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From last time
,

in order to prove the Riemannpooh
His zebouch theorem LRRH ) on a closed Thiemann

surface E of genus g ,
endowed with a holomoophic

meets bundle V → E
,

we have to show that :

← ho = LHS

↳pfpe→M,dx,
}

, a) It # ldxl
I = It 52 log de#)+,

k¥521 ogh

We will assume here the formulae on pages I, 6,7

of Lecture 3 for the quantities on the RHS of 1

For the LHS of I
,

N
. ↳

is computed recursively via

the formulae ( from Leet 3) :
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indeed
,

the numbers hj in the heat trace expansion
&

Tree ' ) ~
h

...

t
' "

+ h.net
' '

+ to to + . . .

are given by
h

-22¥ = fgh

-22¥
a) ldxl

with the function h
-2¥ d) given by

�3� k
-2¥ c) ¥µ|pE' V.

z . jtx ,
}
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To compute these integrals we need explicit formulae
for v.

z
- j(× , 3,7 ) and for that we need

explicit

loyal

formulae too our
Dirac8

"

operator and the associated

Laplacians .

For this
, using the local coordinate

chart formulae of heat 3
p 5,6 , 7 : over a chart N

- V
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Globally ,
recall

,

J : ME ,D → in ( s
, vote 's )

,
while

3
.

1=5*5
: Roi's,v ) → role ,v )

is therefore given in local coordinates on the chart Ntsy

6 D= - Kttjtaz . lEtB ) =
. ti

'

52.2 - (hEtY(2*723
and I

=J8*
: Cols ,v*@ Ties )D by

7 D= - E 2. the )" Jz = - h 232 - EHz KEJ
'

)5z
.

Since Z =x±tixz ,
E = x

,
- ixz

,

and therefore
2- = E (2x

,

- i2xD
, ⇒= 12(2x±ti2xz )

and writing ( since

at
this point we do not need the

exact formulae )
. ,

egg=

h#
⇒

"

g
"

is just a

4 letter here
,

not
and athiemman metric

9 A =
I (hEtY2±t

2 is 2Z

we can rewrite 6 as

10 I = - g ( 2×4+2×2
. ) - a tax ,

- 2x
. )



ain the local symbol of Down we just have to

replace - idx
,

with }k , by Fourier tsawsgooms ,.  
Hence

I has local symbol
" atx , } ) = aztx , } ) + a± ( x

,
} ) + Aotx , } )

with
iz aztx , § ) =

. txi , xD 1312 ( 1512=3,2+35 )

13 a± ( x , } ) = Atxiixz ) ( 3 , + I }z )

14 No ( x
,

} ) = 0

It follows from 2 that

V. zlx ,
}

, D = (g 1312 - A)

Y
which is easy enough %

.

For v.
3

; which Is used to

compute h
. ± ,

we have to work a little harder : from @

15 V.
3

= - Mz & ¥ 2 Faz
.

nDx" t.rs . z
.

lmltktl = 1

L < 1

Dinah < I
,

then 1 = O
,

and the condition lmltk +2=1

forces µ !
 

= I in all swmmaweb
.

Thus 15 simplified to
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.

V.
3 = - Iz [ afar .

kDx" V.
z

,

lprltk = 1

which can then be expanded into two summaneb

16 V.
3

= - V. z|j§o23 ; Az Dxjr . z ) - V.
z

( A± V.
z )

|µ=± ,
t=o µ=gR=1

Fos the first term
,

note that

17 2
} ;

Az = 2g }j

and also

,g
DX

;
r.am = - mrzmt

"

(Dx
; g) 1{ p

fos any m E H
.

This and a
,

= a (3+032) reduces 16 to

14 V.
3

= 2 v. 23 § g (Dx
; 9) 3 ;

1312
- t.IN (3. ti })

The computation of V
. ↳ andsubsequent terms ,

proceeds along similar ehemetaey lines
.

However
,

though

no move complicated than the above
,

each step is
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increasingly arduous

. Fortunately , for the RRH theorem

we only need to know v.
↳

: it starts off as follows .

We have

zo V.
↳

= - ~
. z

2 t.TT Az
.
kDfkz

- z
.1Mt k +2 = 2

2<2

The condition 1<2 implies

I = 0 or 1
,

so we can break . up the above expression into two terms :

I
a

=
- Is µ§k

, a
t.dfaz.ie#kz - r

21

-13 ,§+k=z # 3%2
.
kDfFz

- r
.

and repeat the process fos each of the terms on the

RHS of 21
, letting Is 0,1 ,

2 in the first surmand

and to so on 1 in t -

-

oa e on two

he dofeoaremdqwtAofmbrpuatdtBon
one arrives at :

LTCC STUDENTS ARE INVITED TO COMPLETE THE My COMPUTATION :



PROPOSITION 1 !
-

72 = ( g ( x ) 1 } 12 - A)
' ±

22

ns = 2mi Eg

Png
) }

,
Ki . v.

,
x. ( }

, + in
}%¥¥

23

4
N

. ↳
= 12nF ,a§9413*9 ) #9) }r{ 3

24

. 2 v.4.2

Eg
@x. 9) 21314

to

- 4 ME §,

g(Dxn9) (Dag ) 3*3 ,
}

2

- 4 !42,492 @In
,

x. 9) 3*3 ,
}

2

- 6 NI ,§ Ng (Dx*9 ) (}
,

ti }z) 1312

+ v.3afg@x.2.g) K 12

+ 2h32 § (Dxna ) I ( }
i

+ i }
a ) }n

+ NI x(D×±g ) 1312

+ in } a (Dxag ) 1312 + v.32 x2§,
+iBd2
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.Using Proposition 1 and 3 a has :

. identity Nxn  matrixPROPOSITION 2 !
- since  we  we  computing

-
otna trivialization ofranhan
bundle V -28

25 h
.± ( x ) = ¥5

It
and

'

h→=vk*VIV%&)

26 b.
, (x ) = 0 and h

. }
-0

27 hoe )=¥nff±Dx,(543,9 ) - ±sDxd5'Dxzg)
+ ÷D× ,

@
' ' a) + iedxalgta )

For the calculations let us note the identities :

28 1. e-
"

(PBT . ⇒
''47=

EP
" "

pen

I *- D !

29 n*eN
,

ftp.3432meplsrds.mn#fainmama+tgmjti0npNi+Epn2t

{

30
m± on mz is odd fpp

}M±}Me→B"

as =O

C- N



Ihaugoegrettably

,
used

%
PROOF OF 25 We home the same letter "h"

for
the heat eoetttsknfkfexsdx
and the hvmitian metrich

. , @ ) = )yzzfp8→N_zoTf$f hone
- please note

.tw#euna=f*idpE'

( 91312-75
'

dad }

28=f⇒e→" its
zg a

=}t⇐M±D= Eg
,

 sinceTHE) - A
.

Fnomeqw 8 ehaue (4g ) '±=h
,

while:{dz^dE=dx±dxz
,

so

tsµ.±Lx))1dx1=tw #9)
→

In)dx±dxz

.tn#ofw.IzdzndE

Thus
, =tVFdhE

byeqn 6 qleotz

h→÷fstr(h⇒@D1d×1=Ngfg±di=¥V°HD
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PROOF OF 26

We
have

hzo-fpnfpeitr.3d7EsEf2Hetv.z3dMqgPx.g13rKl2oBiyzafpEtr.adHfsiti3Dd3xxEqyPxgjfpeeisl3t3.Bids-f.zE9BlT3.ti3deBx@73OO.Ingaot.it.s

not hard to show
, similarly ,

that :

PROPOSITION 3

j.CN odd ⇒
h

-2¥
Cx ) =0 ( and h

.z+j
= of .

EXERCISE  - PARTICULARLY FOR ZTCC STUDENTS :

Thus
,

the heat trace expansion only has Integer
powers oft .
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.

OUTLINE PROOF OF 27 LTCC - EXERCISE : PROVIDE FULL

PROOF .

We have

hoe > =]
, .fpE

'

v.
↳

ends
,

with v.
a

as stated in 24

T
 a

= 12mF ,a§9413*9 ) @x. 9) 3*3 ,
}

4

- 2 v.4.2 E g @x. 9) 21314
to

31
-

4w.4zfyg@xn9HDx.9l3sr3r32-4N.4zfy92P2xn.x

.
9) 3*3 ,

}
2

Con ignore
these terms 17

- 6 NI ,§ xg (Dx*9 ) (}
,

ti }z) 1312

since by 30

they integrate in } + NI £ 9(DxI9) 1512

to zero .

]
+ zw ; §(D×na) g (3

i
+ i }

a ) }x

+ NI x(D×±g ) 1312

+ in } a (Dxag ) BP + r?zx2§,
+Bd2

The rest of the computation is left as an exercise

:
-
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As for as computing the index ind F) is concerned (in e
.

proving the RRH thm ) we may also ignore all the terms not

containing an A - since these will be the same
,

will
~ ~

also occur in More)
,

ie
.

in Tree* )~I . ,
E

'

that
 '

' thot . .

" "
a ho h

. ,
0

Thus
, looking at 31 in fact we need only compute

T
a

= 12 v. Itf9413*9 ) @x. 9) Fis ,
}

4

. 2 v.I E g @x. 9) 21314
to

- 4 ME §,

9 (Dxng ) (Dug ) 3*3 ,
}

2

-

4N.4zfg92P2xn.x.H3stiE3s2-6v.4zfnxglDxte91fs.ti3dH17tv.3afgPxIg1lssl2t2w.3zf@xnxtgtsitn3szBttr.3zxlDx.g11es12tin.3zxlDxag113sl2tr.3zx2fs.t

Bd
'

poo the terms

most
crossed . out to compute

ind@9.h .
- To
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This shows quite dramatically the often commented '

remarkable
.

cancellations ' that occur in the Super ( Zz ) truce of
the heat kernel formula foo the index

-
and demonstrates

again the
'

locality
'

and computability of the index
.

To complete the proof of the RRH formula ,
we may use

Z  = X , + ixz ,
E = x

,
- Ixc , Dx

,

=
- ifdz+ 2£ ) , Dxz = 2z - 2E

,

and g =¢h)
' '

,
a = ÷. KETY

"

3ft to show :

Proposition 4 One has
.

ex ) =
- ¥+2 .

22=1094) . In - ⇐ 2± (est)
"

31ft) 32

Proof : This is just a rearrangement of formula 27

using the above identities
.

LTCC EXERCISE }

Taking the trace of 32 simplifying and using

|dx| = igdzndz
we have
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.

trHocxD-o1gtr@Edloghxo.In)
. ÷ trptestr '¥ID

= -

gNq2z2Elog4eD-zlq2z2elogdeHEeDtN@2z2s1ogh.dzadztatgz2e2slogdetIEJdzadzThwsho-utz.fgaJ1ogdetEt.Ngm.fga2logh.T

he
'

same
'

computation f. on I using 7 and

£ = ÷ E 245
"

2 z

gives

To= itzifgaalogdet#
-F. fjsslogh .



15and hence that .

ko - to = In , fg 25ligdet # + In , § 5 log h
.

2
4

This proves
the RRH theorem on a closed Riemann

surface .


