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Ensembles
of
single networks
(null models)



Chance: Random graphs

G(N.L) ensemble G(N,p) ensemble
_ Graphs with N nodes
Graphs with exactly Egach pair of nodes linked

N nodes and with probability p
L links

Poisson
distribution

L/N=c
p=c/N-1) =

P(k)




Statistical mechanics
and
random graphs

Statistical mechanics Random graphs

Microcanonical Configurations G(N,L) Graphs

Ensemble with fixed energy E | Ensemble with fixed # of links L
Canonical Configurations G(N,p) Graphs

Ensemble with fixed average | Ensemble with fixed average

energy <E> # of links <L>



Networks with given degree
seguence

Microcanonical ensemble Canonical ensemble
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Ensemble of network with exact Ensemble of networks given expected
degree sequence degree sequence

Configuration model Hidden variables model



Link probability In
uncorrelated networks

In uncorrelated networks the probability
that a node i is linked to a node j is given by

kikj
<k>N

pij
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Network model with given

degree sequence are only

uncorrelated if they have a
structural cutoff

k, <K =/(k)N
for

(=12...,N



Entropy of network ensembles

Entropy of a canonical network ensemble with expected
degree sequence

S =- Ep,-,-lnpg +(1-p;)n(1-p;)
ij |

Entropy of a microcanonical network ensemble with
given degree sequence is given by

T
>=logR]=5-Q Q- —Elnakik’e .
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Wherex IS the total number of networks in the ensemble

Bianconi et al. PRE 2008



There is no equivalence of
the ensembles as long as the
number of constraints are
extensive

-Example
Microcanonical esemble Canonical ensemble
Regular networks Poisson networks
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N but N
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K. Anand, G. Bianconi PRE 2009



Two examples of given
degree sequence

Zero entropy Non-zero entropy
O =2
k=20/.\
® ®
kzlﬂl ? ; ; k=3
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The entropy
of random scale-free networks

Prk ) k™

The entropy decreases as) decrease toward 2
quantifying a higher order in networks with fatter tails



Generative models of
multiplex networks
with multilinks



If we generate

in each layer independently

with the configuration model
we will get

a negligible total and local overlap
For a null model that preserves
the overlap we need

multilinks.

G. Bianconi PRE (2013)
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Multilinks PRE (2013)

Nodes 1 2 2 3 4 3 1 4

Layer 1

Layer 2 b - - | . .
Multilink  Multilink Multilink Multilink
(1,1) (1,0) (0,1) (0,0)



Configuration model with
multilinks
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Configuration model with
multilinks
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Exponential random multiplex
model with multilinks

P(G) H(plOAIO + leIAOI + pl]lAll + leOAOO)

i<j

Constructive algorithm

For every pair of nodes (i,j)

Draw a multilink

—_

‘ ‘ . agn m
with probability pij ,
® I.e. put a link in every layer

where m_=1.

G. Bianconi PRE (2013)



Multilinks probabilities Iin a
duplex with structural
multidegree cutoffs

Probabilities of the multilinks

10
pij -

01
pij -

11
pij -

KK
<k10>N
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<k01>N
K
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Structural cutoff

k" < \/<k10>N
k' < \/<k01>N
k' < \/<k”>N

G. Bianconi PRE 2013




Entropy of correlated multiplex
ensembles

Entropy of a canonical multiplex ensemble with linear constraints

$=-|2 2w

—_—
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Entropy of a microcanonical mutliplex ensemble with linear constraints
con be found by the cavity method, if we fix only the multi degree
sequence in the sparse network limit, we get

2 =5-NQ Qbﬁgz lOg_ K

G. Bianconi PRE 2013




Randomization algorithms
Swap randomization
for single networks



If we randomize the networks
in each layer independently
we will get
a negligible total and local overlap
For a null model that preserves
the overlap we need
multilinks.

G. Bianconi PRE (2013)



How to build a null model
from a given network:
swap of connections

» Choose two
rahdom links
linking four distinct
nodes

Maslov & Sneppen 2002
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How to build a null model
from a given network:
swap of connections

» Choose two
rahdom links
linking four distinct
nodes

» If possible (not
already existing
links) swap the
ends of the links

Maslov & Sneppen 2002



If we randomize the networks
in each layer independently
we will get
a negligible total and local overlap
For a null model that preserves
the overlap we need
multilinks.

G. Bianconi PRE (2013)



Swap algorithm

o e 1LY/

of the

same type ¢ oo
can swap! f




Swap algorithm

of the

same type / . '—.'{' /

can swap!




Swap algorithm

o
multilinks

of the

same type / - '—"{0 /

can swap!




Swap algorithm

o
multilinks

of the

same type ¢
can swap!
o —o-




Correlated degree across two

layers
W
:’:’O b
O< o, ~~C)
O O Q O MP Q b
@ O O O
--O
e O @ Q___.Q—’
+ uc Q"IQ\N“O
o o © NSOk
2%--0 o N ©
@ o o w‘go 0]
\ Y] O
Q:’:'--O :O
&% 7 ©

B. Min et al. PRE (2014)

By relabelling the nodes
of two layers it is possible
to build

Maximum positive (MP)
Maximum negative (MN)
and Uncorrelated (UC)
Multiplex Networks.



Multiplex networks with
heterogeneous activity of the

n Od eS Multiplex network
Bipartite network:

Nodes and Layers r

nodes layers i.\ m

D. Cellai and G. Bianconi, PRE 93, 032302 (2016)



Spatial Multiplexes

The nodes in a spatial multiplex have a position 7
In their real or hidden embedding space

P(@ | {?}) - Ol:LPa(Ga | {?})

In these ensembles we can observe a significant
overlap of the links because nodes that are
“close in space” are more likely to be linked in
every network

(A. Halu, S. Mukherjee and G. Bianconi PRE 2014)



Class of network models

e Static networks:

— Hidden variables mechanism
Bollobas 1979, Chung & Lu 2002,
Caldarelli et al. 2002, Park & Newman 2003

 Growing networks:

— Preferential attachment

Barabasi & Albert 1999,
Dorogovtsev & Mendes 2000,
Bianconi & Barabasi 2001



BA model

(1)GROWTH : Atevery timestep we add a new
node with m edges (connected to the nodes already

present in the system).

(2) PREFERENTIAL ATTACHMENT : k.
The probability IT that a new node will be connected H(ki) =
to node i depends on the connectivity k; of that node jV
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Barabasi et al. Science (1999)



Growing multiplex (duplex)

GROWTH

At each time a new node is added to the multiplex.
Every new node has a copy in each layer and has m links in each layer.

LINEAR PREFERENTIAL ATTACHMENT
The probability I1% that the new link

is added to node i in layer o,
IS given by

I « gk + (I - a)k!?

" o bk + (1- D)k}

with
ab = 1. Nicosia et al PRL 2013
Kim et al. PRL 2013



Degree correlations

Spontaneous emergence of positive
degree correlations <k1 | k2>

<k1 / k2> e <>

Old nodes are more connected
in both layers yielding positive
degree correlations

Nicosia et al PRL 2013



Growing multiplexes with
non-linear preferential

attachment
- GROWTH

At each time a new node is added to the multiplex.
Every new node has a copy in each layer and has m links in each layer.

+ NON-LINEAR PREFERENTIAL ATTACHMENT
The probability that the new link is added to node i in layer a.
is given by I1* with a non-linear preferential attachment

I oc (k) (k)"
I oc (k) (k;)"



Nonlinear preferential
attachment

Including the nonlinear
preferential attachment
we can get either
positive or negative
degree correlations as P
measured by the
Kendall's correlation

< &8 2 <1 0 1 2 3 4

coefficient of the Qa
degrees

Nicosia et al. (2014)



Model enforcing triadic
closure in multiplex networks

The models includes
GROWTH
and

TRIADIC CLOSURE

p probability of triadic closure within a layer
p* probability of linking to the same node in different layers

[a]

1-p

WW




Emergence of multiplex
communities

Battiston et al. Plos One (2016)



Conclusions

Modeling multilayer networks is essential to
generate null models
to test significance of multiplex network properties
and investigate the interlay between structure and dynamical processes

Network theory is providing new tools
to model multiplex networks

* Null models of multiplex networks preserving the overlap of
the links can be used to generate an artificial multiplex with
the given multidegree

* Null models can be used to randomize a given multiplex
network dataset

« Non-equilibrium growing multiplex networks can explain the
basic mechanisms responsible for generating correlated
multiplex networks
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Mesoscopic Structures
Reveal the Network

Between the Layers of a
Multiplex Network



Mesoscopic structures

The feature of the nodes

(04
q,
induce a mesoscopic
structure (communities) in
the layer a.

Our aim is to characterize

the similarity between
the mesoscopic structure
of any two layers.




Entropy

kiql qg od ki.?, ‘]ired o o
layer 04 A A rY k=1, G=blue
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defines a block structure P
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The entropy
(04 (04
2(k".q")

counts all the possible
network configurations
compatible with the block structure



Significance of the features with respect
to the network structure

Random permutation of the features n(q)

Entropy distribution of the block structure
induced by random permutation

The significance of the feature:

Ex[Zincq) |
7l 2K m(q” I
i ) i with respect to the network i
onlZinal || i structure is E
T | |
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Quantify mesoscopic
structural similarities

The indicator

6

measures the
similarity between
the mesoscopic
structure of two
layers o and f3




Multiplex community structure of the
APS collaboration network

APS collaboration network » 180,538 authors of the American
Physical Society papers till 2014 with

less than 10 authors

First layer PACS hierarchy » each layer describes the
(10 layers) coIIabo_ratlon network in a general field
of physics

qf‘ — Community label of node i in layer a

Geo&Astro-9
Nuclear-2

Particles—1

GasaPla-5

Ato&Mol-3

Classical-4

General-0

Interd-8

Cond Mat -7

Cond Mat -6



Communities in the network
between layers

d=1-]®"

Geo&Astro-9

Nuclear-2

Particles-1

Gas&Pla-5

Ato&Mol-3

Classical-4

General-0

Interd-8

Cond Mat II-7

Cond Mat 1-6

I I
01 02 03 04 05 06 07 08 09 1

@s‘




Second PACS hierarchy (66 layers)
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Gas&Pla-5 - =~
=~ 52-Physics of plasmas™~
& eléctric di A
N\,
/’ . 84-Electronics; \\ 67-Quantum fluids
;. radiowave and microwaves N and solids
Il technology \
/ - \,
I 1 . 34-Atomic and molecular
] \ 42-Optics collision processes
'l Alll-];:lectrolél@gnetistm; || 03-Quant hani & interactions
-Quantum mechanics; .
1 clectron and fon optics 1 field theories; 36-Exotic atoms
" 'l special relativity & molecules
< / 32-13:«;:35 ;rcrgglelgties 37—P4echanica} coritrol
o \ 29-Experimental methods / § of atoms molecules
P artlcles-l \(elem.ppart. & nucl. phys.) ’ with photons ions
N l 2 \ J 07-Instrduments apptaratus 33-Molecul "
- % and components -Molecular properties
uciear Re P & interavgiogs
R with photons
-
. 31-Electronic structure of

-
atoms and molecules

Geo&Astro-9

-
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06-Metrology measurements
and laboratory procedures

’
21-Nuclear-structure ~ ,~ N
94-Physics of ionosphere\

am¥ magnetosphere

~

1

23-Radioactive decay 1
11-General theory & in-beam spectrosc%py!
\ 96-Solar system;

12-Specific theories . \
4 Nu(cgls:llle'éﬁ:;ctlons NP lanetology ~ ¢ 04-General relativity

General-0
Ato&Mol-3

& interaction models
~ 4 . )
: : & tat]
13-Specific reactions 25-Nuclear reactions 9571;035(1;1;&;1;1 gravitation
14-Properties of (specific) astronomy Classic al_4
specific particles 26-Nuclear astrophysics & astrophysics

97-Stars

27-Properties of specific
nuclei
98-Stellar systems

43-Acoustics

-Soli i 45-Classical mechanics
91-Solid Earth physics of discrete systems
02-Mathematical methods

91-Hydrospheric and 46-Continuum mechanics
Atmospheric geophysics of solids 05-Statistical physics;
| . . thermodynamics;
47-Fluid dynamics nonlinear ﬁynamical
systems

83-Rheology 89-Other areas
L (applied & interdisciplinary physics)

87-Biological &

medical physics

Cond Matt I-6
Cond Matt I1-7
Interd-8

68-Structure of surfaces 74-Superconductivity

64-Equations of state; intel&faces thil} films i i
phase equilibria; and nanosystems 78-Optical properties;
soélild-ssgr;ldctl}lrﬁig{is phase transitions 75-Mr§netic properties spectroscopy
q . materials "

7 l-Eilele)ctﬁ((mlc gtrglclture 85-Electtir0‘ljnc and

62-Mechanical and acoustical Ot bulk materfals . 81-Materials science magnetic devices
properties of cond. matt. 65-Thermal 76-Magnetic resonances 79-Electron and

roperties 72-Electronic transport ﬁ zgg‘(’lm;‘lg't‘ts fom e
of cond. matt. in cond. matt. . . . . liquids and soliﬁs

82-Physical chemistry

63-Lattice dynamics
66-Nonelectronic 73-Electronic structure  77-Dielectrics piezoelectrics
tranipol‘t roperties & electrical properties and ferroelectrics
of cond. matt. of snr{ﬁgesf;lntertaces & their properties
in films




Network between the layers




