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Networks
Encode Information
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Multilayer networks
encode more information than
single layers
Multilayer networks are not equivalent
to a larger single network
Different types of links
describe different types of interactions,
therefore multilayer networks
encode more information than
their single layers
taken in isolation



Multilayers networks

In order to
progress in our understanding of
complex systems
we need to
develop new tools to
extract information
from

multilayer networks



Representation of a multiplex

A multiplex network of N nodes formed by M layers

is fully specified by
M adjacency matrices

a[a]

with o=1, 2, ... M
of matrix elements

[a]

ij

1 if node i and node j are linked in layer o

0 otherwise

\




Aggregated network

The aggregated network

Is the network in which we consider every
interaction on the same footing,

l.e. we neglect information about the layers.
The adjacency matrix of the
aggregated network is

( : (]
| a0
a; =- a=1,.M

0 otherwise




Multiplex degree

The degree of a node
iIn a multiplex network is a vector

k, = (KU k12, k™M)

[



Log(<k'|k?>)

Detecting degree correlations
between two layers

Positive degree correlations

(Hubs are hubs in both layers,
low degree nodes have low degree in both layers)

No degree correlations

Negative degree correlations

(Hubs in one layer are low degree nodes in the other)

log (k?)
<k[”‘k[2]> _ Ek[”P(k[” | k121
k]
P(k["|kI2)
probability that a node has degree kl'l in layer 1
given that

it has degree k[?l in other layer 2



Tuning the degree
correlations across two layers

By relabelling the nodes
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Activity of a node

The activity B, of a node i is equal
to the number of layers

iIn which the node is connected
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Multiplex networks with
heterogeneous activity of the

n Od eS Multiplex network
Bipartite network:

Nodes and Layers r

nodes layers i.\ m

D. Cellai et al., PRE 93, 032302 (2016)



Multiplex networks with
link overlap



Overlap in multiplex networks
(a) /, / (b) / (c) (d)

« (a) Only links belonging to more than one airline company are plotted

Cardillo et al. Scientific Reports (2013).
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Interactions with multiple
lines of evidences

GENE WITH MULTIPLE DISEASE ASSOCIATIONS
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Overlap

The total overlap 0O«
between layer a and layer o’

is given by’
oo o _a
O = E a;d;
i<j

The local overlap o,*
of node i between layer a and layer o’
is given by

oo o o
O —Eal.jaij

J




Multiplicity of link overlap

The multiplicity of link overlap is the
number of layers in which a given link
IS present

My = Eaff

-—-° _(7;




. o B
Multilinks PRE (2013)

Nodes 1 2 2 3 4 3 1 4

Layer 1

Layer 2 b - - | . .
Multilink  Multilink Multilink Multilink
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Case of two layers

Multiadjacency matrices

(1 if node i and node j are linked in layer 1 and not linked in layer 2

A =

70 otherwise

ol (1 if node i and node j are linked in layer 2 and not linked in layer 1
A.. =

710 otherwise

1 if nodei and node j are linked in layer 1 and in layer 2
0 otherwise

w |1 ¥ nodeiand node j are not linked in layer 1 and not linked in layer 2
o otherwise

Constraints on the multiadjacency matrices

10 01 11 00
Al.]. +Al.]. +Al.]. +Al.]. =1




Multidegree

The multidegree k" of a node i is
defined as the number of multilinks

m=(m,,...m, )
incident to it
It is given by

In the case of two
layers we have




Multidegrees in financial networks

Kendall U Tail U Partial) |\ Pearson

Musmeci et al. (2016)



Weighted
multiplex networks
with link overlap



Strength vs degree

The strength s, of a node i is equal
to the sum of the weights

= S,
J

The average strength s, of nodes of degree k
can either grow
linearly
(homogeneous distribution of the weights)
or
non-linearly
(hubs have in average links with stronger weights)

Barrat et al. PNAS (2004)



Multi-strength

m,[c]

The multi-strength s;
evaluates the sum of the weights

of multi-links 772
of node i in layer a

The multi-strength allows
to condition on
the presence of the absence of the
link overlap

G. Menichetti et. al. Plos One (2014 )



Multistrength in a
Duplex network

Strength on the first layer restricted to links
with no overlap - with overlap

1,0),[ 1
( 1] EW[JJ(] a[Z]) (11)[1] EW”] [2]

Strength on the second layer restricted to links
with no overlap - with overlap

(01)[2] E(] a[l])w[2] Sl(z,z),[2]= amwm
j

G. Menichetti et. al. Plos One (2014 )




Multi-strength in the
collaboration layer of the
citation/collaboration duplex

The average weight of PRE
a link in the collaboration collaborations
network depends on the JFe @b
existence of a link inthe 107 E- D out E
citation network. ﬁN 102; :1:(,;:,':“ 3
E ok -
The dependence of the @ <
multistrenth vs. 10° E;*/" ;
| llllllll | Illlllll L L

multidegree remains
linear in both cases. k(ml,mz)

)



Multistrength vs multidegree
in the citation layer of the

citation/collaboration duplex

The way you cite your ~ PRE ~ PRE
. citations 1n citations out
collaborators is

different from the way - @b s 5 Sy
= = (0D <2 5 - (0.1 :

ol

you cite the other g i

scientists. g )
People tend to cite E
more the hubs with
whom they have | ) | )
collaborated.

G. Menichetti et. al. Plos One (2014 )



Clustering coefficient among
three layers

gl gle] gla] <> D
ij jm  mi @
C[a,a‘,a“] _ JEi,m=i

i B E [a] [a ]

J=i,m=1

Fraction of pair of friends that are 0‘
friend with each other across @
different layers

Keeps track of all the layers
Can become computationally demanding
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Clustering coefficient

The clustering coefficients of a multiplex networks
consider all the layers on the same footing

M ale [ ] [a]
220=1 Zulu;ﬁa Z] ki f
(M —1) M | klel(kled —1)/2°
Zi\f 1 ZAM;&Q Zp[p;ﬁa K Z] k a'[ | [#'] [ ]

C, 1 (C;,) evaluates the normalized number of
triangles of node i belonging to two (three) layers

il =

Cia =2

Battiston et al (2013).



Multilayer clustering
coefficient

By associating a “cost” t to changing layers,

it is possible to define a functional clustering coefficient
depending on t and encoding

different ways in which triadic closure is achieved

AAA AACAC

Cozzo et al. New Journal of Physics (2015)



Multilayer communities



Modularity of a single layer

The Modularity is a measure to evaluate
the significance of a certain
community structure

.
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It measure how dense is a community with
respect to the uncorrelated network
structure with the same degree sequence



Multilayer modularity

Communities can spam across
different layers,

they can be found by optimizing the multilayer
modularity Q

multislice

' o] o]
T la] _, la] ki k]
mulnslzce - aij Y < k ]> N
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P. J. Mucha, et al. Science (2010)



Temporal or
multi-slice networks
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t

Temporal networks can be seen as a multi-slice network where
each slice is a temporal shapshot




Flexibility
The flexibility f, of a node i

Is the number of times
the node changes community assignment

Correlation
between
flexibility and
learning in brain
functional
networks

Change in Flexibility 3>
|




Consensus clustering
for detects multilayer

communities
Original Graph Consensus Graph The consensus
0 i - 1 graph is constructed

ij =

M —— D;-3 by comparing the
KAl

E o communities in
different layers of a
multiplex network.

A ﬁ The consensus
M graph reveals the

multilayer
communities

(IT)

Lancichinetti Fortunato (2012)



Evolution of communities Iin
temporal networks

Granular Packing
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Enrichment in oncogenic
blologlcal components

Cantini et al. Scietific Reports 2015

Multiplex network of four layers:
co-expression network,

transcription factor (TF) co-
targeting network,

microRNA co-targeting network

protein-protein interaction
network (PPI)

The enrichment p-values for
(@) chromosomes, (b)
pathways, (c) TF/microRNAs
motifs and (d) GO. The four
tissues are indicated by
different colors: gastric (blue),
lung (red), pancreas (green)
and colon (violet).



representation

Multilayer

Community detection
using diffusion properties

e ® ot Diffusion along the
interlinks can be used
to characterize
communities as the
random walk tends to
Y~ be localized on
' communities for short-
meso timescales

De Domenico et al. PRX (2015)



Multilayer communities do
not reduce to single layer

(@ .

| g“-}.iz;ﬁ

%&@

@'%a.q

Aggregated

Auger collaboration network

communities

Each node might
belong to more

than one
community

De Domenico et al. PRX (2015)



Similarities between the
layers

o = The layer
g similarity can be
taken to be the
number of
replica nodes of
the two layers
belonging to the
same community

De Domenico et al. PRX (2015)



Correlated
mesoscale structure
of the multiplex layers



The community structure of

different layers is correlated
IMDb

APS 0.62

. 0.76
= 0.70
0.64

The Normalized Mutual Information

—ZEENmmlog(N N)
YN, log( )+EN log(]\]]\’)

Battiston et al. PlosOne 2016

NMI =

0.74

| APS | N (k) c |
Nuclear (N) 1238 475  0.27
Particle (P) 1238 4.66  0.30
Cond. Matt. I (CM) | 1238  10.29 0.24
Interdisciplinary (I) | 1238  7.37  0.26

| IMDb | N (k) c |
Action (A) 55797 83.56 0.61
Crime (C) 55797 82.30 0.58
Romance (R) 55797 86.00 0.59
Thriller (T) 55797 77.75 0.56




Network entropy
reveals the network between
the layers of multiplex

datasets

The community
structure

of the layers of a
multiplex network
reveals the
“networks of
layers”.

Case of collaboration
networks revealing
the network between
the PACS.

J. lacovacci, et al. PRE (2015)



To aggregate
or
to disaggregate?



Reducibility of networks

Original multilayer
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Pairwise quantum
Jensen-Shannon distance
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Cc

Layer 5 (%7: 1

Layer 7
Layer 3 ,L—: |
Layer 6 g\f

Layer 8

Layer 4 { Vo
—
Layer 2 qd —

De Domenico et al Nature Com. 2015



Reducibility of different datasets

Table 1 | Reducibility of empirical multilayer networks.
Network N M M, maxig(e)] 1
Arabidopsis 6981 7 5 0.436 033
Bos 326 4 3 0.494 033
Candida 368 7 4 0.527 0.50
C. elegans 3880 6 4 0.390 0.40
Drosophila 8216 7 5 0.426 033
Gallus 314 6 4 0.505 0.40
Human HIV-1 1006 5 2 0.499 0.75
Mus 7748 7 6 0.376 017
Plasmodium 1204 3 2 0.500 0.50
Rattus 2641 6 4 0.504 0.40
S. cerevisiae 6571 7 4 0.115 0.50
S. pombe 4093 7 4 0.197 0.50
Xenopus 462 5 3 0.424 0.50
Arxiv coauthorship 14065 13 n 0.231 017
Terrorist network 78 4 2 0.239 0.67
FAO Trade network 184 340 182 0.354 0.47
London Tube 369 13 12 0.441 0.08
Airports Europe 1064 175 165 0.667 0.06
Airports Asia 130 213 202 0.653 0.05
Airports North America 2040 143 136 0.686 0.05

De Domenico et al Nature communication 2015



Inference models

/

Independent layers

Edge covariates

Peixoto PRE (2015)



To aggregate or to disaggreate:
the answer might depend on the dataset!

(a) logyp A =~ —111 b)A=1

Peixoto PRE (2015)



Conclusions

Extracting information from multilayer networks is essential to
make progress in our understanding of
multilayer networks

Network theory is providing new tools to meet the challenge

* Multiplex networks can have a highly correlated structure that
encodes relevant information.

« Degree correlations and the overlap are fundamental to
investigate multiplex networks

« Weights in multiplex networks can be correlated with the
overlap of the links providing a straightforward way to extract
information not present in their single layers

* The community structure of multilayer network can include
communities spanning and overlapping across multiple layers
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