· · · → HomK(C)(X[n+1], U)→ HomK(C)(C(f)[n], U)→ HomK(C)(Y [n], U)→ HomK(C)(X[n], U)→ · · ·

Proof. This is a particular case of 8.8.
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Corollary 9.8. Let A be an algebra over a commutative ring k and let f : X → Y be a chain map
of complexes of A-modules. Taking homology induces a long exact sequence of A-modules

· · · → Hn(X)→ Hn(Y )→ Hn(C(f))→ Hn−1(X)→ · · ·

Proof. By 3.20 we have Hn(X) ∼= HomK(Mod(A))(A[n], X) ∼= HomK(Mod(A))(A,X[−n]), thus the
statement follows from the first of the two long exact sequences in the previous corollary applied
to U = A.

Corollary 9.9. Let A be an algebra over a commutative ring k and let f : X → Y be a chain map
of complexes of A-modules. The following are equivalent.

(i) f is a quasi-isomorphism.

(ii) C(f) is acyclic.

(iii) For any bounded below complex P of projective A-modules, the map f induces an isomorphism
HomK(Mod(A))(P,X) ∼= HomK(Mod(A))(P, Y ).

(iv) For any bounded above complex I of injective A-modules, the map f induces an isomorphism
HomK(Mod(A))(Y, I) ∼= HomK(Mod(A))(X, I).

Proof. The equivalence of (i), (ii) follows from the long exact homology sequence in the previous
corollary, and the equivalence with (iii), (iv) follows then from the long exact sequences in 9.7,
together with the characterisation 3.19 of acyclic complexes, using the fact that Mod(A) has enough
projective and injective objects.

We have two ways of producing long exact sequences: via mapping cone sequences and via
short exact sequences of complexes. Both approaches are equivalent in the sense that we can view
mapping cone sequences as being induced by short exact sequences of complexes in the same way
we defined triangles in a stable module category using short exact sequences of modules.

Theorem 9.10. Let A be an algebra over a commutative ring k and let

0 // X
f // Y

g // Z // 0

be a short exact sequence of chain complexes A-modules. The maps sn = (0, gn) : Xn−1⊕Yn → Zn
induce a quasi-isomorphism s : C(f)→ Z making the diagram of chain complexes of A-modules

X
f // Y

i(f) // C(f)

s

��
0 // X

f
// Y

g
// Z // 0

commutative, and we have an isomorphism of long exact sequences

· · · // Hn(X) // Hn(Y ) // Hn(C(f)) //

Hn(s)

��

Hn−1(X) // Hn−1(Y ) // · · ·

· · · // Hn(X) // Hn(Y ) // Hn(Z) // Hn−1(X) // Hn−1(Y ) // · · ·
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where the first row is from 9.8 and the second row from 2.8. Moreover, if the first exact sequence
of chain complexes is degreewise split, then s is a homotopy equivalence.

Proof. The commutativity of the diagram is a straightforward verification. One can verify either
directly that s is a quasi-isomorphism (which, effectively, would yield another proof of Theorem
2.8), or use the 5-Lemma. Denote by δ, ε, ζ, ∆ the differentials of X, Y , Z, C(f), respectively.
Suppose now that the first exact sequence of chain complexes in the statement is degree wise split;
that is, there are graded morphisms u : Y → X and v : Z → Y satisfying IdY = f ◦u+ v ◦ g. Note
that then f = f ◦ u ◦ f , hence u ◦ f = IdX as f is a monomorphism; in particular, u is a retraction
for f . Similarly, g ◦ v = IdZ ; in particular, v is a section for g. The morphism v ◦ ζ − ε ◦ v : Z → Y
is graded of degree −1, and it this a chain map from Z to Y [1], since

(−ε) ◦ (v ◦ ζ − ε ◦ v) = −ε ◦ v ◦ ζ = (v ◦ ζ − ε ◦ v) ◦ ζ

This chain map satisfies g ◦ (v ◦ ζ − ε ◦ v) = g ◦ v ◦ ζ − ζ ◦ g ◦ v = 0, as g ◦ v = IdZ . Whence this
map factors through f . Let r : Z → X be the graded morphism of degree −1 such that f ◦ r =
v ◦ ζ − ε ◦ v. Since the right side is a chain map and f is a monomorphism, r itself can be viewed
as a chain map from Z[−1] to X. Consider the associated triangle

Z[−1]
r // X

i(r) // C(r)
p(r) // Z

A straightforward verification shows that C(r) ∼= Y via the inverse chain maps given by the

morphisms (vn, fn) : Zn ⊕ Xn → Yn and

(
gn
un

)
: Yn → Zn ⊕ Xn for any integer n. Thus

C(i(r)) ∼= C(f). By 9.4, we have also a homotopy equivalence q(r) : C(i(r)) → Z. Together,
we obtain a homotopy equivalence C(f) ' Z, and this is easily seen to be the chain map s as
defined.

Corollary 9.11. With the notation and hypotheses of 9.10, if Y ' 0 then Z ' X[1].

10 Spectral sequences

Spectral sequences, introduced by Jean Leray, are a sophisticated tool to calculate the (co-)homology
of (co-)chain complexes in terms of a filtration by subcomplexes. If X is a subcomplex of a cochain
complex Y , then the cohomology of Y is related to that of X and Y/X via the long exact homology
sequence 2.8. More generally, if we have a filtration of a cochain complex X by subcomplexes F iX
such that F iX is a subcomplex of F i−1X, then the cohomology of X can be approximated in terms
of the cohomology of the quotiens F iX/F jX, with j > i. A spectral sequence organises the data
coming from such a filtration in a way which leads to calculating a filtration of the cohomology
of X in terms of the given filtration of X itself. We have, of course, as always the dual version
for the homology of chain complexes. We describe here cohomology spectral sequences and leave
the translation of this material to homology sequences as an exercise. We fix an algebra A over
a commutative ring k and describe spectral sequences of cochain complexes of A-modules; the
adaptation to arbitrary abelian categories is straightforward.
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Definition 10.1. A cohomology spectral sequence starting at the page Ea for some integer a is
a triple graded family of A-modules E = (Ep,qr ), where r ≥ a and p, q ∈ Z, together with A-
homomorphisms

dp,qr : Ep,qr → Ep+r,q−r+1
r

such that dp+r,q−r+1
r ◦ dp,qr = 0 for all r, p, q as before, together with an isomorphism between

Ep,qr+1
∼= ker(dp,qr )/Im(dp−r,q+r−1

r )

For a fixed r, the bigraded A-module E∗,∗r = (Ep,qr )p,q∈Z together with the differentials dp,qr is
called the Er-page of the spectral sequence. The number p + q is called the total degree of the
A-module Ep,qr in the spectral sequence. The cohomology spectral sequences starting at a fixed
page Ea are the objects of a category in which a morphism of spectral sequences (Ep,qr )→ (F p,qr )
is a triple graded A-homomorphism (fp,qr : Ep,qr → F p,qr ) which commute with the differentials and
the isomorphisms Ep,qr+1

∼= ker(dp,qr )/Im(dp−r,q+r−1
r ).

The Er-page of a spectral sequence is a family of complexes with differentials of bidegree
(r,−r+ 1), and the passage from the Er-page to the Er+1-page is made by taking the cohomology
of the involved complexes. Note that dp,qr goes from Ep,qr with total degree p + q to Ep+r,q−r+1

r

with total degree p + q + 1. For E a spectral sequence starting at the E0 page, the pages E0,
E1, E2 can be visualised as lattices of A-modules together with their differentials as follows. The
bidegree of the differential of E0 is (0, 1).

E0,2
0 E1,2

0 E2,2
0

E0,1
0

OO

E1,1
0

OO

E2,1
0

OO

E0,0
0

OO

E1,0
0

OO

E2,0
0

OO

Any two vertical maps compose to zero, and the resulting cohomology is yields the terms of the
next page E1, whose differential has bidegree (1, 0).

E0,2
1

// E1,2
1

// E2,2
1

E0,1
1

// E1,1
1

// E2,1
1

E0,0
1

// E1,0
1

// E2,0
1

Again, any two consecutive horizontal maps compose to zero, and the resulting cohomology yields
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the terms of the next page E2, whose differential has bidegree (2,−1).

E0,2
2

((

E1,2
2

((

E2,2
2

((

E3,2
2 E4,2

2

E0,1
2

((

E1,1
2

((

E2,1
2

((

E3,1
2 E4,1

2

E0,0
2 E1,0

2 E2,0
2 E3,0

2 E4,0
2

Observation: if for some fixed p, q we have Ep,qr = 0, then also Ep,qs for all s ≥ r. That is,
any zero entry in a given page remains zero in all subsequent pages. More generally, the module
Ep,qr+1 is a subquotient of Ep,qr . If for any (p, q) ∈ Z2 the process of taking subquotients stabilises
for some sufficiently large r, then we say that the spectral sequence converges. More precisely:

Definition 10.2. A cohomology spectral sequence (Ep,qr ) with start page Ea converges if for any
(p, q) ∈ Z2 there exists r ≥ a such that Ep,qs = Ep,qr for all s ≥ r. In that case, we write Ep,qr =
Ep,q∞ .

For a spectral sequence to be useful, convergence is a key property, and so quite some effort goes
into developing sufficient criteria for a spectral sequence to converge. We consider the following
two cases.

Definition 10.3. A spectral sequence (Ep,qr ) starting at the page Ea is called bounded if for any
n ∈ Z there are only finitely many (p, q) ∈ Z such that p+ q = n and Ep,qa 6= 0.

As remarked earlier, this implies that for all r ≥ a, the page Er satisfies the same boundedness
property as the page Ea.

Definition 10.4. A spectral sequence (Ep,qr ) starting at the page Ea is called a first quadrant
spectral sequence if Ep,qa = 0 for all (p, q) ∈ Z such that p < 0 or q < 0.

The term ‘first quadrant spectral sequence’ is self-explanatory: a first quadrant spectral se-
quence (Ep,qr ) has in any page nonzero terms Ep,qr only if p ≥ 0 and q ≥ 0, that is, only if (p, q)
belongs to the first quadrant.

Exercise 10.5. Let E = (Ep,qr ) be a first quadrant spectral sequence starting at the page E0.
Show that for any integer n ≥ 0 and any (p, q) ∈ Z2 such that p+ q = n we have Ep,q∞ = Ep,qn+2.

Proposition 10.6.

(i) A first quadrant spectral sequence is bounded.

(ii) A bounded spectral sequence converges.

Proof. For any integer n there are at most finitely many pairs (p, q) ∈ Z2 such that p ≥ 0, q ≥ 0,
and p+ q = n. Thus a first quadrant spectral sequence is bounded, whence (i). For (ii), let (Ep,qr )
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be a bounded spectral sequence. Let n ∈ Z and (p, q) ∈ Z2 such that p + q = n. Consider the
sequence of the two differentials in the Er-page starting and ending at Ep,qr ,

Ep−r,q+r−1
r

// Ep,qr // Ep+r,q−r+1
r

Regardless of r, the total degree of the left term Ep−r,q+r−1
r is n − 1, and the total degree of the

right term Ep+r,q−r+1
r is n + 1. Since the spectral sequence is bounded, there are only finitely

many values of integers r such that at least one of Ep−r,q+r−1
r , Ep+r,q−r+1

r is nonzero. Thus for r
large enough, we have

Ep−r,q+r−1
r = 0 = Ep+r,q−r+1

r .

But then the differentials ending and starting at Ep,qr are zero, so passing to cohomology yields
Ep,qr = Ep,qr+1 for all large enough integers r, which proves that the spectral sequence converges.

Definition 10.7. Let (Ep,qr ) be a bounded spectral sequence of A-modules starting at the Ea-page
for some integer a. Let H∗ = (Hn)n∈Z be a graded A-module (think: the cohomology of some
cochain complex). We say that the spectral sequence (Ep,qr ) converges to H∗ and write

Ep,qa ⇒ Hp+q

if there exists a filtration of H∗ by graded submodules F pH∗ such that F p+1Hn ⊆ F pHn for all
integers p, n, and such that

Ep,q∞
∼= F pHp+q/F p+1Hp+q

for all (p, q) ∈ Z2.

Remark 10.8. The convergence of a spectral sequence Ep,qa ⇒ Hp+q does not mean that we can
determine Hn outright; what this says is that there is a filtration of Hn whose subquotients are
isomorphic to the modules Ep,q∞ , with (p, q) running over the set of all pairs of integers such that
p+ q = n. By the boundedness assumption, there are only finitely many such pairs. For instance,
if one of the Ep,q∞ with p + q = n is nonzero, then Hn is nonzero, and if k is a field such that the
Ep,q∞ are finite-dimensional, then dimk(Hn) =

∑
p+q=n dimk(Ep,q∞ ).

Example 10.9. Let X be a cochain complex and Y a subcomplex of X. Consider X with the
filtration F 0X = X, F 1X = Y , and F 2X = {0} (the zero subcomplex of X). Consider Hn =
Hn(X) filtered with F 0Hn = Hn, F 1Hn = Im(Hn(Y ) → Hn(X)), and F 2Hn = {0}. The
connecting homomorphism dn : Hn(X/Y ) → Hn+1(Y ) can be regarded as the differential of the
E1-page of a spectral sequence of the form

0 // Hn(X/Y )
dn // Hn+1(Y ) // 0

0 // Hn−1(X/Y )
dn−1

// Hn(Y ) // 0

0 // Hn−2(X/Y )
dn−2

// Hn−1(Y ) // 0
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with the two nonzero columns in degree 0 and 1. The E2-page is obtained from passing to coho-
mology, thus of the form

ker(dn) Hn+1(Y )/Im(dn)

ker(dn−1) Hn(Y )/Im(dn−1)

ker(dn−2) Hn−1(Y )/Im(dn−2)

with zero differential; that is, E2 = E∞. The fact that this spectral sequence converges to H∗ =
H∗(X) is equivalent to the long exact cohomology sequence. Indeed, the convergence of this spec-
tral sequence to H∗ means that Hn is filtered by the the term Hn(Y )/Im(dn−1) in position (1, n−1)
and ker(dn) in position (0, n). But ker(dn) is equal to the image of Hn(X)→ Hn(X/Y ) by the ex-
actness of long cohomology sequence, and the map Hn(Y )→ Hn(X) has image Hn(Y )/Im(dn−1).

Any filtered complex gives rise to a spectral sequence starting at the E1-page. A filtration of
a cochain complex X by subcomplexes F pX satisfying F p+1X ⊆ F pX for p ∈ Z is called bounded
if for any n ∈ Z there exist integers p and q such that F pXn = Xn and F qXn = {0}; that is, in
each fixed degree, the filtration induced by the subcomplexes F pX is finite.

Theorem 10.10. Let X be a cochain complex of A-modules with a bounded filtration by subcom-
plexes F pX such that F p+1X ⊆ F pX for p ∈ Z. There is a bounded spectral sequence

Ep,q1 ⇒ Hp+q(X)

with
Ep,q1 = Hp+q(F pX/F p+1X)

for any p ,q ∈ Z, and
Ep,q∞ = F pHp+q(X)/F p+1Hp+q(X)

where F pHn(X) = Im(Hn(F pX)→ Hn(X)) with the map being induced by the inclusion F pX ⊆
X, for any n, p, q ∈ Z.

Proof. Denote by δ = (δn)n∈Z the differential of X. We define for p, q, r ∈ Z, r ≥ 1, the following
submodules of Xp+q.

Zp,qr = {x ∈ F pXp+q | δp+q(x) ∈ F p+rXp+q+1}

In other words, Zp,qr is the inverse image in Xp,q of the differential in degree p+ q of the complex
F pX/F p+rX.

Bp,qr = δp+q−1(F p−rXp+q)

Zp,q∞ = ker(δp+q) ∩ F pXp+q

Bp,q∞ = Im(δp+q−1) ∩ F pXp+q .
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One verifies the following inclusions:

Bp,q0 ⊆ Bp,q1 ⊆ · · · ⊆ Bp,q∞ ⊆ Zp,q∞ ⊆ · ⊆ Z
p,q
1 ⊆ Zp,q0 ⊆ Xp+q .

We set
Ep,qr = Zp,qr /(Zp+1,q−1

r−1 +Bp,qr−1) ,

where p, q, r ∈ Z such that r ≥ 1. The rest of the proof is a verification of the following statements:

(1) The differential δ of X induce a maps Ep,qr → Ep+r,q−r+1
r .

(2) Taking cohomology sends the page E∗∗r to the subsequent page E∗∗r+1.

(3) We have Ep,q1
∼= Hp+q(F pX/F p+1X).

(4) We have Ep,q∞
∼= F pHp+q(X)/F p+1Hp+q(X).

We describe next one of the major construction principles which yield filtered complexes: the
total complex of a double complex comes with two filtrations.

Definition 10.11. A double cochain complex of A-modules is a triple (X, δ, ε) consisting of

(a) a bigraded A-module X∗∗ = (Xp,q)p,q∈Z,

(b) a horizontal differential δ : Xp,q → Xp+1,q of bidegree (1, 0) satisfying δp+1,q ◦ δp,q = 0 for all
p, q ∈ Z,

(c) a vertical differential ε : Xp,q → Xp,q+1 of bidegree (0, 1) satisfying εp,q+1 ◦ εp,q = 0 for all p,
q ∈ Z,

with the property that
εp+1,q ◦ δp,q = −δp,q+1 ◦ εp,q ;

that is, the squares

// Xp,q+1 δp,q+1
//

OO

Xp+1,q+1 //

OO

// Xp,q

δp,q
//

εp,q

OO

Xp+1,q //

εp+1,q

OO

OO OO

anticommute for all p, q ∈ Z.

That is, a double complex can be regarded as a sequence of horizontal cochain complexes (with
differentials given by δ), such that the vertical maps ε are ‘cochain maps up to signs’. One verifies
that then ε preserves ker(δ) and Im(δ), hence induces a vertical graded map ε on the ‘horizontal’
cohomology of the complexes with differential δ. Similarly, a double complex can be regarded as
a sequence of vertical cochain complexes such that the horizontal maps are ‘cochain maps up to
signs’.

58



Definition 10.12. Let (X, δ, ε) be a double cochain complex of A-modules. The total complex of
X is the cochain complex, denoted tot(X), defined by

tot(X)n = ⊕p+q=n Xp,q = ⊕p∈Z Xp,n−p = ⊕q∈Z Xn−q,q

for n ∈ Z, where in the first sum (p, q) runs over all (p, q) ∈ Z2 such that p+q = n, with differential

∆ = δ + ε ;

explicitly, ∆n is the sum of the maps δp,q and εp,q, the sum taken over all (p, q) ∈ Z2 such that
p+ q = n.

One verifies that ∆ ◦∆ = 0; this makes use of the anticommutativity of the differentials in the
definition of double complexes. If for some n ∈ Z there are infinitely many pairs of integers (p, q)
satisfying p + q = n, then it would make a difference whether we define tot(X)n as direct sum
or as direct product of the Xp,q with p + q = n, and both versions may be useful, depending on
circumstances. We will keep the focus on bounded spectral sequences, so this issue will not arise
here. We describe next the two filtrations of the total complex of a double complex.

Definition 10.13. Let (X, δ, ε) be a double cochain complex. Set Y = tot(X). Define

F pI Y
n = ⊕r≥p Xr,n−r ,

F pIIY
n = ⊕r≥p Xn−r,r ,

for any n, p ∈ Z.

An easy verification shows that F pI Y and F pIIY are subcomplexes of Y = tot(X), for any p ∈
Z. As mentioned before, we can take the cohomology in a double complex (X, δ, ε) in two ways:
either horizontally with respect to δ, or vertically, with respect to ε. We use the following notation.

Definition 10.14. Let (X, δ, ε) be a double cochain complex of A-modules. For any (p, q) ∈ Z2

we set
Hp,q
I (X) = ker(δp,q)/Im(δp−1,q) ,

Hp,q
II (X) = ker(εp,q)/Im(εp,q−1) .

We regard Hp,q
I (X) again as a double complex, with horizontal differential now zero, while

the vertical differential is induced by ε, and will be denoted by ε̄. Similarly, we regard Hp,q
II (X)

again as a double complex, with vertical differential zero and horizontal differential δ̄ induced by
δ. Thus we can apply taking horizontal and vertical cohomology again; this leads to considering
the bigraded objects (that is, double complexes in which both differentials are zero) of the form
HIIHI(X) and HIHII(X).

Theorem 10.15. Let X be a first quadrant double cochain complex of A-modules; that is, Xp,q =
{0} if at least one of p or q is negative. There are two first quadrant spectral sequences of the form

IE
p,q
2 = Hp,q

I HII(X)⇒ Hp+q(X)

IIE
p,q
2 = Hp,q

II HI(X)⇒ Hp+q(X)
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Proof. The two filtrations FI and FII of Y = tot(X) described in 10.13 give rise, by Theorem
10.10, to two spectral sequences starting at the E1-page, of the form

IE
p,q
1 ⇒ Hp+q(Y )

with

IE
p,q
1 = Hp+q(F pI Y/F

p+1
I Y )

and similarly for FII . One verifies that

IE
p,q
1 = Hp,q

II (X)

and that the differential at the page IE1 is equal to the differential δ̄ induced by δ. Thus taking
cohomology with respect to δ̄ yields the page IE2, and that is by our notation the same as applying
HI . This yields the first spectral sequence, and the analogous argument with FII yields the second
spectral sequence.

Theorem 10.16. Let (X, δ) be a cochain complex of A-modules such that Xn = {0} for n < 0.
There exists a double cochain complex of the form

I0,2 δ0,2 //

OO

I1,2 δ1,2 //

OO

I2,2 //

OO

I0,1 δ0,1 //

OO

I1,1 δ1,1 //

OO

I2,1 //

OO

I0,0 δ0,0 //

OO

I1,0 δ1,0 //

OO

I2,0 //

OO

X0

OO

δ0
// X1

OO

δ1
// X2 //

OO

such that the following hold.

(i) Ip,q is injective for all p, q ≥ 0.

(ii) Im(δn,∗) is an injective resolution of Im(δn), for n ≥ 0.

(iii) ker(δn,∗)/Im(δn−1,∗) is an injective resolution of ker(δn)/Im(δn−1) = Hn(X), for n ≥ 0.

(iv) If Xn = {0} for some integer n ≥ 0, then In,q = {0} for all q ≥ 0.

Proof. The proof uses the horseshoe lemma and constructs this resolution inductively.

The double complex I∗,∗ obtained from removing the bottom row, is called a Cartan-Eilenberg
resolution of X. An easy argument using long exact sequences shows that then ker(δn,∗) is also an
injective resolution of ker(δn).
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Theorem 10.17 (Lyndon-Hochschild-Serre spectral sequence). Suppose that k is a field. Let G
be a finite group, N a normal subgroup, and U a kG-module. There is a first quadrant spectral
sequence

Ep,q2 = Hp(G/N ;Hq(N ;U))⇒ Hp+q(G;U)

Proof. We have Hn(G;U) = ExtnkG(k;U). This can be calculated by choosing a projective res-
olution of k followed by applying the functor HomkG(−, U) to this resolution and then taking
cohomology in degree n. It can also be calculated by choosing an injective resolution of U followed
by applying the functor HomkG(k,−) to this resolution and then taking cohomology in degree
n. It is a specialty of finite group algebras that their classes of projective and injective modules
coincide (this follows from the fact that finite group algebras are symmetric, hence self-injective).
Note that the functor HomkG(k,−) applied to the kG-module is the same as taking G-fixed points
UG in U ; indeed, we have a natural isomorphism

HomkG(k, U) ∼= UG

sending a kG-homomorphism τ : k → U to τ(1). Applied toN instead ofG, we have HomkN (k, U) ∼=
UN . Since N is normal in G, the action of G on U preserves UN , and so UN is again a kG-module.
Moreover, N acts by definition trivially on UN , so UN inherits as kG/N -module structure, so that
it makes sense to take G/N -fixed points in UN . We clearly have

UG = (UN )G/N

and this should be understood as the composition of two functors from Mod(kG) to Mod(k),
namely

HomkG(k,−) = HomkG/N (k,−) ◦HomkN (k,−)

The first of these two functors, sending a kG-module U to the kG/N -module UN , has an important
structural property: it preserves injectives, or equivalently, it preserves projectives. Indeed, the
N -fixed points in the free kG-module kG of rank 1 are easily seen to be equal to (

∑
y∈N y)kG ∼=

kG/N .
With the preliminary observations, take an injective resolution of U ; this yields an exact cochain

complex

0 // U // J0 // J1 // · · ·

To calculate Hq(N ;U), we need to apply the fixed point functor HomkN (k,−). This yields a
cochain complex of kG/N -modules of the form

0 // UN // (J0)N // (J1)N // · · ·

Note that all modules apart from UN are again injective kG/N -modules. Construct a Cartan-
Eilenberg resolution of this complex. Then apply the G/N -fixed point functor HomkG/N (k,−) to
the entire Cartan-Eilenberg resolution. One ends up with a double cochain complex. This double
complex yields two spectral sequences. One shows that one of these collapses (using the injectivity
of the (J i)N ), and uses this to show that the other of these converges to Hp+q(G;U) as stated.

The Lyndon-Hochschild-Serre spectral sequence is a crucial ingredient in the proof of the fol-
lowing result:
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Theorem 10.18 (Evens-Venkov). Let G be a finite group and k a field. Then H∗(G; k) is a finitely
generated graded-commutative k-algebra.

The construction of the Lyndon-Hochschild-Serre spectral sequence is a special case of what is
known as a Grothendieck spectral sequence. These are obtained from playing of the derived functors
of two composable functors and those of the composition of the two functors.

Definition 10.19. Let A, B be algebras over a commutative ring k. Let F : Mod(A)→ Mod(B)
be a covariant functor and n ≥ 0. The n-the right derived functor RnF : Mod(A) → Mod(B) is
defined by

RnF(U) = Hn(F(I)),

where I is an injective resolution of U . The n-the left derived functor LnF : Mod(A) → Mod(B)
is defined by

LnF(U) = Hn(F(P )),

where P is an projective resolution of U .

We have analogous definitions for contravariant functors.

Exercise 10.20. With the notation of 10.19, show that if F is left exact, then R0F ∼= F , and if
F is right exact, then L0F ∼= F . Show that the functors LnF , RnF are independent, up to unique
isomorphism of functors, of the choices of resolutions.

Example 10.21. Let U , V be A-modules. The fact that ExtnA(U, V ) can be calculated by using
either a projective resolution of U or an injective resolution of V translates to the equality

ExtnA(U, V ) = Ln(HomA(−, V ))(U) = Rn(HomA(U,−))(V ) .

In particular, if G is a group and U a kG-module, then

Hn(G;U) = Ln(HomkG(−, U))(k) = Rn(HomkG(k,−))(U)

Definition 10.22. Let A, B be algebras over a commutative ring k. Let F : Mod(A)→ Mod(B)
be a covariant functor. An A-module U is called F-acyclic if RnF(U) = {0} for all n > 0.

Any injective module is F-acyclic for any functor F . The point of this definition is that one
can use resolutions by F-acyclic modules rather than injective modules to calculate the derived
functors of F .

Theorem 10.23. Let A, B be algebras over a commutative ring k. Let F : Mod(A)→ Mod(B) be
a covariant functor. Let J be a resolution of an A-module U such that all terms of J are F-acyclic.
Then RnF(U) ∼= Hn(F(I)) for n ≥ 0.

This allows more flexibility when it comes to calculating derived functors - for instance, in
sheaf theory, a flabby sheaf on a space X is Γ(X,−)-acyclic, and hence, in order to calculate sheaf
cohomology, one may use resolutions by flabby sheaves rather than injective sheaves. The following
result, describing Grothendieck spectral sequences, takes this into account.
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Theorem 10.24 (Grothendieck, [4]). Let A, B, C be abelian categories. Let F : A → B and
G : B → C be left exact functors. Suppose that A and B have enough injective objects and that F
sends injective objects in A to G-acyclic objects in B. There is a first quadrant spectral sequence

Ep,q2 = (RpG)(RqF(X))⇒ Rp+q(G ◦ F)(X)

for any object X in A.

Proof. This follows the pattern we have aleady encountered in the proof of the Lyndon-Hochschild-
Serre spectral sequence. We start with an injective resolution I of X. We apply the functor F to
this resolution. Note that the terms of F(I) are G-acyclic. We then consider a Cartan-Eilenberg
resolution of this complex in B, and we apply the functor G. This yields a double complex in C.
One of the two spectral sequences associated with this double complex collapses (this is where we
use that the terms of F(I) are G-acyclic), and the other takes the form as in the statement.

The Lyndon-Hochschild-Serre spectral sequence is a Grothendieck spectral sequence with A =
Mod(kG), B = Mod(kG/N), C = Mod(k), F = HomkN (k,−), and G = HomkG/N (k,−). So is the
following spectral sequence in sheaf cohomology, due to Leray, which is fundamental in algebraic
geometry.

Theorem 10.25 (Leray). Let X, Y be topological spaces and f : X → Y a continous map. Let F
be a sheaf on X. There is a spectral sequence

Ep,q2 = Hp(Y ;Rqf∗(F))⇒ Hp+q(X;F)

where f∗ : Sh(X)→ Sh(Y ) is the direct image functor.

Proof. This is a Grothendieck spectral sequence with A = Sh(X), B = Sh(Y ), C = Ab (the
category of abelian groups), F = f∗, G = Γ(Y ;−) (the global section functor on Y ), using the fact
that Γ(X;−) = Γ(Y ;−) ◦ f∗ and that f∗ preserves injectives.
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A Appendix: Category theory theoretic background

Category theory considers mathematical objects systematically together with the structure preserv-
ing maps between them, providing a unifying language for many different mathematical concepts to
which homological methods can be applied. We review in this section the basic category theoretic
vocabulary: category, functor, natural transformation, and adjunction.

A category C consists of three types of data: an object class, a morphism class, and information
on how to compose morphisms, with a short list of properties one would expect any reasonable
category of mathematical objects to have.

Definition A.1. A category C consists of a class Ob(C), called the class of objects of C, for any
X, Y ∈ Ob(C) a class HomC(X,Y ), called the class of morphisms from X to Y in C, and, for any
X, Y , Z ∈ C a map

HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z), (f, g) 7→ g ◦ f ,

called the composition map, subject to the following properties.

(1) The classes HomC(X,Y ), with X, Y ∈ C, are pairwise disjoint. Equivalently, any morphism f
in C determines uniquely a pair (X,Y ) of objects in C such that f ∈ HomC(X,Y ).

(2) (Identity morphisms) For any object X ∈ Ob(C), there is a distinguished morphism IdX ∈
HomC(X,X), called identity morphism of X, such that for any object Y ∈ C, any f ∈ HomC(X,Y )
and any g ∈ HomC(Y,X) we have f ◦ IdX = f and IdX ◦ g = g.

(3) (Associativity) For any X, Y , Z, W ∈ Ob(C) and any f ∈ HomC(X,Y ), g ∈ HomC(Y,Z), h ∈
HomC(Z,W ), we have (h ◦ g) ◦ f = h ◦ (g ◦ f); this is an equality of morphisms in HomC(X,W ).

The objects of a category form in general a class, not necessarily a set. A category whose
object and morphism classes are sets is called a small category. A morphism f ∈ HomC(X,Y )

between two objects X, Y in a category C is typically denoted by f : X → Y or by X
f // Y .

Morphisms are also called maps, although one should note that the morphisms of a category may
be abstractly defined and do not necessarily induce any maps in a set theoretic sense. We write
EndC(X) = HomC(X,X), and call the morphisms in EndC(X) the endomorphisms of X. The set
EndC(X) together with the composition of morphisms is a monoid with unit element IdX .

Examples A.2.

(1) We denote by Sets the category of sets, having as objects the class of sets and as morphisms
arbitrary maps between sets. This is a large category - considering the set of all sets leads to what
is known as Russell’s paradox.

(2) For k a field, we denote by Vect(k) the category of k-vector spaces; that is, the objects of
Vect(k) are the k-vector spaces, and the morphisms are k-linear transformations between k-vector
spaces. For U , V two k-vector spaces, we write Homk(U, V ) instead of HomVect(k)(U, V ) for the
space of k-linear transformations from U to V , and we write Endk(U) = Homk(U,U). Note that
the sets Homk(U, V ) are again k-vector spaces, not just sets, and that the composition maps are
k-bilinear.

(3) We denote by Grps the category of groups, with groups as objects and group homomorphisms
as morphisms.
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(4) We denote by Top the category of topological spaces, with linear maps as morphisms.

(5) If C is a small category with a single object E, then HomC(E,E) is a monoid. Conversely, if M
is a monoid, we can consider M as a the morphism set of a category M with a single object ∗, such
that the morphism set in M from ∗ to ∗ is equal to M , and such that composition of morphisms
in M is equal to the product in M .

(6) We denote by Alg(k) the category of k-algebras, with algebra homomorphisms as morphisms.

(7) For A an algebra over a commutative ring k, we denote by Mod(A) the category of left A-
modules; that is, the objects of Mod(A) are the left A-modules, and morphisms are A-module
homomorphisms. For U , V two A-modules we write HomA(U, V ) instead of HomMod(A)(U, V ) for
the set of A-homomorphisms from U to V . Similarly, we write EndA(U) instead of EndMod(A)(U).
Note that if k is a field, then Vect(k) = Mod(k) and vect(k) = mod(k).

Definition A.3. Let C be a category. The opposite category Cop of C is defined by Ob(Cop) =
Ob(C) and HomCop(X,Y ) = HomC(Y,X) for all X, Y ∈ Ob(Cop) = Ob(C), with composition g • f
in Cop defined by g • f = f ◦ g, for any X, Y , Z ∈ Ob(Cop), f ∈ HomCop(X,Y ) = HomC(Y,X) and
g ∈ HomCop(Y,Z) = HomC(Z, Y ), and where f ◦ g is the composition in C.

Definition A.4. Let C and D be categories. We say that D is a subcategory of C if Ob(D) is a sub-
class of Ob(C), and if for any X, Y in Ob(D), the class HomD(X,Y ) is a subclass of HomC(X,Y ),
such that for any X, Y , Z ∈ Ob(D), the composition map HomD(X,Y ) × HomD(Y, Z) →
HomD(X,Z) in D is the restriction of the composition map in C. We say that the subcategory D
of C is a full subcategory, if for any X, Y ∈ Ob(D) we have HomD(X,Y ) = HomC(X,Y ).

Examples A.5.

(1) For k a field we denote by vect(k) the full subcategory of Vect(k) consisting of all finite-
dimensional k-vector spaces.

(2) The category grps of finite groups is a full subcategory of the category of all groups Grps.

(3) The category of finitely generated left A-modules, denoted mod(A), is a full subcategory of
Mod(A).

Morphisms in a category are abstract mathematical objects and need not be maps between
sets. One of the challenges is to extend to morphisms some standard notions of maps such as the
property of being injective or surjective, without referring to elements in objects. The category
theoretic version of surjective and injective maps are as follows.

Definition A.6. Let C be a category, and let f : X → Y be a morphism in C. The morphism f
is called an epimorphism if for any two morphisms g, g′ from Y to any other object Z satisfying
g ◦f = g′ ◦f we have g = g′. The morphism f is called a monomorphism if for any two morphisms
g, g′ from any other object Z to X satisfying f ◦ g = f ◦ g′ we have g = g′. The morphism f is
called an isomorphism if there exists a morphism h : Y → X satisfying h ◦ f = IdX and f ◦ h =
IdY . An isomorphism which is an endomorphism of an object X is called an automorphism of X.

There are various ways to reformulate this definition. For instance, f : X → Y is an epimor-
phism, if and only if for any object Z the map HomC(Y,Z)→ HomC(X,Z) sending g ∈ HomC(Y,Z)
to g ◦f ∈ HomC(X,Z) is injective. Similarly, f : X → Y is a monomorphism, if and only if for any
object W the map HomC(W,X)→ HomC(W,Y ) sending g ∈ HomC(W,X) to f ◦ g ∈ HomC(W,Y )
is injective.
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Exercise A.7. Show that in the category of sets, the monomorphisms are the injective maps and
the epimorphisms are the surjective maps. Show that in the category Mod(A) of modules over
an algebra A the monomorphisms are the injective A-module homomorphisms and the epimor-
phisms are the surjective A-module homomorphisms. Show that in the category Ch(Mod(A)) the
monomorphisms (resp. epimorphisms) are the chain maps which are injective (resp. surjective)
A-homomorphisms in each degree.

Exercise A.8. Show that the composition of two monomorphisms in a category is a monomor-
phism, and that the composition of two epimorphisms is an epimorphism.

Exercise A.9. Show that if f : X → Y is an isomorphism in a category C, then there is a unique
morphism h ∈ HomC(Y,X) satisfying h ◦ f = IdX and f ◦h = IdY . The morphism h is then called
the inverse of f and denoted by f−1. Show that if f : X → Y and g : Y → Z are isomorphisms,
then g ◦ f is an isomorphism with inverse (g ◦ f)−1 = f−1 ◦ g−1. Show that the automorphisms of
X in C form a subgroup AutC(X) of the monoid EndC(X).

Exercise A.10. Show that a morphism f in a category C is a monomorphism if and only if f is
an epimorphism in the opposite category Cop.

Exercise A.11. Show that if f is an isomorphism in a category C, then f is both a monomorphism
and an epimorphism in C.

There are examples of categories in which a morphism is both an epimorphism and a monomor-
phism but not an isomorphism.

Exercise A.12. Let C be the category having the abelian group Z as unique object, with all
abelian group endomorphisms of Z as morphisms. Show that every nonzero endomorphism of Z
is both a monomorphism and an epimorphism in C. Use this to give an example of a morphism
which is both a monomorphism and an epimorphism, but not an isomorphism.

Definition A.13. Let C be a category. An object P in C is called projective if for any epimorphism
h : X → Y and any morphism g : P → Y there is a morphism f : P → X such that h ◦ f = g. An
object I in C is called injective if for any monomorphism h : X → Y and any morphism g : X →
I there is a morphism f : Y → I such that f ◦ h = g.

Exercise A.14. Deduce that an object P in a category C is projective (resp. injective) if and
only it is injective (resp. projective) as an object in the opposite category Cop.

Exercise A.15. . Let A be an algebra over some commutative ring and P an A-module. Show
that P is projective if and only if for any surjective A-homomorphism ϕ : U → V the induced
k-linear map HomA(P,U)→ HomA(P, V ) sending α ∈ HomA(P,U) to ϕ ◦ α is surjective.

Let A be a algebra over a commutative ring k and F and A-module, where we adopt the
convention that a module is a unital left module, unless stated otherwise. A subset X of F is
called a basis of F , if every element in F can be written uniquely in the form

∑
x∈X axx with

elements ax ∈ A of which only finitely many are nonzero. An A-module F is called free if it has
a basis. If F is a free A-module and X a basis of F , then F = ⊕x∈XAx, and Ax ∼= A as a left
module, for each x ∈ A. In other words, an A-module F is free if and only if F is isomorphic to a
direct sum of (possibly infinitely many) copies of A. Traditionally, projective modules are defined
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as modules which are isomorphic to a direct summand of a free module. Since we have already
defined the notion of projective objects in an arbitrary category, we will show that these definitions
coincide for module categories.

Exercise A.16. Let A be an algebra over some commutative ring. Show that any free A-module
is projective that and that any direct summand of a projective A-module is projective.

Exercise A.17. Let i be an idempotent in a ring A; that is, i2 = i 6= 0. Show that the left ideal
Ai generated by i is a projective A-module. (Hint: show that A(1− i) is a complement of Ai in A
as a left A-module).

Projective modules of an algebra can be characterised as direct summands of free modules.

Theorem A.18. Let A be a algebra over a commutative ring k, and let P be an A-module. The
following are equivalent.

(i) The A-module P is a projective object in the category Mod(A) of A-modules.

(ii) Any surjective A-homomorphism π : U → P from some A-module U to P splits; that is, there
is an A-homomorphism σ : P → U such that π ◦ σ = IdP .

(iii) The functor HomA(P,−) : Mod(A)→ Mod(k) is exact.

(iv) The module P is isomorphic to a direct summand of a free A-module.

Proof. We will use the fact from Exercise A.7 that the epimorphisms in Mod(A) are the surjective
A-homomorphisms and that the monomorphisms in Mod(A) are the injective A-homomorphisms.
Suppose that (i) holds; that is, P is projective in Mod(A). Let π : U → P be a surjective A-
homomorphism, where U is an A-module. Then in particular the identity map IdP lifts through
the surjective map π; that is, there is an A-homomorphism σ : P → U satsifying π◦σ = IdP . Thus
π splits. This shows that (i) implies (ii). Suppose that (ii) holds. Let X be any subset of P which
generates P ; that is, every element in P can be written in the form

∑
x∈X axx for some ax ∈ A

of which only finitely many are nonzero. Take for F a free A-module having a basis {ex | x ∈ X}
indexed by X. That is, F = ⊕x∈XAex. Since F is free, there is a unique A-module homomorphism
π : F → P sending ex to x. This homomorphism is surjective since X generates P as an A-module.
Thus, if (ii) holds, then π splits, showing that P is isomorphic to a direct summand of F . This
shows that (ii) implies (iv). The equivalence of (i) and (iii) follows easily using the Exercise A.15.
It follows from Exercise A.16 that (iv) implies (i).

Exercise A.19. Let A be an algebra over some commutative ring. Show that every A-module is
isomorphic to a quotient of a free A-module.

Except for the characterisation of projective modules as direct summands of free modules, we
have a similar result for injective modules.

Theorem A.20. Let A be a k-algebra and let I be an A-module. The following are equivalent:

(i) The A-module I is an injective object in Mod(A).

(ii) Any injective A-homomorphism ι : I → V from I to some A-module V splits; that is, there is
an A-homomorphism κ : V → I such that κ ◦ ι = IdI .

(iii) The contravariant functor HomA(−, I) : Mod(A)→ Mod(k) is exact.
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Exercise A.21. Give the details of the proof of Theorem A.20.

Exercise A.22. . Let A be an algebra over some commutative ring and I an A-module. Show
that I is injective if and only if for any injective A-homomorphism ϕ : U → V the induced k-linear
map HomA(V, I)→ HomA(U, I) sending α ∈ HomA(V, I) to α ◦ ϕ is surjective.

Exercise A.23. Show that the additive group of rational numbers Q is an injective Z-module.
Show that the additive quotient Q/Z is an injective Z-module.

Definition A.24. Let C be a category. An object E is initial if for every object Y in C there is a
unique morphism E → Y in C. An object T is terminal if for every object Y in C there is a unique
morphism Y → T in C. A zero object is an object which is both initial and terminal. If O is a zero
object in C and f : X → Y a morphism in C such that f = h ◦ g, where g : X → O and h : O →
Y are the unique morphisms, then f is called a zero morphism in HomC(X,Y ).

The identity morphism of an initial or terminal object is its only endomorphism, and there is
exactly one morphism between any two initial or terminal objects, and hence any such morphism
is an isomorphism. Thus if a category has an initial or terminal or zero object, such an object is
unique up to unique isomorphism. As a consequence, if C has a zero object, then for any two objects
X, Y in C there is exactly one zero morphism in HomC(X,Y ). Composing the zero morphism with
any other morphism yields again the zero morphism.

Examples A.25.

(1) The category Vect(k) of vector spaces over a field k has the zero space {0} as zero object.
Similarly, for A an algebra over a commutative ring, the category Mod(A) has the zero module
{0} as zero object.

(2) The category of groups Grps has the trivial group {1} as zero object.

(3) The category of rings has Z has initial object: for any ring R there is a unique ring homomor-
phism Z→ R sending a positive integer n to n · 1R = 1R + 1R + · · ·+ 1R (the sum of 1R with itself
n times); this is extended to Z by mapping 0 to 0R and −n to −(n · 1R). Note though that Z is
not a terminal object: for instance, there is no ring homomorphism from Q to Z.

(4) The space with a single element, denoted {∗}, is terminal in the category of topological spaces
Top, but not initial.

Definition A.26. Let f : X → Y be a morphism in a category C with a zero object. A kernel
of f is a pair consisting of an object in C, denoted ker(f), and a morphism i : ker(f) → X, such
that f ◦ i = 0 and such that for any object Z and any morphism g : Z → X satisfying f ◦ g =
0 there is a unique morphism h : Z → ker(f) satisfying g = i ◦ h. Dually, a cokernel of f is a
pair consisting of an object in C, denoted coker(f), and a morphism p : Y → coker(f), such that
p ◦ f = 0 and such that for any object Z and any morphism g : Y → Z satisfying g ◦ f = 0 there
is a unique morphism h : coker(f)→ Z satisfying g = h ◦ p.

The uniqueness properties in this definition imply that i is a monomorphism, p is an epimor-
phism, and the pairs (ker(f), i) and (coker(f), p), if they exist, are unique up to unique isomor-
phism. A kernel becomes a cokernel in the opposite category, and vice versa.
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Definition A.27. Let C be a category, and let {Xj}j∈I be a familiy of objects in C, where I is
an indexing set. A product of the family of objects {Xj}j∈I is an object in C, denoted

∏
j∈I Xj ,

together with a family of morphisms πi :
∏
j∈I Xj → Xi for each i ∈ I, satisfying the following

universal property: for any object Y in C and any family of morphisms ϕi : Y → Xi, with i ∈ I,
there is a unique morphism α : Y →

∏
j∈I Xj satisfying ϕi = πi ◦ α for all i ∈ I.

The uniqueness of α implies that the product, if it exists at all, is uniquely determined up to
unique isomorphism. By reversing the direction of morphisms, one obtains coproducts or direct
sums.

Definition A.28. Let C be a category, and let {Xj}j∈I be a familiy of objects in C, where I is an
indexing set. A coproduct or direct sum of the family of objects {Xj}j∈I is an object in C, denoted∐
j∈I Xj , together with a family of morphisms ιi : Xi →

∐
j∈I Xj for each i ∈ I, satisfying the

following universal property: for any object Y in C and any family of morphisms ϕi : Xi → Y ,
with i ∈ I, there is a unique morphism α :

∐
j∈I Xj → Y satisfying ϕi = α ◦ ιi for all i ∈ I.

Definition A.29. A category C with a zero object is called additive if the morphism classes
HomC(X,Y ) are abelian groups, such that the composition of morphisms is biadditive, and such
that coproducts of finite families of objects exist. A category C with a zero object is called k-linear
if the morphism classes HomC(X,Y ) are k-vector spaces, such that the composition of morphisms
is bilinear, and such that coproducts of finite families of objects exist.

Remark A.30. In an additive or k-linear category we also have products of finite families, and
products and coproducts of finite families of objects are isomorphic. To see this, let I be a finite
indexing set and let {Xi}i∈I be a finite family of objects in an additive category C. In order to
simplify notation, we write

∐
instead of

∐
j∈I . We need to construct morphisms

∐
Xj → Xi for

any i ∈ I satisfying the universal property as in the definition of the product of the Xi. Let i ∈ I.
For j ∈ I, denote by ϕ : Xi → Xj the morphism IdXi

if i = j, and the zero morphism if i 6= j. The
universal property of the coproduct yields a unique morphism πi : Xi →

∐
Xj with the property

πi ◦ ιi = IdXi and πj ◦ ιi = 0, where i, j ∈ I, i 6= j. To see that
∐
Xj , together with the morphisms

πi :
∐
Xj → Xi, is a product, we consider a family of morphisms ψi : Y → Xi, for i ∈ I, where Y

is some object in C. Then α =
∑
j∈I ιj ◦ ψj is a morphism from Y →

∐
Xj ; this is well-defined

since I is finite. Thus πi ◦α =
∑
j∈I πi ◦ ιj ◦ψj = ψi for all i ∈ I. To see the uniqueness of α with

this property, note first that the endomorphism γ =
∑
j∈I ιj ◦πj of

∐
Xj satisfies γ ◦ ιi = ιi for all

i ∈ I. But the identity morphism of
∐
Xj is the unique endomorphism with this propery, where

we use the universal property of coproducts. Thus γ is equal to the identity on
∐
Xj . Therefore, if

β : Y →
∐
Xj is any other morphism satisfying πi ◦β = ψi for all i ∈ I, then β =

∑
j∈I ιj ◦πj ◦β =∑

j∈J ιj ◦ ψj = α, which shows the uniqueness of α. This proves that
∐
Xj , together with the

family of morphisms πi :
∐
Xj → Xi, with i ∈ I, is indeed product of the family {Xi}i∈I .

Module categories are additive, but they have more structure: all morphisms have kernels and
cokernels, and there are isomorphism theorems relating kernels and images. Consider a k-algebra
A and a homomorphism of A-mdoules ϕ : U → V . Then U/ker(ϕ) is obtained by first taking
the kernel ker(ϕ) and then taking the cokernel of the inclusion ker(ϕ) ⊆ U . The image Im(ϕ)
is obtained by first taking the cokernel V → coker(ϕ) = V/Im(ϕ), and then Im(ϕ) is the kernel
of the map V → coker(ϕ). The isomorphism theorem U/ker(ϕ) ∼= Im(ϕ) amounts therefore to
stating that taking kernels and cokernels ‘commute’ in a canonical way. These considerations can
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be extended to additive categories. If C is an additive category, then for any morphism f : X →
Y in C which has a kernel i : ker(f) → X and a cokernel p : Y → coker(f) there is a canonical
morphism coker(i) → ker(p). This morphism is constructed as follows. Taking the cokernel of
i yields an epimorphism q : X → coker(i), and taking the kernel of p yields a monomorphism
j : ker(p) → Y . Since f ◦ i = 0, the definition of coker(i) yields a uniqe morphism h : coker(i) →
Y such that h ◦ q = f . Then 0 = p ◦ f = p ◦ h ◦ q. Since q is an epimorphism, this implies that
p ◦ h = 0. Then the definition of ker(p) yields a unique morphism m : coker(i)→ ker(p) satisfying
j ◦m = h.

ker(f)
i // X

f //

q

��

Y
p // coker(f)

coker(i)

h

66

m
// ker(p)

j

OO

Definition A.31. An additive category C is called an abelian category if for every morphism
f : X → Y there exists a kernel i : ker(f) → X and a cokernel p : Y → coker(f), and if the
canonical morphism coker(i)→ ker(p) is an isomorphism.

Every module category of a ring is an abelian category. Other examples of abelian categories
include categories of sheaves on topological spaces. The Freyd-Mitchell embedding theorem states
that every small abelian category is equivalent to a full subcategory of a module category of some
ring A. (For the precise definition of equivalent categories see A.37 below.) The notion of exactness
can be generalised as follows. A sequence of two composable A-homomorphisms in the category of
A-modules

U
ϕ // V

ψ //// W

is exact if Im(ϕ) = ker(ψ). With the technique from above, describing Im(ϕ) as the kernel of a
cokernel of ϕ, consider a sequence of morphisms

X
f // Y

g // Z

in an abelian category C, such that g ◦ f = 0. Let p : Y → coker(f) be a cokernel of f . Since
g ◦ f = 0, there is a unique morphism h : coker(f) → Z such that h ◦ p = g. Let j : ker(p) → Y
be a kernel of p. Thus p ◦ j = 0, hence g ◦ j = h ◦ p ◦ j = 0. Let m : ker(g)→ Y be a kernel of g.
Thus there is a unique morphism n : ker(p)→ ker(q) satisfying j = m ◦ n. We say that the above
sequence is exact if n is an isomorphism in C.

ker(p)
n //

j
""

ker(g)

m

{{
X

f
// Y

g //

p ##

Z

coker(f)

h

;;

The philosophy of considering any mathematical object together with its structure preserving
maps applies to categories as well. Functors are ‘morphisms’ between categories.
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Definition A.32. Let C, D be categories. A functor or covariant functor F from C to D is a
map F : Ob(C)→ Ob(D) together with a family of maps, abusively all denoted by the same letter
F , from HomC(X,Y ) to HomD(F(X),F(Y )) for all X, Y ∈ Ob(C), with the following properties.

(a) For all objects X in Ob(C) we have F(IdX) = IdF(X).

(b) For all objects X, Y , Z in Ob(C) and morphisms ϕ : X → Y and ψ : Y → Z we have

F(ψ ◦ ϕ) = F(ψ) ◦ F(ϕ) .

Similarly, a contravariant functor from C to D is map F : Ob(C) → Ob(D) together with a
family of maps F : HomC(X,Y )→ HomD(F(Y ),F(X)) for all X, Y ∈ Ob(C), with the following
properties.

(c) For all objects X in Ob(C) we have F(IdX) = IdF(X).

(d) For all objects X, Y , Z in Ob(C) and morphisms ϕ : X → Y and ψ : Y → Z we have

F(ψ ◦ ϕ) = F(ϕ) ◦ F(ψ) .

Equivalently, a contravariant functor from C to D is a covariant functor from Cop to D.

Functors can be composed in the obvious way, by composing the maps on objects and on
morphisms. Composing a covariant functor with a contravariant functor (in either order) yields a
contravariant functor. Composing two contravariant functors yields a covariant functor. On every
catagory C there is the identity functor IdC which is the identity map on Ob(C) and the family
of identity maps on the morphism sets HomC(X,Y ), X, Y ∈ Ob(C). Since the object classes
of categories need not be sets, we cannot consider the category having all categories as objects
and functors as morphisms. We can though consider the category Cat having as objects small
categories and as morphisms all functors between small categories; that is, for two small categories
C, D, we denote by HomCat(C,D) the set of functors from C to D.

Examples A.33.

(1) There is a class of trivial functors, called forgetful functors, obtained from ignoring a part of the
structure of a mathematical object. For instance, we have a forgetful functor Alg(k) → Vect(k)
which sends a k-algebra to its underlying k-vector space (that is, we ignore the multiplication in
the algebra). Every k-vector space is in particular an abelian group, so this yields a forgetful
functor Vect(k)→ Ab sending a vector space to the underlying abelian group (that is, we ignore
the scalar muliplication). Every abelian group is in particular a set, so we get a forgetful functor
Ab→ Sets.

(2) There is a functor from Grps to Alg(k) sending a group G to the group algebra kG and
sending a group homomorphism ϕ : G→ H to the algebra homomorphism kG→ kH obtained by
extending ϕ linearly. There is also a functor Alg(k)→Grps sending a k-algebra A to the group of
invertible elements A×. To see that this is functorial, one verifies that an algebra homomorphism
α : A→ B sends A× to B×, hence induces a group homomorphism A× → B×.

(3) There is a class of functors called representable functors. Let C be a category such that for
any two objects X, X ′ the class HomC(X,X

′) is a set. Fix an an object X in C. We define a
functor HomC(X,−) from C to the category of sets as follows. For any object Y in C, the functor
HomC(X,−) sends Y to the set HomC(X,Y ). For any morphism f : Y → Z in C the functor
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HomC(X,−) sends f to the map, denoted HomC(X, f) which is induced by composition with f ;
that is, which sends h ∈ HomC(X,Y ) to f ◦h ∈ HomC(X,Z). One easily sees that this is a functor.
This construction applied to Cop yields also a contravariant functor HomC(−, X), sending Y to
HomC(Y,X) and sending f to the map denoted HomC(f,X) induced by precomposition with f ;
that is, HomC(f,X) sends h ∈ HomC(Z,X) to h ◦ f ∈ HomC(Z, Y ). Functors of this form are
called representable. If we consider both X and Y as variables, then HomC(−,−) is what we call a
bifunctor . Depending on what additional structures the category C has, the representable functors
may have as target category not just the category of sets but categories with more structure. For
instance, if A is a k-algebra and U an A-module, then the representable functor HomA(U,−) and
its contravariant analogue HomA(−, U) are functors from Mod(A) to Mod(k).

(4) Let A, B be k-algebras, and let M be an A-B-bimodule. There is a functor M ⊗B − from
Mod(B) to Mod(A) sending a B-module V to the A-module M ⊗B V and a B-homomorphism
ψ : V → V ′ to the A-homomorphism IdM ⊗ ψ : M ⊗B V → M ⊗B V ′. There is a similar functor
−⊗AM from Mod(Aop) to Mod(Bop). There is a functor HomA(M,−) from Mod(A) to Mod(B),
sending an A-module U to HomA(M,U), viewed as a B-module via (b · ϕ)(m) = ϕ(mb), where
ϕ ∈ HomA(M,U), m ∈ M , b ∈ B. There is a similar functor HomBop(M,−) from Mod(Bop) to
Mod(Aop).

Pushing our philosophy of considering mathematical objects with their structural maps even
further, we view now functors as objects and define morphisms between functors as follows.

Definition A.34. Let C, D be categories, and let F , F ′ be functors from C to D. A natural trans-
formation from F to F ′ is a family ϕ = (ϕ(X))X∈Ob(C) of morphisms ϕ(X) ∈ HomD(F(X),F ′(X))
such that for any morphism f : X → Y in C we have F ′(f) ◦ϕ(X) = ϕ(Y ) ◦F(f); that is, we have
a commutative diagram of morphisms in the category D of the form

F(X)
ϕ(X) //

F(f)

��

F ′(X)

F ′(f)

��
F(Y )

ϕ(Y )
// F ′(Y )

By considering contravariant functors from C to D as convariant functors from Cop to D we get an
abvious notion of natural transformation between contravariant functors from C to D.

Every functor F : C → D gives rise to the identity transformation IdF : F → F consisting of
the family of identity morphisms IdF(X), X ∈ Ob(C). Natural transformations can be composed:

if F , F ′, F ′′ are functors from C to D and ϕ : F → F ′, ψ : F ′ → F ′′ are natural transformations,
then the family ψ ◦ ϕ of morphisms ψ(X) ◦ ϕ(X) : F(X) → F ′′(X) is a natural transformation
from F to F ′′ , and this composition of natural transformations is associative. As in the case of the
category of categories there are set theoretic issues if we consider the category of functors from C
to D with natural transformations as morphisms. If we assume that C is small, then the functors
from C to an arbitrary category D, together with natural transformations as morphisms, form a
category. There is an obvious extension of the natural transformation to bifunctors.

Examples A.35.
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(1) Let C be a category, X, X ′ objects, and let ϕ : X → X ′ be a morphism in C. Then ϕ in-
duces a natural transformation from HomC(X

′,−) to HomC(X,−), given by the family of maps
HomC(X

′, Y ) → HomC(X,Y ) sending τ ∈ HomC(X
′, Y ) to τ ◦ ϕ, and ϕ induces a natural trans-

formation from HomC(−, X) to HomC(−, X ′) sending τ ∈ HomC(Y,X) to ϕ ◦ τ , for all objects Y
in C.
(2) Let A, B be k-algebras and let M , M ′ be A-B-bimodules. Any bimodule homomorphism
α : M → M ′ induces a natural transformation from M ⊗B − to M ′ ⊗B − given by the family of
maps α⊗ IdV : M ⊗B V → M ′⊗B V for all B-modules V . Similarly, any such α induces a natural
transformation from HomA(M ′,−) to HomA(M,−), as in the previous example.

Definition A.36. Let C, D be categories. Two functors F , F ′ from C to D are called isomorphic
if there are natural transformations ϕ : F → F ′ and ψ : F ′ → F such that ψ ◦ϕ = IdF and ϕ◦ψ =
IdF ′ .

If ϕ : F → F ′ is a natural transformation such that all morphisms ϕ(X) : F(X)→ F ′(X) are
isomorphisms, then the family of morphisms ψ(X) = ϕ(X)−1 is a natural transformation from F ′
to F satisfying ψ ◦ ϕ = IdF and ϕ ◦ ψ = IdF ′ .

Definition A.37. Two categories C and D are called equivalent if there are functors F : C → D
and G : D → F such that G ◦ F ∼= IdC and F ◦ G ∼= IdD, and the functors F , G arising in this way
are called equivalences of categories.

Thus an equivalence F : C → D need not induce a bijection between Ob(C) and Ob(D), but it
induces a bijection between the isomorphism classes in Ob(C) and Ob(D).

Definition A.38. Let C, D be categories and let F : C → D, G : D → C be covariant functors.
We say that G is left adjoint to F and that F is right adjoint to G, if there is an isomorphism of
bifunctors HomC(G(−),−) ∼= HomD(−,F(−)) . If G is left and right adjoint to F we say that F
and G are biadjoint.

An isomorphism of bifunctors as in Definition A.38 is a family of isomorphisms

HomC(G(V ), U) ∼= HomD(V,F(U)) ,

with U an object in C and V an object in D, such that for fixed U we get an isomorphism of
contravariant functors HomC(G(−), U) ∼= HomD(−,F(U)), and for fixed V we get an isomorphism
of covariant functors HomC(G(V ),−) ∼= HomD(V,F(−)). Such an isomorphism of bifunctors, if it
exists, need not be unique. If C, D are k-linear categories for some commutative ring k, we will
always require such an isomorphism of bifunctors to be k-linear. Given an adjunction isomorphism
Φ : HomC(G(−),−) ∼= HomD(−,F(−)), evaluating Φ at an object V in D and G(V ) yields an
isomorphism HomD(V,F(G(V ))) ∼= HomC(G(V ),G(V )). We denote by f(V ) : V → F(G(V )) the
morphism corresponding to IdG(V ) through this isomorphism; that is, f(V ) = Φ(V,G(V ))(IdG(V )).
One checks that the family of morphisms f(V ) defined in this way is a natural transformation

f : IdD → F ◦ G

called the unit of the adjunction isomorphism Φ, where IdD denotes the identity functor on D
(sending every object and every morphism in D to itself). Similarly, evaluating Φ at an object
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U in C and at F(U) yields an isomorphism HomC(G(F(U)), U) ∼= HomD(F(U),F(U)). We de-
note by g(U) : G(F(U)) → U the morphism corresponding to IdF(U) through the isomorphism
HomC(G(F(U)), U) ∼= HomD(F(U),F(U)); that is, g(U) = Φ(F(U), U)−1(IdF(U)). Again, this is
a natural transformation

g : G ◦ F → IdC

called the counit of the adjunction isomorphism Φ.
An adjunction isomorphism is uniquely determined by its unit and counit. To state this properly

we need the following notation. Given two functors F , F ′ : C → D and a natural transformation
ϕ : F → F ′, we denote for any functor G : D → E by Gϕ : G◦F → G◦F ′ the natural transformation
given by (Gϕ)(U) = G(ϕ(U)) : G(F(U)) → G(F ′(U)) for any object U in C. Similarly, for any
functor H : E → C we denote by ϕH : F ◦ H → F ′ ◦ H the natural transformation given by
ϕ(H(W )) : F(H(W ))→ F ′(H(W )) for any object W in E . We denote by IdF the identity natural
transformation on F , given by the family of identity morphisms IdF(U), with U running over the
objects of C.

Theorem A.39. Let C, D be categories and let F : C → D, G : D → C be covariant functors.

(i) Suppose there is an adjunction isomorphism Φ : HomC(G(−),−) ∼= HomD(−,F(−)). The unit
f and counit g of Φ satisfy (Fg) ◦ (fF) = IdF and (gG) ◦ (Gf) = IdG.

(ii) Let f : IdD → F◦G and g : G◦F → IdC be two natural transformations satisfying (Fg)◦(fF) =
IdF and (gG) ◦ (Gf) = IdG. There is a unique adjunction isomorphism Φ : HomC(G(−),−) ∼=
HomD(−,F(−)) such that f is the unit of Φ and g is the counit of Φ.

(iii) Let Φ : HomC(G(−),−) ∼= HomD(−,F(−)) be an adjunction isomorphism with unit f and
counit g. Then Φ(V,U)(ϕ) = F(ϕ) ◦ f(V ) for any object U in C, any object V in D and any
morphism ϕ : G(V )→ U in C, and Φ(V,U)−1(ψ) = g(U) ◦ G(ψ) for any morphism ψ : V → F(U)
in D. In particular, we have ϕ = g(U) ◦ G(F(ϕ) ◦ f(V )) and ψ = F(g(U) ◦ G(ψ)) ◦ f(V ).

See e. g. [6, Chapter 2, Section 3] for a proof and more details. The following adjunction is
known as the Tensor-Hom adjunction.

Theorem A.40. Let A, B be k-algebras and let M be an A-B-bimodule. For any A-module U
and any B-module V we have natural inverse isomorphisms of k-modules HomA(M ⊗B V,U) ∼= HomB(V,HomA(M,U))

ϕ → (v 7→ (m 7→ ϕ(m⊗ v)))
(m⊗ v 7→ ψ(v)(m)) ←− ψ

In particular, the functor M⊗B− : Mod(B)→ Mod(A) is left adjoint to the functor HomA(M,−) :
Mod(A)→ Mod(B).

The proof of Theorem A.40 is a straightforward verification.
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