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Statistical mechanics  
and  

random graphs 

Microcanonical  Configurations            G(N,L)        Graphs 
Ensemble           with fixed energy E     Ensemble  with fixed # of links L 

Canonical            Configurations           G(N,p)       Graphs 
Ensemble            with fixed average      Ensemble with fixed average    
                              energy <E>                                   # of links <L> 

Statistical mechanics Random graphs 
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 In uncorrelated networks the probability 
that  a node i is linked to a node j is given by 
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Network model with given 
degree sequence are only 
uncorrelated if they have a  

structural cutoff 
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Entropy of a canonical network ensemble with expected 
degree sequence 

Entropy of a microcanonical network ensemble with 
given degree sequence is given by 

Where      is the total number of networks in the ensemble  
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Bianconi et al. PRE 2008 



There is no equivalence of 
the ensembles as long as the 

number of constraints are 
extensive 

-Example  
Microcanonical esemble  Canonical ensemble 
Regular networks   Poisson networks 
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Σ < S
K. Anand, G. Bianconi PRE 2009 
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Zero entropy Non-zero entropy  

k=3 



γ−∝ kkP )(

The entropy  decreases as     decrease toward 2  
quantifying a higher order in networks with fatter tails 
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Generative models of 
multiplex networks   

with multilinks 



If we generate  
 in each layer independently 
with the configuration model  

we will get  
a negligible total and local overlap 

For a null model that preserves 
the overlap we need 

 multilinks. 

G. Bianconi PRE (2013) 
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        Multilinks G. Bianconi 
PRE (2013) 
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Exponential random multiplex 
model with multilinks 
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Constructive algorithm 

For every pair of nodes (i,j) 

Draw a multilink 

with probability           , 

i.e. put a link in every layer 

where mα=1. 
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G. Bianconi PRE (2013) 



Multilinks probabilities in a 
duplex with structural 

multidegree cutoffs 
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Probabilities of the multilinks  Structural cutoff 

G. Bianconi PRE 2013 
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  Entropy of a canonical multiplex ensemble with linear constraints 

Entropy of a microcanonical mutliplex ensemble with linear constraints 
con be found by the cavity method, if we fix only the multi degree 
sequence in the sparse network limit,  we get 
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Randomization algorithms 
Swap randomization 
for single networks  



If we randomize the networks 
 in each layer independently  

we will get  
a negligible total and local overlap 

For a null model that preserves 
the overlap we need 

 multilinks. 

G. Bianconi PRE (2013) 



Maslov & Sneppen 2002 
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Maslov & Sneppen 2002 



If we randomize the networks 
 in each layer independently  

we will get  
a negligible total and local overlap 

For a null model that preserves 
the overlap we need 

 multilinks. 

G. Bianconi PRE (2013) 



Swap algorithm 

Only 
multilinks 
of the 
same type 
can swap! 



Swap algorithm 

Only 
multilinks 
of the 
same type 
can swap! 



Swap algorithm 

Only 
multilinks 
of the 
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can swap! 



Swap algorithm 

Only 
multilinks 
of the 
same type 
can swap! 



Correlated degree across two 
layers 

By relabelling the nodes 
of two layers it is possible 
to build  
Maximum positive (MP)  
Maximum negative (MN) 
and Uncorrelated (UC) 
Multiplex Networks. 

B. Min et al. PRE (2014) 



Multiplex networks with 
heterogeneous activity of the 

nodes 
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Bipartite network:  
Nodes and Layers 

Multiplex network 

D. Cellai and G. Bianconi, PRE 93, 032302 (2016)  



Spatial Multiplexes 
The nodes in a spatial multiplex have a position           

in their real or hidden embedding space 

In these ensembles we can observe a significant 
overlap of the links because  nodes that are 

“close in space” are more likely to be linked in 
every network 

  (A. Halu, S. Mukherjee and G. Bianconi PRE 2014)   
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Class of network models 



(1) GROWTH :   At every timestep we add a new 
node with m edges (connected to the nodes already 
present in the system). 

(2) PREFERENTIAL ATTACHMENT :                              
The probability Π that a new node will be connected 
to node i depends on the connectivity ki of that node 

Barabási et al. Science (1999) 

jj

i
i k

kk
Σ

=Π )(

P(k) ~k-3 



Growing multiplex (duplex)  
    GROWTH  

At each time a new node is added to the multiplex.  
Every new node has a copy in each layer and has m links in each layer. 

 LINEAR PREFERENTIAL ATTACHMENT  
The probability Πα

i that the new link  
is added to node i in layer α  

is given by  

with  
a,b       1. 
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Degree correlations 
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k1 | k2 ∝ k2

Nicosia et al PRL 2013 
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k1 | k 2
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k1 | k 2 (a=b=0) 

Spontaneous emergence of positive  
degree correlations 

Old nodes are more connected  
in both layers yielding positive  
degree correlations  

(a=b=1) 



Growing multiplexes with 
non-linear preferential 

attachment   
•  GROWTH  
At each time a new node is added to the multiplex.  
Every new node has a copy in each layer and has m links in each layer. 

•  NON-LINEAR PREFERENTIAL ATTACHMENT  
The probability that the new link is added to node i in layer α  
is given by Πα with a non-linear preferential attachment 
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Nonlinear preferential 
attachment 

 Including the nonlinear 
preferential attachment 
we can get either  
positive or negative 
degree correlations as 
measured by the 
Kendall’s correlation 
coefficient of the 
degrees 

Nicosia et al. (2014) 



Model enforcing triadic 
closure in multiplex networks 

The models includes  
GROWTH  

and  
TRIADIC CLOSURE 

p probability of triadic closure within a layer 
p* probability of linking to the same node in different layers 



Emergence of multiplex 
communities 

Battiston et al.  Plos One (2016) 



Conclusions 

  

Network theory is providing new tools  
to model multiplex networks 

•  Null models of multiplex networks preserving the overlap of 
the links can be used to generate an artificial multiplex with 
the given multidegree 

•  Null models can be used to  randomize a given multiplex 
network dataset 

•  Non-equilibrium growing multiplex networks can explain the 
basic mechanisms responsible for generating correlated  
multiplex networks 

Modeling multilayer networks is essential  to  
generate null models 

to test significance of multiplex network properties  
and investigate the interlay between structure and dynamical processes 
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 Mesoscopic Structures 
Reveal the Network  

Between the Layers of a 
Multiplex Network 



Mesoscopic structures 

 The feature of the nodes 

 induce a mesoscopic 
structure (communities) in 
the layer α. 

 Our aim is to characterize 
 the similarity between 

the mesoscopic structure 
of any two layers. 
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Entropy  

€ 

(kα ,qα )
defines a block structure 

The entropy 

counts all the possible  
network configurations  

compatible with the block structure 

€ 

Σ (kα ,qα )



Significance of the features with respect 
to the network structure 

  Random permutation of the features π(q) 

Entropy distribution of the block structure 
induced by random permutation 

The significance of the feature 
with respect to the network  

structure is  
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Θk,q =
Σ (k,π (q)) −Σ (k,q)
σπ (Σ (k,π (q)))



Quantify mesoscopic 
structural similarities 

 The indicator 

 measures the 
similarity between 
the mesoscopic 
structure of two 
layers α and β	
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Multiplex community structure of the 
APS collaboration network 

APS collaboration network 

First layer PACS hierarchy 
         (10 layers) 

 180,538 authors of the American 
Physical Society papers till 2014 with 
less than 10 authors 

 each layer describes the 
collaboration network in a general field 
of physics 

Community label of node i in layer α	
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Communities in the network 
between layers 



Second PACS hierarchy (66 layers) 



Network between the layers 


