
CHAPTER 1

Projective resolutions

1. R-Modules

In this section we will quickly review the basic definitions of modules over a ring,
projective resolutions and the definition of Extn(M,N). In general we denote a ring
by R and assume that R has a unit.

Let R be a ring. A left R-module is an abelian group (M,+) together with a
multiplication

R⇥M ! M
(r,m) 7! rm

satisfying the following axioms:

(M1) r(m+ n) = rm+ rn for all r 2 R and m,n 2 M
(M2) (r + s)m = rm+ sm for all r, s 2 R and m 2 M
(M3) (rs)m = r(sm) for all r, s 2 R and m 2 M
(M4) 1Rm = m for all m 2 M.

We usually write MR - or M if it is clear which ring is meant. Right R-modules
are defined analogously. If R is commutative a left R-module can be made into a
right R-module by defining the multiplication by (m, r) 7! rm.

Let M and N be R-modules. A map ↵ : M ! N is called R-linear or an R-module
homomorphism if

• ↵(m+m0) = ↵(m) + ↵(m0) for all m,m0 2 M
• ↵(rm) = r↵(m) for all m 2 M, r 2 R.

Let M and N be R-modules. We denote by HomR(M,N) the set of all R-linear
maps ↵ : M ! N.

Remark. HomR(M,N) is an abelian group with addition defined pointwise. Fur-
thermore EndR(M) = HomR(M,M) is a ring where multiplication is defined by
composition of maps.

Naturality means that for every R-module homomorphism ↵ : M ! N the
following diagram commutes,

HomR(R,M)
�M //

↵⇤

✏✏

M

↵

✏✏
HomR(R,N)

�N // N

where ↵⇤(f) = ↵ � f and ↵ � �M = �N � ↵⇤.
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A sequence

· · · // Mi+1
↵i+1 // Mi

↵i // Mi�1
↵i�1 // · · ·

(i 2 Z) of linear maps is called exact at Mi if im(↵i+1) = ker↵i.
The sequence is called exact if it is exact at every Mi(i 2 Z).

Exercise 1. Show that:

(1) 0 // L
↵ // M is exact if and only if ↵ is a monomorphism.

(2) M
� // N // 0 is exact if and only if � is an epimorphism.

(3) 0 // L
↵ // M // 0 is exact i↵ ↵ is an isomomorphism.

Remark. A short exact sequence is an exact sequence of the form

0 // L
↵ // M

� // N // 0.

In particular, ↵ is a monomorphism, � is an epimorphism and im(↵) = ker(�).
Hence N ⇠= M/↵(L). Conversely, if N ⇠= M/L, then there is a short exact sequence

L ,! M ⇣ N.

Let us get back to the groups HomR(M,N): Let ↵ 2 HomR(M,N) and let ⇠ : N !
X be an R-module homomorphism. We then define

⇠⇤ : HomR(M,N) ! HomR(M,X)

by ⇠⇤(↵) = ⇠ � ↵. In other words, HomR(M,�) is a covariant functor. Now let
 : Y ! M be an R-module homomorphism. We define

 ⇤ : HomR(M,N) ! HomR(Y,N)

by  ⇤(↵) = ↵ �  . We say HomR(�, N) is a contravariant functor.

Theorem 1.1. Let X and Y be R-modules and let

0 // L
↵ // M

� // N // 0

be a short exact sequence. Then the following sequences are exact:

(1) 0 // HomR(Y, L)
↵⇤ // HomR(Y,M)

�⇤ // HomR(Y,N)

(2) 0 // HomR(N,X)
�⇤
// HomR(M,X)

↵⇤
// HomR(L,X).

Proof: We leave (2) as exercise and do (1) in class. ⇤
We say HomR(�, X) and HomR(Y,�) are left exact functors. Neither �⇤ nor ↵⇤

have to be surjective. We’ll come back to conditions on X and Y for Hom to be an
exact functor.

Projective modules are basically the bread and butter of homological algebra, so
let’s define them. But first, let’s do free modules:

Let F be an R-module and X be a subset of F . We say F is free on X if for
every R-module A and every map ⇠ : X ! A there exists a unique R-module
homomorphism � : F ! A such that �(x) = ⇠(x) for all x 2 X.
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In other words F is free if there’s a unique R-module homorphism � making the
following diagram commute:

F

�!

✏✏

X
>>

i

>>~~~~~~~~

⇠   @
@@

@@
@@

@

A

A very hard look at this diagram now gives us the following lemma.

Proposition 1.2. Let P be an R-module. Then the following statements are
equivalent:

(1) HomR(P,�) is an exact functor
(2) P is a direct summand of a free module.
(3) Every epimorphism M ⇣ P splits.
(4) For every epimorphism ⇡ : A ⇣ B of R-modules and every R-module

map ↵;P ! B there is an R-module homomorphism � : P ! A such that
⇡ � � = ↵.

Every R-module satisfying the conditions of Proposition 1.2 is called a projective
R-module.

Definition 1.3. Let M be an R-module. A projective resolution of M is an
exact sequence

· · · // Pi+1
di // Pi

di+1 // · · · d

1
// P1

d

0
// P0

" // M // 0,

where every Pi, i � 0, i 2 Z, is a projective module.

We also use the short notation
P⇤ ⇣ M.

Given anR-moduleN , we apply HomR(�, N) to the projective resolution above
to get a complex

0 ! Hom(M,N) ! HomR(P0, N) ! HomR(P1, N) ! · · · .
We define:

ExtnR(M,N) = ker(HomR(Pn, N) ! HomR(Pn+1, N))/im(HomR(Pn�1, N) ! HomR(Pn, N)).

We use the convention that Pi = 0 for all i < 0.

Theorem 1.4. ExtnR(M,N) is independent of the choice of projective resolution
of M.

Exercise 2. Prove that Ext0R(M,N) = HomR(M,N).

Definition 1.5. Let M be an R-module. We say M has finite projective
dimension over R, pdRM < 1, if M admits a projective resolution P⇤ ⇣ M of
finite length. In particular, there exists an n � 0 such that

0 ! Pn ! Pn�1 ! · · · ! P0 ! M ! 0
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is a projective resulution of n. The smallest such n is called the projective dimension
of M .

Proposition 1.6. Let M be an R-module. Then the following statments are
equivalent:

(1) pdRM  n.
(2) ExtiR(M,�) = 0 for all i > n
(3) Extn+1

R (M,�) = 0
(4) Let 0 ! Kn�1 ! Pn�1 ! · · · ! P1 ! P0 ! M ! 0 be an exact sequence

with Pi projective for all 0  i  n� 1. Then Kn�1 is projective.

Exercise 3. Let M 00 ,! M ⇣ M 0 be a short exact sequence of R-modules.
Prove the following:

(1) pdM 0  sup{pdM, pdM 00 + 1}.
(2) pdM  sup{pdM 00, pdM 0}.
(3) pdM 00  sup{pdM, pdM 0 � 1}.

(This is an exercise in applying Theorem 1.7)

Exercise 4. Let M be an R-module such that pdM = n. Then there exists a
free R-module F such that

Extn(M,F ) 6= 0.

Theorem 1.7. Let M 00 ,! M ⇣ M 0 be a short exact sequence of R-modules.
And let N be an arbitrary R-module. Then there are long exact sequences in coho-
mology

(1)

· · · ! Extn(N,M 00) ! Extn(N,M) ! Extn(N,M 0) ! Extn+1(N,M 00) ! · · ·

(2)

· · · ! Extn(M 0, N) ! Extn(M,N) ! Extn(M 00, N) ! Extn+1(M 0, N) ! · · ·

Exercise 5. [Dimension shifting] Let K ,! P ⇣ M be the beginning of a
projective resolution of M and let N be an R-module. Then for all n � 1,

Extn(K,N) ⇠= Extn+1(M,N).

Proof: Apply Theorem 1.7 and the fact that Ext vanishes on projectives. ⇤

2. The Group Ring

Throughout we denote a group by G. Let ZG denote the free Z-module with basis
the elements of G. In particular, every x 2 ZG can be written in a unique way as

x =
X

g2G

ngg

where ng 2 Zand almost all ng = 0. Define a multiplication on ZG as follows:

xy = (
X

g2G

ngg)(
X

h2G

nhh) =
X

g,h2G

ngnh(gh).

this makes ZG into a ring, the integral group ring.
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Example 1.8. (1) Let G = hxi be infinite cyclic. Then ZG has Z-basis
{xi | i 2 Z} and can be identified with the ring Z[x, x�1] of Laurent poly-
nomials

P
i2Z aix

i, where almost all ai = 0.
(2) Let G be cyclic order n and t be a generator for G. {1, t, t2, ..., tn�1} is a

Z-basis for ZG and tn � 1 = 0 hence

ZG ⇠= Z[T ]/Tn � 1.

Definition 1.9. Let M be an abelian group and let G act on M

G⇥M ! M
(g,m) 7! gm

such that for all m,n 2 M and g, h 2 G:

• 1Gm = m
• (gh)m = g(hm)
• g(m+ n) = gm+ gn

we say that M is a G-module.

A G-module can be made in a ZG-module by ”linearly extending” the action,
i.e. xm = (

P
g2G ngg)m =

P
g2G ng(gm). Furthermore, G is a subgroup of the

multiplicative group ZG⇤ and hence there’s the follwing universal property:
Let R be a ring and f : G ! R⇤ be a group homomorphism. Then f can be
extended uniquely to a ring homomorphism ZG ! R. Hence

Homrings(ZG,R) ⇠= Homgroups(G,R⇤)

and a G-module is nothing but a ZG-module.

Example 1.10. Every abelian group A is a trivial G-module with the action
defined by ag = a for all a 2 A, g 2 G. Hence for x =

P
g2G ngg it follows that

xa =
P

g2G nga.

For every group G there is a ring homomorphism

" : ZG ! Z

defined by "(g) = 1. for all g 2 G. Hence for x =
P

g2G ngg, "(x) =
P

g2G ng. The
kernel of " is called the augmentation ideal and is denoted by g or IG.

Lemma 1.11. g is a free Z-module with basis

X = {g � 1 | 1 6= g 2 G}.

" is a G-module homomorphism and g is a G-module.

Lemma 1.12. (1) Let S be generating set for G. Then g is generated as
a G-module by

S � 1 = {s� 1 | s 2 S}.
(2) Let S be a set of elements of G such that S�1 generates g as a G-module.

Then S generates the group G.

Proof: We do (1) in class and leave (2) as an exercise. ⇤
Now let ⌦ be a G-set and consider the free abelian group Z⌦ on ⌦. The operation
of G on ⌦ can be extended to a Z-linear operation of G on Z⌦. Hence Z⌦ is a
G-module, the so called Permutation module.


