
CHAPTER 3

Some more homological algebra

1. Induction and Coinduction

Proposition 3.1. Let R and S be rings, A a right S-module, B a right R-

module and a left S-module and C a right R-module. Then there is a natural

isomorphism

HomR(A⌦S B,C) ⇠= HomS(A,HomR(B,C)),

the so called adjoint isomorphism.

HomR(B,C) is a right S-module via ('s)(b) = '(sb). Contravariance of HomR(�, C)
leads to this ’switch from right to left’.

Remark 3.2. Let ↵ : S ! R be a ring homomorphism. Then every R-module
M can be viewed as an S-module via sm = ↵(s)m for all s 2 S,m 2 M. This is
called Restriction of scalars.

Remark 3.3. Extension of Scalars Let ↵ : S ! R be a ring homomorphism.
As above, R can be viewed as a left S-module vial sr = ↵(s)r for all s 2 S, r 2 R.
Now let M be a right S-module and form a Z-module

M ⌦S R.

The right action of R on itself commuted with the left action of S. Hence M ⌦S R
can be viewed as a right R-module via

(m⌦ r)r0 = m⌦ rr0.

We now apply the adjoint isomorphism 3.1 to obtain a natural isomorphism

HomR(M ⌦S R,N) ⇠= HomS(M,N).

We say extension of scalars is left adjoint to restriction of scalars.

Remark 3.4. Coextension of scalars This construction is dual to that in
3.3. Let M be a right S-module. Then

HomS(R,M)

is a right R-module via fr0(r) = f(rr0). Now it follows from 3.1 that for all R-
modules N and S-modules M there is a natural isomorphism

HomR(N,HomS(R,M)) ⇠= HomS(M,N).

We say Coextension of scalars is right adjoint to restriction of scalars.

Example 3.5. Let S = ZG for a group G and R = Z. Consider the augmenta-
tion map ✏ : ZG ⇣ Z, which is a ring homomorphism. extension of scalars sends a
G-module M to

M ⌦ZG Z ⇠= MG,
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where MG = M/L, where L is the submodule generated by all mg�m. Also note,
that

MG
⇠= M/g.

On the other hand, coextension of scalars gives HomZG(Z,M) = MG = Ho(G,M).

We will be insterested under which circumstances these constructions preserve ex-
actness, send projectives to projectives or injectives to injectives. Note, that so far,
it is only clear that restriction preserves exactness.

Lemma 3.6. (1) Extension of scalars sends projective S-modules to pro-

jective R-modules.

(2) Coextension of scalars sends injective S-modules to injective R-modules.

(3) Let R be flat as an S-module. Then under restriction, injective R-modules

become injective S-modules.

(4) Let R be projective as an S-module. Then under restriction projective

mR-modules become projective S-modules.

Lemma 3.7. Let G be a group. Then every right G-module can be viewed as

a left G-module and vice versa. The operation is given by gm = mg�1
for all

g 2 G,m 2 M.

From now on let’s consider group rings again. Let H  G be a subgroup. Then
the inclusion induces a ring-homomorphism

ZH ,! ZG.

Extension of scalars becomes Induction from H to G. Let M be an H-module.
Then.

IndGHM = M ⌦ZH ZG = M "GH
Coextension of scalars becomes Coinduction from H to G. Let M be an H-
module. Then:

CoindGHM = HomZH(ZG,M).

Let N be a G-module. Then restriction of scalars is usually denoted by

ResGHN = N #GH .

Proposition 3.8. The G-module M "GH contains M as a H-submodule. Fur-

thermore,

M "GH⇠=
M

g2E

Mg

where E is a system of representatives for the right cosets Hg.

Note that Z"GH⇠= Z[H\G] is a permutation module.

Proposition 3.9. Frobenius reciprocity Let H  G be a subgroup of the

group G. Let M be an H-module and N be a G-module. Then there is an isomor-

phism of G-modules

N ⌦M "GH⇠= (N #GH ⌦M)"GH .

This implies that for every H-module N

N ⌦ Z[H\G] ⇠= N ⌦ZH ZG,
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where on the left we have a diagonal G-action, wheras on the right hand side the
G-action only comes from the action on ZG. In particular, if M is a G-module with
underlying abelian group M0 then

M ⌦ ZG ⇠= M0 ⌦ ZG.

In particular, if M0 is a free abelian group, M ⌦ ZG is a free G-module.

Proposition 3.10. Mackey’s formula Let H  G and K  G and let E
denote a system of representatives for the double cosets KgH. For each K-module

M there is a K-module isomorphism:

(M "GH)#GK⇠=
M

g2E

(Mg#H
g

K\Hg )"KK\Hg .

In particular, if N is a normal subgroup of G then

(M "GH)#GH⇠=
M

g2H\G

Mg.

We can identify Mg #Hg

K\Hg with M #HK\Hg whereby the second restriction is with
respect to the map: K \ g�1Hg ! H mapping k 7! gkg�1.

Proposition 3.11. Let |G : H| < 1. Then

IndGHM ⇠= CoindGHM

for every H-module M .

Exercise 10. (1) Show that induction is invariant under conjugation,i.e.
show that for every H-module M and g 2 G

M "GH⇠= Mg"GHg .

(2) Let |G : H| = 1. Show that for any H-module M :

(M "GH)G = 0.

Theorem 3.12. Eckmann-Shapiro Lemma Let H  G and let M be an

H-module. Then

H⇤(H,M) ⇠= H⇤(G,CoindGHM).

Remark 3.13. Let |G : H| < 1. Then

(1) H⇤(H,Z) ⇠= H⇤(G,Z[H\G]) and
(2) H⇤(H,ZH) ⇠= H⇤(G,ZG).

Finally we will make a remark on the exactness of induction:

Proposition 3.14. Let A ,! B ⇣ C be a short exact sequence of ZH-modules.

Then

A"GH ,! B "GH⇣ C "GH
is an exact sequence of ZG-modules.

Exercise 11. Let k be a field and let G be a finite group. Prove that a
kG-module is projective if and only if it is injective. (Hint: every k-module is free).
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2. Exact Colimits

In this section we will give a homological criterion for a R-module to be of type
FPn . This is sometimes called the B ieri-Eckmann criterion. The results of this
section are taken from [2].

Let � be a directed graph without loops. A �-diagram in the category of
R-modules is given by

(a) For all vertices v of �, a R-module Mv;
(b) For every edge from v to w, a R-module homomorphism 'v,w : Mv ! Mw.

For every �-diagram M⇤, we define the colimit, colimM⇤ to be the R-module
satisfying the following universal property:

• For every vertices v and w, here are R-module maps fv : Mv ! colimM⇤
such that fw � 'v,w = fv.

• For every R-module X such that there are R-module maps 'v : Mv !
colimM⇤ such that 'w � 'v,w = 'v, there is a unique R-module map
 : colimM⇤ ! X making the diagram commute.

Exercise 12. Show that colimM⇤ exists and is unique.

Now let
F : R�mod ! Ab

be a covariant functor from the category of R-modules to the category of abelian
groups. For example, let M be an R-module, then HomR(M,�) and Extk(M,�)
are such functors. Then the universal property for colimits gives a well-defined
homomorphism

colim(F (M⇤)) ! F (colimM⇤).

We say F commutes with colimits, if this map is an isomorphism.
We will be interested in graphs such that the colimit is an exact functor.

Example 3.15. (1) Let � be the graph consisting of a set of vertices I
and no edges. Then

colimMi =
M

i2I

Mi.

This is exact.
(2) Let � be a graph with the following property: For all vertices u and v,

there is a vertex w such that there are directed edges from u to w and
from v to w. Then

colimM⇤ = lim�!M⇤

is the directed limit. This is also exact.

Proposition 3.16. Let A be an R-module of type FPn. Then for every exact

colimit, the natural homomorphism

colimExtk(A,M⇤) ! Extk(A, colimM⇤)

is an isomorphism for k < n, and a monomorphism for k = n.

And now follows the Bieri-Eckmann criterion for Ext:

Theorem 3.17. The following are equivalent for a left R-module A:
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(1) A is of type FPn.
(2) For every exact colimit, the natural homomorphism

colimExtk(A,M⇤) ! Extk(A, colimM⇤)

is an isomorphism for k < n, and a monomorphism for k = n.
(3) For any direct system of R-modules M⇤ such that lim�!M⇤ = 0, one has

lim�!Extk(A,M⇤) = 0 for all k  n.

The following proposition is now an easy consequence of the Bieri-Eckmann
criterion, using the long exact sequence of Ext-functors.

Proposition 3.18. Let 0 ! L ! M ! N ! 0 be a short exact sequence of

R-modules. Then the following holds:

(1) If L is of type FPn�1 and M is of type FPn, then N is of type FPn.
(2) If M is of type FPn�1 and N is of type FPn, then L is of type FPn.
(3) If L and N are of type FPn, then M is of type FPn.

3. Proof of Brown’s First Theorem

We now have enough to prove Theorem 2.35. Here is a sketch: We take the
augmented cellular chain complex C⇤(X) ⇣ Z of X. Since X is n-acyclic, we have
that

Cn(X) ! Cn�1 ! ... ! C0(X) ! Z ! 0

is exact. Also recall that

Ci(X) =
M

�2X(i)

Z[G/G�
⇠=

M

�2X(i)

Z"GG�
,

where � are orbit representatives. SinceX has a finite n-skeleton modG, these sums
are finite sums. Furthermore, n-good implies that G� is of type FPn�i, and since
induction takes projectives to projectives, it implies that Z "GG�

is of type FPn�i.
Hence, as the sums are finite Ci(X) is of type FPn�i. Now apply Proposition 3.18
successively to the short exact sequences 0 ! Ki ! Ci(X) ! Ki�1 ! 0 for all
i  n� 1, noting that Kn�1 is finitely generated. ⇤


