LECTURE 1 Attight-Ainger index theorem
M manifold, closed = cpet with
$$\partial M = \emptyset$$

Riemannian = $(M, 9)$, + Apin Atsucture,
Attight-Ainger index parmuta Atates that:
ind $(\mathcal{J}^{\vee}) \stackrel{@}{=} (\widehat{\mathcal{A}}(M) ch(\mathcal{V}), [M]) \stackrel{@}{=} (\frac{1}{2\pi i f h} \widehat{\mathcal{A}}(M, R) ch(\mathcal{V}))$
index of coupled Dirac operator with dim M=2n
index of the comparent of the apinos
the comparent of the apinos
the comparent of the apinos
pelds'' pelds'' (Coupled these
terms and compenents, and prove (1).(2)

In (1) the
$$\hat{\pi}$$
 - cohomology class
 $\hat{\pi}(m) = 1 + \hat{\pi}_{4}(m) + \hat{\pi}_{8}(m) + \dots \in H^{*}(m, Q), \hat{\pi}_{4k} \in H^{2}(n, Q)$
is computed from the power series $O(k) = \frac{\sqrt{k}/2}{4inh(\sqrt{k}/2)}$
as $\hat{\pi}(m) = \frac{N}{11} \frac{N_{1}/2}{4inh(N_{1}/2)}$
 $N = \frac{N}{4} \frac{N_{1}/2}{1 = 1} \frac{N_{1}/2}{4inh(N_{1}/2)}$
where $TM \otimes_{TV} (k = 1, \oplus \bar{1}, \oplus \dots \oplus h_{N} \oplus \bar{1}_{N}),$
 $\hat{\pi}_{Cx}$ line truncle.
giving
 $\hat{\pi}_{4} = -\frac{1}{24} \mp L, \quad \hat{\pi}_{8} = \frac{1}{5760} (\bar{1} + \bar{p}_{1}^{2} - 4 + \bar{p}_{2}), \dots$
where $p_{1} = p_{1}(m) \in H^{42}(M, \mathbb{Z})$ is the j^{4h} Pontographing
 $class, \quad dbo, \ ch(2h) = \sum_{n>0} \frac{1}{4\pi} (N_{1} + \dots + N_{R})^{\frac{1}{2}}$ with
 $N_{1} = C_{1}(h_{1}), \quad \mathcal{D} = L, \oplus \dots \oplus h_{R}, \text{ is the Chern character}$
of the complex vector trunche T .
The evoluation $\langle \hat{\pi} \cdot ch(T) \rangle$ in (D is the
linear map $H^{n}(M, \mathbb{Q}) \rightarrow \mathbb{Q}$, $K \mapsto (K, [T])$
with [1] the fundamental homology class
and $\langle . \rangle$ the pairing between cohomology and homology
The equality (2) is the classing pormulation, with
 $\hat{H}(M, R) = \int dat(\frac{R}/2}{4inh(R/2)}, \quad Lh(0, F) = Tr(e^{F_{0}}), \quad n_{0} = 0$.

<u>Comment</u>: The exposedian sing of manifolds $M = \{ [x] | x closed \}$ $X \sim X'$ if $\sum_{i=1}^{N} [X_i]$ is defined =>[×] <u>Ring</u>: + = disjoint union <u>structure</u> = disect product Xou X1 $X \sim X_1$ The A - hat class defines a sing homomosphism $\widehat{\mathcal{A}}: \eta \longrightarrow \mathbb{Q}, \quad [\mathcal{M}] \longmapsto \widehat{\mathcal{A}}(\mathcal{M})$ which is integer-valued when N is a spin-manifold. The index theorem says why - tecourse then In it (m) is the index E Z of the Disoc operator Dobordont manifolds have the same index ? In fact, characteristic dasses originally arose as cobosciam inversion ts: $X \sim X$, itt $TM^{2}(X) = TM^{2}(X)$ if also $x, x' \xrightarrow{o signted}$ Anop $x \xrightarrow{x'} \xrightarrow{o signted}$ Anop $p_{J}(x) = p_{J}(x')$ $p_{J}(x) = P_{J}(x')$ $p_{J}(x) = P_{J}(x')$ if x,x' 1/1 CJ (X) = CJ (X') Chern numbers have stable complex structures and cobordant

In this course we, grove the AS index then the model of the heat equation method, via the McKean. Ainger index pormula:
(3) incl (D) = Tw (
$$e^{\pm \Delta}$$
) - Tw ($e^{\pm \Delta}$) = t>0
there:
D = elliptic 1st order disperential operator.
D: $L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm}) \xrightarrow{E^{\pm}}$ are tor
 $Eg. D = id_{\pi}$ on S' = $Fr/_{2\pi Z}$ -acting on $2\pi Z$ periodic
punctions on Fr' .
 $\Delta = D^*D : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $X = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $\Delta = D^*D : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = DD^* : L^{\infty}(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$
 $K = D(M, E^{\pm}) \longrightarrow L^{\infty}(M, E^{\pm})$

Then, if

$$A: L^{M}(M, E) \rightarrow L^{N}(M, E)$$

$$E \rightarrow M \text{ a vector}$$

$$= \text{tundle.}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot A(Y) \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot A(Y) \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot A(Y) \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot A(Y) \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot A(Y) \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

$$(A \cap Y)(K) = \int_{M} \frac{1}{(X, Y)} \cdot d_{Y}$$

We shall see that et is trace-das and so from (4) $T_{\mathcal{W}}(e^{-t\Delta}) = \int_{\mathcal{M}} t_{\mathcal{W}}(\#_{t}(x,x)) d_{\mathcal{M}}x.$ $=\sum_{i}e^{-t\lambda_{i}}$ (7)λ; an e-volue of ⊥ (repeated with multiplicity) But since D is elliptic then the positive self-adjoint Laplacion $\Lambda = D^*D$ has a discrete spectrum of eigenvalues which are real and positive and accumulating at + XI: $O \leqslant \lambda_0 \leqslant \lambda_1 \leqslant \lambda_2 \leqslant \cdots \rightarrow + \infty$ E.g. $D = i\frac{d}{dx}$ on S'_{j} then $\Delta = -\frac{d^{2}}{dx^{2}}$ with e-values $0, 0, 1, 1, 4, 4, \dots, N^2, N^2, \dots$ and $Tr(e^{-t\Delta}) = Z \sum_{n=0}^{M} e^{-n^2 t}$

Aimilarly,
$$\tilde{\Delta} = DD^*$$
 has a pectrum
 $O \in \tilde{\lambda}_{e} \ll \tilde{A}_{1} \ll \dots \implies KV$
and $T_{3}(e^{\pm \tilde{\Delta}}) = \sum_{i \geq 0} e^{\pm \tilde{\lambda}_{i}}$.
LEMMA1: Δ and $\tilde{\Delta}$ have the same non-zero
eigenvalues (with some multiplicity).
PROOF: but $\lambda \in Apec(\Delta) \setminus \{c_{3}\}$. Then $\Delta \phi_{A} = \lambda \phi_{A}$
some $\phi_{A} \in L^{\infty}(M, E)$. Then set $P_{A} = D\phi_{A} \in L^{\infty}(M, S^{-})$.
Thun $\tilde{\Delta} P_{A} = (DD^{*}) D\phi_{A} = D \Delta \phi_{A} = \lambda D\phi_{A} = \lambda P_{A}$.
Aince this is so pos a taolis of e-sections $[P_{A}]$ for $L^{2}(M, S^{-})$
and since the argument is symmetric $\tilde{\Delta} = \lambda$, the
smult pollows.
Nor collarly Z:
 $T_{5}(e^{\pm \Delta}) - T_{5}(e^{\pm \Delta}) = \dim \ker \Delta - \dim \ker \widetilde{\Delta}$
 \Re
 \Re
 $\frac{1}{2} L_{EMMA} D \stackrel{\mathcal{C}}{=} \sum_{A=0}^{-t^{A}} - \sum_{A=0}^{-t^{A}} \int_{a=0}^{-t^{A}} \int_{$

LEMMA 3:
Kor
$$\Delta = \text{Ker } D \subset \mathcal{L}^{\infty}(M, E^{\dagger})$$

Ker $\widetilde{\Delta} = \text{Ker } D^{\dagger} \subset \mathcal{L}^{\infty}(M, E^{\dagger})$
A thous kennel consists
of prooth sections.

8.

$$\frac{Precof}{\Delta uppose} : Clooply, Kor D = Ker \Delta .$$

$$\Delta uppose \eta \in Kor \Delta, Hon O = \Delta \psi = D^*D \psi .$$

$$\Delta O = \langle \Delta \psi, \psi \rangle = \langle D^*D\psi, \psi \rangle = \langle D\psi, D\psi \rangle = \|D\psi\|^2 .$$

$$\Rightarrow D \psi = O .$$

$$L^{2} innes product$$

$$\Delta O \psi \in Kor D .$$
Hence $Ker \Delta = Ker D .$

But there is a moster deficate analytic view
point on the Mckeen-Ainger formula which
back to a proof of the the-index portube (2).
For this we use the supertrace
(1)
$$T_3 \begin{pmatrix} a & b \\ c & d \end{pmatrix} = T_3 (a) - T_3 (d)$$

of a trace-closs operator $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$: #* $OH \rightarrow H^*OH$

Write

$$\mathcal{D} = \begin{pmatrix} \mathcal{O} & \mathcal{D}^* \\ \mathcal{D} & \mathcal{O} \end{pmatrix} : \mathcal{L}^{\infty}(\mathcal{M}, \Xi^+ \oplus \Xi^-) \longrightarrow \mathcal{L}^{\infty}(\mathcal{M}, \Xi^+ \oplus \Xi^-)$$

The key fact in computing the RHS of (10) is that there is an asymptotic expansion

$$T_{n}\left(e^{t}\right) = h_{-\frac{n}{2}}t^{-\frac{n}{2}} + \dots + h_{0}t^{0} + h_{\frac{1}{2}}t^{\frac{1}{2}} + \dots$$

$$(n = \dim M)$$

$$\infty t \rightarrow 0 +$$

end likeroide

$$T_{\mathcal{N}}\left(e^{-t\tilde{\Delta}}\right) = \tilde{h}_{-\frac{n}{2}}t^{-\frac{n}{2}} + \dots + \tilde{h}_{0}t^{0} + \tilde{h}_{\frac{1}{2}}t^{\frac{1}{2}} + \dots$$

Moreover, we will see that

$$h_{-n_z} = \tilde{h}_{-n_z}$$
, \dots , $h_{-1} = \tilde{h}_{-1}$, $h_{-\frac{1}{2}} = \tilde{h}_{-\frac{1}{2}}$

Lo that

$$\lim_{t \to 0} T_{s}(e^{tA}) = h_{o} - \tilde{h}_{o}$$

 $\xrightarrow{t \to 0}$
exists V
For example, we'll show very shorthy that
 $h_{-N_{z}} = volg(M) \cdot c$ c auniversal const

To do the computations, we use the construction
(1)
$$e^{-t\Delta} = \int e^{-t\lambda} (\Delta - \lambda)^{-1} d\lambda$$
 $d\lambda = \frac{1}{2\pi} d\lambda$
of the heat operator as a contour integral
(f. buchy the field = $\int e^{-t\lambda} ((\Delta - \lambda)^{-1} d\lambda) + \frac{1}{2}$
 $(e^{-t\Delta} + (\lambda) = \int e^{-t\lambda} ((\Delta - \lambda)^{-1} d\lambda) d\lambda$
 $\int f^{-1} ((\Delta - \lambda)^{-1} d\lambda) d\lambda$
The tay, in view of (1), to all that follows
is the product operator
 $(\Delta - \lambda)^{-1} : +th^{5} (M, E^{+}) \longrightarrow th^{5-2} (M, D^{+})$

What makes the index a local invariant "is that we can compute it prover just privately many of the N'2'. Next time we will see how this wooks with a proof q(Z) or a Riemann surpose - the Hirzetsuch - Rieman-Roch theorem for a surface.