CHAPTER 3

Some more homological algebra

1. Induction and Coinduction

PROPOSITION 3.1. Let R and S be rings, A a right S-module, B a right R-
module and a left S-module and C' a right R-module. Then there is a natural
isomorphism

Homp(A ®s B,C) = Homg(A, Homg(B, C)),
the so called adjoint isomorphism.

Homp (B, C) is aright S-module via (¢s)(b) = ¢(sb). Contravariance of Hompg(—, C)
leads to this ’switch from right to left’.

REMARK 3.2. Let a: S — R be a ring homomorphism. Then every R-module
M can be viewed as an S-module via sm = a(s)m for all s € S;m € M. This is
called Restriction of scalars.

REMARK 3.3. Extension of Scalars Let o : S — R be a ring homomorphism.
As above, R can be viewed as a left S-module vial sr = «a(s)r for all s € S,r € R.
Now let M be a right S-module and form a Z-module

M ®gs R.

The right action of R on itself commuted with the left action of S. Hence M ®g R
can be viewed as a right R-module via

(mer)yr=merr'.
We now apply the adjoint isomorphism 3.1 to obtain a natural isomorphism
Hompg(M ®g R, N) = Homg (M, N).
We say extension of scalars is left adjoint to restriction of scalars.

REMARK 3.4. Coextension of scalars This construction is dual to that in
3.3. Let M be a right S-module. Then

Homg(R, M)
is a right R-module via f (r) = f(rr'). Now it follows from 3.1 that for all R-
modules N and S-modules M there is a natural isomorphism
HomR(N, HOms(R, M)) = HomS(M, N)
We say Coextension of scalars is right adjoint to restriction of scalars.
ExXAMPLE 3.5. Let S = ZG for a group G and R = Z. Consider the augmenta-
tion map € : ZG — Z, which is a ring homomorphism. extension of scalars sends a

G-module M to
M Rz 7 = Mg,
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where Mg = M /L, where L is the submodule generated by all mg —m. Also note,
that

Mg = M/g.
On the other hand, coextension of scalars gives Homzg(Z, M) = M% = H°(G, M).

We will be insterested under which circumstances these constructions preserve ex-
actness, send projectives to projectives or injectives to injectives. Note, that so far,
it is only clear that restriction preserves exactness.

LEMMA 3.6. (1) Eztension of scalars sends projective S-modules to pro-
jective R-modules.
(2) Coextension of scalars sends injective S-modules to injective R-modules.
(3) Let R be flat as an S-module. Then under restriction, injective R-modules
become injective S-modules.
(4) Let R be projective as an S-module. Then under restriction projective
mR-modules become projective S-modules.

LEMMA 3.7. Let G be a group. Then every right G-module can be viewed as
a left G-module and vice versa. The operation is given by gm = mg~' for all
geG,me M.

From now on let’s consider group rings again. Let H < G be a subgroup. Then
the inclusion induces a ring-homomorphism

ZH — ZG.

Extension of scalars becomes Induction from H to G. Let M be an H-module.
Then.

Ind$SM = M @z 7Z.G = M1$
Coextension of scalars becomes Coinduction from H to G. Let M be an H-
module. Then:

Coind$% M = Homgy (ZG, M).
Let N be a G-module. Then restriction of scalars is usually denoted by
ResGN = N1 .

PROPOSITION 3.8. The G-module M 1%, contains M as a H-submodule. Fur-
thermore,

M5 5 My
geE
where E is a system of representatives for the right cosets Hg.

Note that Z14= Z[H\G] is a permutation module.

PROPOSITION 3.9. Frobenius reciprocity Let H < G be a subgroup of the
group G. Let M be an H-module and N be a G-module. Then there is an isomor-
phism of G-modules

N @ M1G2 (N1 @M)1g .
This implies that for every H-module N
N ® Z[H\G]) = N ®zy ZG,
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where on the left we have a diagonal G-action, wheras on the right hand side the
G-action only comes from the action on ZG. In particular, if M is a G-module with
underlying abelian group Mj then

M ®ZG = My ® ZG.
In particular, if My is a free abelian group, M ® ZG is a free G-module.

ProroOSITION 3.10. Mackey’s formula Let H < G and K < G and let E
denote a system of representatives for the double cosets KgH. For each K-module
M there is a K-module isomorphism:

(MT%) ?{g @(MgiggmHa)ﬁgmHg :
geE

In particular, if N is a normal subgroup of G then
(M) 15 @ My.
geEH\G

We can identify Mg i%; go with M 2. whereby the second restriction is with
respect to the map: K Ng~'Hg — H mapping k — gkg~?.

PROPOSITION 3.11. Let |G : H| < co. Then
Ind$ M = Coind$ M
for every H-module M .

EXERCISE 10. (1) Show that induction is invariant under conjugation,i.e.
show that for every H-module M and g € G

M5 Mg1,
(2) Let |G : H| = oco. Show that for any H-module M:
(M15) =0.
THEOREM 3.12. Eckmann-Shapiro Lemma Let H < G and let M be an
H-module. Then
H*(H, M) = H*(G, Coind$ M).
REMARK 3.13. Let |G : H| < oo. Then
(1) H*(H,Z) 2 H" (G, Z]H\G]) and
(2) H*(H,ZH) = H*(G, ZG).
Finally we will make a remark on the exactness of induction:
PROPOSITION 3.14. Let A — B — C be a short exact sequence of ZH -modules.
Then
Atfi— B~ C1§
is an exact sequence of ZG-modules.

EXERCISE 11. Let k be a field and let G be a finite group. Prove that a
kG-module is projective if and only if it is injective. (Hint: every k-module is free).
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2. Exact Colimits

In this section we will give a homological criterion for a R-module to be of type
FP,,. This is sometimes called the Bieri-Eckmann criterion. The results of this
section are taken from [2].

Let T' be a directed graph without loops. A I'-diagram in the category of
R-modules is given by

(a) For all vertices v of T', a R-module M,;
(b) For every edge from v to w, a R-module homomorphism ¢y, ,, : M, — M,,.

For every I'-diagram M,, we define the colimit, colimM, to be the R-module
satisfying the following universal property:

e For every vertices v and w, here are R-module maps f, : M, — colimM,
such that fy, © Yy w = fo-

e For every R-module X such that there are R-module maps ¢, : M, —
colimM, such that ¢, o ¢, = @y, there is a unique R-module map
¥ : colimM, — X making the diagram commute.

EXERCISE 12. Show that colimM, exists and is unique.
Now let

F:R—mod— Ab

be a covariant functor from the category of R-modules to the category of abelian
groups. For example, let M be an R-module, then Hompg (M, —) and Ext*(M, —)
are such functors. Then the universal property for colimits gives a well-defined
homomorphism

colim(F(M,)) — F(colimM.,).
We say F' commutes with colimits, if this map is an isomorphism.
We will be interested in graphs such that the colimit is an exact functor.

ExAMPLE 3.15. (1) Let I" be the graph consisting of a set of vertices [
and no edges. Then

colimM; = @ M;.
i€l
This is exact.
(2) Let T be a graph with the following property: For all vertices u and v,
there is a vertex w such that there are directed edges from u to w and
from v to w. Then

colimM, = th*
is the directed limit. This is also exact.

PROPOSITION 3.16. Let A be an R-module of type FP,. Then for every exact
colimit, the natural homomorphism

colimExtt (A, M,) — Ext* (A, colimM.,)
s an isomorphism for k < n, and a monomorphism for k = n.

And now follows the Bieri-Eckmann criterion for Ext:

THEOREM 3.17. The following are equivalent for a left R-module A:
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(1) A is of type FP,.
(2) For every exact colimit, the natural homomorphism

colimExtF (A, M,) — Ext* (A, colimM.,)

is an isomorphism for k < n, and a monomorphism for k = n.
(3) For any direct system of R-modules M, such that th* =0, one has

li%n"lEsctk(A7 M,) =0 for all k <n.

The following proposition is now an easy consequence of the Bieri-Eckmann
criterion, using the long exact sequence of Ext-functors.

ProprosITION 3.18. Let 0 - L — M — N — 0 be a short exact sequence of
R-modules. Then the following holds:
(1) If L is of type FP,_1 and M is of type FP,, then N is of type FP,.
(2) If M is of type FP,_1 and N is of type FP,, then L is of type FP,.
(3) If L and N are of type F P, then M is of type FP,.

3. Proof of Brown’s First Theorem

We now have enough to prove Theorem 2.35. Here is a sketch: We take the
augmented cellular chain complex C,(X) — Z of X. Since X is n-acyclic, we have
that

Cpn(X) = Choy = . 5 Co(X) = Z —0

is exact. Also recall that

Ci(X)= P zl6/G.= P z1E,,
cex® ceX®
where o are orbit representatives. Since X has a finite n-skeleton mod G, these sums
are finite sums. Furthermore, n-good implies that G, is of type F'P,_;, and since
induction takes projectives to projectives, it implies that Zng is of type F'P,_;.
Hence, as the sums are finite C;(X) is of type FP,,_;. Now apply Proposition 3.18
successively to the short exact sequences 0 — K; — C;(X) — K;—1 — 0 for all
i <mn — 1, noting that K,,_; is finitely generated. O



