CHAPTER 1

Projective resolutions

1. R-Modules

In this section we will quickly review the basic definitions of modules over a ring,
projective resolutions and the definition of Ext™ (M, N). In general we denote a ring
by R and assume that R has a unit.

Let R be a ring. A left R-module is an abelian group (M, +) together with a
multiplication
RxM — M
(r,m) — rm
satisfying the following axioms:
(M1) r(m+n)=rm+rn for all r € R and m,n € M
(M2) (r+sym=rm+smforallr,se€ Rand me M
(M3) (rs)m =r(sm) for all r,s € R and m € M
(M4) 1gm =m for all m € M.
We usually write Mg - or M if it is clear which ring is meant. Right R-modules
are defined analogously. If R is commutative a left R-module can be made into a
right R-module by defining the multiplication by (m,r) — rm.

Let M and N be R-modules. A map o : M — N is called R-linear or an R-module
homomorphism if

e a(m+m')=a(m)+ a(m’) for all m,m’ € M

e a(rm) =ra(m) for all m € M,r € R.
Let M and N be R-modules. We denote by Hompg (M, N) the set of all R-linear
maps o« : M — N.

Remark. Hompg(M, N) is an abelian group with addition defined pointwise. Fur-
thermore Endr(M) = Hompg(M, M) is a ring where multiplication is defined by
composition of maps.

Naturality means that for every R-module homomorphism « : M — N the
following diagram commutes,

Homp(R, M) 2~

M
Homp(R,N) Y~ N
where o, (f) = ao f and o ¢pr = dn © .
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A sequence

Qi1 a; a1
My —— M, ——M; g —— -
(i € Z) of linear maps is called exact at M; if im(a;41) = kera,.
The sequence is called exact if it is exact at every M;(i € Z).
EXERCISE 1. Show that:

(1) 0 ——= L —2= M is exact if and only if o is a monomorphism.

(2) M . N —— 0 is exact if and only if 5 is an epimorphism.

(3) 0 LM 0 is exact iff « is an isomomorphism.

Remark. A short exact sequence is an exact sequence of the form

0 - ML N 0.

In particular, « is a monomorphism, S is an epimorphism and im(a) = ker(f8).
Hence N = M/a(L). Conversely, if N 2 M/L, then there is a short exact sequence

L~ M — N.
Let us get back to the groups Homp (M, N): Let « € Homg(M,N) and let £ : N —
X be an R-module homomorphism. We then define
&« : Homp(M, N) — Hompg(M, X)

by &.(a) = £ o a. In other words, Homg(M, —) is a covariant functor. Now let
¥ :Y — M be an R-module homomorphism. We define

¥* : Hompg(M, N) — Hompg (Y, N)

by ¥*(a) = awo 9. We say Hompg(—, N) is a contravariant functor.

THEOREM 1.1. Let X and Y be R-modules and let

0 LML N 0

be a short exact sequence. Then the following sequences are exact:
(1) 0 — Homp(Y, L) —**> Homp (Y, M) —*> Homp(Y, N)
(2) 0 —— Homp(N, X) —~ Homp(M, X) —< > Homp(L, X).

Proof: We leave (2) as exercise and do (1) in class. O

We say Homp(—, X) and Hompg(Y, —) are left exact functors. Neither /3, nor a*
have to be surjective. We’ll come back to conditions on X and Y for Hom to be an
exact functor.

Projective modules are basically the bread and butter of homological algebra, so
let’s define them. But first, let’s do free modules:

Let F be an R-module and X be a subset of F.. We say F is free on X if for
every R-module A and every map & : X — A there exists a unique R-module
homomorphism ¢ : F — A such that ¢(z) = {(x) for all x € X.
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In other words F is free if there’s a unique R-module homorphism ¢ making the
following diagram commute:

A very hard look at this diagram now gives us the following lemma.

PROPOSITION 1.2. Let P be an R-module. Then the following statements are
equivalent:

(1) Hompg(P,—) is an exact functor

(2) P is a direct summand of a free module.

(3) Every epimorphism M — P splits.

(4) For every epimorphism w : A — B of R-modules and every R-module
map «; P — B there is an R-module homomorphism ¢ : P — A such that
To=q.

Every R-module satisfying the conditions of Proposition 1.2 is called a projective
R-module.

DEFINITION 1.3. Let M be an R-module. A projective resolution of M is an
exact sequence

d; - dig1 d e

P

M 0,
where every P;, ¢ > 0,7 € Z, is a projective module.

We also use the short notation
P.—» M.

Given an R-module N, we apply Homg(—, N) to the projective resolution above
to get a complex

0 — Hom(M, N) — Hompg(FPo, N) = Homp(P;,N) — - -
We define:

Exty (M, N) = ker(Homg(P,, N) = Homg(P,41,N))/im(Homg(P,—1, N) = Homg (P, N)).
We use the convention that P, = 0 for all ¢ < 0.

THEOREM 1.4. Ext’s (M, N) is independent of the choice of projective resolution
of M.

EXERCISE 2. Prove that Ext% (M, N) = Homg(M, N).

DEFINITION 1.5. Let M be an R-module. We say M has finite projective
dimension over R, pdpM < oo, if M admits a projective resolution P, — M of
finite length. In particular, there exists an n > 0 such that

O—-PFP,—-FP1— - —=F—->M—=0
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is a projective resulution of n. The smallest such n is called the projective dimension
of M.

PROPOSITION 1.6. Let M be an R-module. Then the following statments are
equivalent:

(1) pdgM <n.
(2) Extia(M,—) =0 for alli >n
(3) EXﬁTé“(M—) =0
(4) Let0 > K1 = Py — -+ = P = Py = M — 0 be an exact sequence
with P; pmjective for all0 <i<n—1. Then K, _1 is projective.
EXERCISE 3. Let M” < M — M’ be a short exact sequence of R-modules.
Prove the following:

(1) pdM’ < sup{pdM,pdM" + 1}.
(2) pdM < sup{pdM” pdM'}.
(3) pdM"” < sup{pdM,pdM' — 1}.

(This is an exercise in applying Theorem 1.7)

EXERCISE 4. Let M be an R-module such that pdM = n. Then there exists a
free R-module F' such that

Ext"(M, F) # 0.

THEOREM 1.7. Let M" — M — M’ be a short exact sequence of R-modules.
And let N be an arbitrary R-module. Then there are long exact sequences in coho-
mology

(1)

- — Ext"(N, M") — Ext™(N, M) — Ext™(N, M') — Ext"*"(N, M") —
(2)

- — BExt™(M’',N) — Ext™(M,N) — Ext"(M",N) — Ext""*(M',N) — ---

EXERCISE 5. [Dimension shifting] Let K < P — M be the beginning of a
projective resolution of M and let N be an R-module. Then for all n > 1,

Ext"(K,N) = Ext" ™' (M, N).

Proof: Apply Theorem 1.7 and the fact that Ext vanishes on projectives. O

2. The Group Ring

Throughout we denote a group by G. Let ZG denote the free Z-module with basis
the elements of G. In particular, every x € ZG can be written in a unique way as

= Yon
g€G
where ng € Zand almost all ng = 0. Define a multiplication on ZG as follows:
Ty = ang Z nph) = Z ngnn(gh).
geG heG g,heG

this makes ZG into a ring, the integral group ring.
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EXAMPLE 1.8. (1) Let G = (x) be infinite cyclic. Then ZG has Z-basis
{x*|i € Z} and can be identified with the ring Z[z, 2] of Laurent poly-
nomials y, ., a;z", where almost all a; = 0.

(2) Let G be cyclic order n and t be a generator for G. {1,t,t%,...,t" '} is a
Z-basis for ZG and t™ — 1 = 0 hence

72G = Z[T))T" — 1.
DEFINITION 1.9. Let M be an abelian group and let G act on M

GxM — M
(g:m) = gm
such that for all m,n € M and g,h € G:
e lgm=m
* (gh)m = g(hm)
e glm+mn)=gm+gn
we say that M is a G-module.
A G-module can be made in a ZG-module by "linearly extending” the action,
Le. am = (3_,eqngg)m = D cq ng(gm). Furthermore, G is a subgroup of the
multiplicative group ZG* and hence there’s the follwing universal property:
Let R be a ring and f : G — R* be a group homomorphism. Then f can be
extended uniquely to a ring homomorphism ZG — R. Hence
Homyings(ZG, R) = Homgroups(G, R)
and a G-module is nothing but a ZG-module.

EXAMPLE 1.10. Every abelian group A is a trivial G-module with the action
defined by ag = a for all a € A, g € G. Hence for x = ) ngg it follows that
Ta =) cqnga
For every group G there is a ring homomorphism

e:2G — 7

defined by e(g) = 1. for all g € G. Hence for x =} 5 ngg, e(x) = > 51y The
kernel of ¢ is called the augmentation ideal and is denoted by g or IG.

geG

LEMMA 1.11. g is a free Z-module with basis
X={g-1|1#g€G}.
€ is a G-module homomorphism and g is a G-module.

LEMMA 1.12. (1) Let S be generating set for G. Then g is generated as
a G-module by
S—1={s—1|se S}
(2) Let S be a set of elements of G such that S—1 generates g as a G-module.
Then S generates the group G.

Proof: We do (1) in class and leave (2) as an exercise. O

Now let 2 be a G-set and consider the free abelian group Zf) on 2. The operation
of G on ) can be extended to a Z-linear operation of G on Z{). Hence Zf2 is a
G-module, the so called Permutation module.



