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Interacting infrastructure networks

Complex infrastructures are interdependent
and a failure in one network can generate
a cascade of failures in the Interdependent
networks
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Buldyrev et al. Nature 2010



Interacting Transportation networks

Transportation networks
are another major
example of interacting
networks.

Here

blue lines represent
short-range commuting
flow by car or train

the red lines indicate
airline flow for few
selected cities

Vespignani Nature 2010
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Multiplex Networks

« A multiplex is formed by a set of
nodes that are connected in
different layers (M layers).

 Each node can be represented by

a set of replica nodes present on
each layer.

* Replica nodes are connected by
interlinks (dashed lines).




Networks of Networks

Network of networks are
formed by different sets of
nodes.

The nodes are connect
within each layer and across
different layers (interlinks)




Percolation In
single networks



Giant component

» A connected component of a network is a subgraph
induced by any set of nodes such that for each pair of nodes
In the subgraph there is at least one path connecting them
and such that no other node is connected to them by any path.
» The giant component is the connected component of the
network which contains a number of nodes of the same order
of magnitude of the total number of nodes in the network.




Robustness of

complex networks
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Node failure: \ w
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We assume that a fraction 1-p of nodes is damaged.
We evaluate the robustness of the network by calculating the fraction S
of nodes in the giant component after this inflicted damage.




Percolation transition in
Poisson networks
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fraction of
S nodes in
05 - the giant
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Generalized percolation in
multiplex networks



Interdependent multiplex

networks

A multiplex network is interdependent

if all the interlinks imply the
interdependence of the connected
replica nodes.

Two nodes are interdependent if the
damage of one node implies the
damage of the other interdependent
node, independently on the rest of the
network.



Mutually connected giant
component

Any two nodes of the mutually connected
giant component are connected by at least
one path in each layer of the multiplex network

a b C d
aE aE )b24 a34C: >b24
) ) b3 a3 @0 by3
) a, @&—— 3, @&—0 by, a3, @—0 by,
Attack—>
A @— 3 @—0 by, a3 @—0 by,

A B Stage 1 Stage 2 Stage 3

Buldyrev et al. 2010



Case of a Poisson multiplex

network with M Layers
Nodes are damaged with probability 1-p

Fraction of nodes in the GC of single Poisson layer
with average degree c:

S=p(I1-e)

Fraction of nodes in the MCGC of multiplex
network with M Poisson layers of average
degree c:

S=p(l-e)"



Percolation on two interdependent
Poisson networks with average degree c
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The percolation transition at cp=2.455...
is discontinuous!



Discontinuous hybrid
transition

Mutually connected giant component
in a muplex network with M=2 Poisson layers
of average degree ¢

Square-root
singularity
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cp Buldyrev et al. Nature



Phase diagram of ER-ER interdepedent networks
With average degree z, and zg

Region Il:
percolating

Son S.-W., et al. EPL(2012) Region I: non percolating




Effects of degree correlations

Positive degree
correlations improve
the robustness of a
multiplex network.

MP maximally positive
Degree correlations

Negative degree
correlations reduce the
robustness of a multiplex
network.

MN maximally negative
degree correlations
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Mutually connected component
in scale free multiplex network

Fixed minimal degree (Baxter et al.) Fixed average degree (Parshani et al.)
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The discontinuity decreases, p. increases
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Cascade of failure events at

1

the percolation transition
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Partial interdependence
changes the nature of the
percolation transition

@@ ER strong coupling L Allowmg for pan‘lal

m-m ER weak coupling

A—A SF strong coupling Y o Interdependence

»—» SF weak coupling

can change the
nature of the
transition from
discontinuous to
continuous.




Duplex network with Poisson
Layers and Link Overlap

Duplex networks with Poisson multidegree distribution with
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Phase diagram for
the MCGC in a duplex
network

Duplex networks with Poisson multidegree distribution with
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Multiplex network with three
Poisson layers and link overlap

Multiplex networks with three layers with Poisson multidegree
distribution

() = (1) < (k) =,
(k) < ) (1) =,

<k111> .

0 0.5 ‘ 1 1.5

The determination of the MCGC involve solving a non-linear
system of three variables

The network has a continuous phase transition only for
complete overlap of the links



Multiplex networks with
correlated multidegrees

This theory can be extended to multiplex networks with

Dissasortative correlations
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Competing networks

The function of a node in a network
is incompatible with the function
of the same node in the other network network
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Percolation In
hetwork of networks



Network of Networks Case |
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If a network is
interacting with
another
network all the
nodes of the
network are
interdependent
with their
“replica nodes”
on the other
network and
vice versa.



The network of networks

Interacting networks Supernetwork




Network of Networks Case |

A node is in the
mutually connected
giant component if all
the nodes that can be
reached by interlinks
have at least one
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neighbor in their layer
that is in the
percolation cluster.




Robustnhess of the network of
networks

* The robustness of a network of
networks belonging to the case |l is

independent on the structure of the
network of networks as long as the
network of networks is connected.

* All the layers start to percolate when the
fraction of non-damaged nodes p>p,

* The transition is discontinuous as long as
M>1 if the layers are not correlated.

G. Bianconi, S.N. Dorogovtsev and J. F. F. Mendes 2014



Network of networks Case |l

Every layer a has a
supradegree q

+ Therefore every
node of layer o has
q, links to q,,
replica nodes in
some other layer

chosen randomly




Main results for case Il

The layers with higher superdegree are more
fragile than layers with low superdegree.

In the networks there are multiple percolation

transitions corresponding to the activation of
layers with increasing value of the
superdegree.

Each of these transitions is discontinuous is the
networks in the different layers are not correlated
for r=1

If r<1 some of these transitions can become
continuous



Percolation in layers with
superdegree q
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Multiple phase transitions!
Layers with larger superdegree are more

vulnerable!
G. Bianconi and S.N Dorogovstev (2014)



Nature Physics News & Views

news & views

MULTILAYER NETWORKS

Dangerous liaisons?

Many networks interact with one another by forming multilayer networks, but these structures can lead to large
cascading failures. The secret that guarantees the robustness of multilayer networks seems to be in their correlations.

Ginestra Bianconi

atural complex systems evolve
N according to chance and necessity — a
trial and error — because they
are driven by biological evolution. The
expectation is that networks describing
natural complex systems, such as the
brain and biological networks within the
cell, should be robust to random failure.
Otherwise, they would have not survived
under evolutionary pressure. But many
natural networks do not live in isolation;
instead they interact with one another to b
form multilayer networks — and evidence
is mounting that random networks of
networks are acutely susceptible to failure.
‘Writing in Nature Physics, Saulo Reis and
colleagues' have now identified the key
correlations responsible for maintaining
robustness within these multilayer networks.
In the past fifteen years, network theory?>?
has granted solid ground to the expectation
that natural networks resist failure. It has
also extended the realm of robust systems

to man-made self-organized networks that Figure 1| Reis etal.’ have shown that correlations between intra- (red) and interlayer (blue dotted)

do not obey a centralized design, such as the interactions influence the robustness of multilayer networks. a, In the brain, each network layer has
Internet or the World Wide Web. In fact, it multilayer assortativity and the hubs in each layer are also the nodes with more interlinks, so liaisons
has been shown that many isolated complex between layers are trustworthy. b, In complex infrastructures (such as power grids and the Internet), if

biological, teChnOIOSical and S‘).Cial networks  the interlinks are random, the resulting multilayer network is affected by large cascades of failuress, and
are scale free,_ meaning that their nodes liaisons can be considered dangerous.



Redundant interdependencies

If a node is interdependent on each one of
its replica nodes, the more layers we add
the more fragile is a network.

If, instead interdependencies are redundant

and a node is the Redundant MCGC if at
least one replica node is active,

then more layers we add to the network
the more robust it becomes



Redundant interdependencies
boost the robustness of
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Conclusions

Percolation on interdependent networks
captures the possible mechanisms
yielding fragile multilayer networks

Percolation in multilayer interdependent networks
display surprising novel phenomena

In presence of interdependencies, the percolation transition
becomes discontinuous and hybrid and is characterized by
large avalanches of failure events.

In presence of partial interdependencies it can become
continuous.

In network of networks it is possible to observe multiple
phase transition.

Redundant interdependencies might explain why many
natural made networks have many layers as in this
framework the robustness increases with the number of
layers.
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Message passing algorithm
for percolation



Message passing algorithms
are widely used for
characterizing critical
phenomena and dynamical
systems in complex networks

* Percolation on single networks

(Karrer, Newman, Zdeborova PRL 2014)

* Network control

(Liu, Slotine & Barabasi Nature 2011)
 Epidemic spreading in multi-slice networks
(Valdano et al. PRX 2015)



Message passage algorithm
for the Giant Component of a single
network

The initial node damage is indicated by the variables s;
associated to the nodes of the network:
s=0 if node i is damaged and s=1 otherwise.
The message going from node i to not j follows

o_,=s|1- [|(1-0_)

IEN(i)\ j

The node i is in the giant component if ;=1 otherwise 0;=0 where

o=s|1- ||1-0._,)

IEN (i)




Message passage algorithm
for the
Mutually Connected Giant Component
in absence of link overlap

The initial node damage is indicated by putting
s=0 if node i is damaged and s;=1 otherwise.
The generic message going from node i to node j is updated
according to

O,; =5, H (1_ H(l_glei))

a=1.M IEN,, (i)\

A node i is in the MCGC if ;=1 where

o=s|] (1— H(l—alei))

a=1.M IEN,, (i)




Case of a Poisson multiplex

network with M Layers
Nodes are damaged with probability 1-p

Fraction of nodes in the GC of single Poisson layer
with average degree c:

S=p(I1-e)

Fraction of nodes in the MCGC of multiplex
network with M Poisson layers of average
degree c:

S=p(l-e)"



Percolation on two interdependent
Poisson networks with average degree c
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The percolation transition at cp=2.455...
is discontinuous!



Discontinuous Emergence of the
mutually connected giant component in a
duplex of Poisson network
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Buldyrev et al Nature 2010, Baxter et al. PRL 2012



Percolation in
multiplex networks
with overlap of the links:

the message passing
approach



Directed percolation problem

Nodes in the directed mutually connected giant
component (DMCGC) can be found by using the
same algorithm used in absence of overlap of the
links

In absence of overlap of the links

DMCGC=MCGC
Specifically we will have




Difference between the
DMCGC and the MCGC

Not in the DMCGC (a)
7
In the MCGC (b)

Min et al. (2015) Cellai et al. (2016)



Why in presence of overlap
the DMCGC is not equal to
the MCGC

Network

Not in the DMCGC

< Not in the DMCGC
According to the
Message Passing

Cavity network removing algorithm

one node




Required properties of the
message passing algorithm
for the MCGC

 The MCGC must be of maximum size:
— the messages are polarized

— the sender node must assume that the target
node is in the MCGC.

 The messages must indicate the set of
layers i =(n,n,...,n,) that connect the
sender node to the MCGC.



The algorithm

The message
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indicates that
assuming that j belongs to the MCGC
- node i must be in the MCGC o
‘b=

- node i connects node j to the MCGC "~
exclusively through the layers o with
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Non-trivial cases for M=2

i, = (1,0)
; ) OO 7 J
S o N —
i, =(0,]) i, = (0.1




How this algorithm can
predict
that node j and h
are in the MCGC

Cellai et al. (2016)



Duplex network with Poisson
Layers and Link Overlap

Duplex networks with Poisson multidegree distribution with
(1) = (k") =c,
<k”> =,
MCGC

(] B 26—c15—62(5+52,1) + e—2C15—02(5+52,I))

S5 =p
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(1,1),(1,0) 2,1
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q =p(]_26—(c1+02)5 +e—(201+02)5)




PC,

Phase diagram for
DMCGC and MCGC

Duplex networks with Poisson multidegree distribution with
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Conclusions

We have formulated a message passing theory for percolation and directed
percolation in multiplex network with link overlap.

* Both algorithms reduce to percolation in multiplex network in absence of
overlap and to percolation on single network in presence of complete
overlap.

« The algorithm for directed percolation has an epidemic spreading
interpretation. The algorithm for percolation does not have a feed-
forward character.

» The two critical phenomena have different phase diagrams.

The algorithm for the MCGC can be used to study
1. the robustness of real multiplex networks and

2. to study the percolation phase diagram of multiplex networks with link
overlap and arbitrary number of layers.



References

D. Cellai, S.N. Dorogovstev and G.Bianconi PRE
PRE 94, 032301 (2016).

G. Baxter, et al. PRE 94, 012303 (2016).
F. Radicchi and G. Bianconi, arXiv:1610.05378 (2016).
G. Bianconi and F. Radicchi arXiv:1610.08708 (2016).

D. Cellai, E. Lopez, J. Zhou, J.P. Gleeson and G
Bianconi PRE 88, 052811 (2013).



