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Interacting infrastructure networks 

Complex infrastructures are interdependent 
and a failure in one network can generate 
a cascade of failures in the Interdependent 
networks 

Buldyrev et al. Nature 2010 



Interacting Transportation networks 

  Transportation networks 
are another major 
example of interacting 
networks.  

Here  
blue lines represent 
short-range commuting 
flow by car or train  
the red lines indicate 
airline flow for few 
selected cities 

Vespignani Nature 2010 



Multiplex Networks 
•  A multiplex is formed by a set of 

nodes that are connected in 
different layers (M layers). 

•  Each node can be represented by 
a set of replica nodes present on 
each layer. 

•  Replica nodes are connected by 
interlinks (dashed lines). 
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Networks of Networks 
Network of networks are 
formed by different sets of 
nodes. 

The nodes are connect 
within each layer and across 
different layers (interlinks) 
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Percolation in  
single networks 



! A connected component of a network is a subgraph  
induced by any set of nodes such that for each pair of nodes 
 in the subgraph there is at least one path connecting them  
and such that no other node is connected to them by any path. 
! The giant component is the connected component of the  
network which contains a number of nodes of the same order  
of magnitude of the total number of nodes in the network.  



Node failure 

! !               !
We assume that a fraction 1-p of nodes is damaged. 

We evaluate the robustness of the network by calculating the fraction S  
of nodes in the giant component after this inflicted damage. 



Percolation transition in 
Poisson networks 

S is the 
fraction of 
nodes in 
the giant 

component 

€ 

S =
(p − pc )

β for p ≥ pc
0 for p < pc

⎧ 
⎨ 
⎩ 

€ 

pc =1/ k
β =1



Generalized percolation in 
multiplex networks 



Interdependent multiplex 
networks 

   A multiplex network is interdependent  
 if all the interlinks imply the 

interdependence of the connected 
replica nodes. 

   Two nodes are interdependent if the 
damage of one  node implies the 

damage of the other interdependent 
node, independently on the rest of the 

network. 



Mutually connected giant 
component 

Any two nodes of the mutually connected 
giant component are connected by at least 

one path in each layer of the multiplex network 

Buldyrev et al. 2010 



Case of a Poisson multiplex 
network with M Layers 

Nodes are damaged with probability 1-p  
Fraction of nodes in the GC of single Poisson layer 

with average degree c:  

  Fraction of nodes in the MCGC of  multiplex 
network with M Poisson layers of  average 

degree c: € 

S = p 1− e−cS( )

€ 

S = p 1− e−cS( )M



Percolation on two interdependent 
Poisson networks with average degree c  

€ 

g(x = S / p) = x − 1− e−cpx( )2 = 0

The percolation transition at cp=2.455…  
is discontinuous! 



Discontinuous hybrid 
transition  

Mutually connected giant component 
in a muplex network with M=2 Poisson layers  

of  average degree c  

Square-root  
singularity 

Discontinuity 

Buldyrev et al. Nature  



Son S.-W., et al. EPL(2012) Region I:  non percolating 

Region II: 
percolating 

Phase diagram of ER-ER interdepedent networks 
With average degree zA and zB 



Effects of degree correlations 

Positive degree 
correlations  improve  
the robustness of a 
multiplex network. 
MP maximally positive 
Degree correlations 

Negative degree 
correlations  reduce the 
robustness of a multiplex 
network. 
MN maximally negative 
degree correlations     



Mutually connected component 
in scale free multiplex network 

The discontinuity decreases, pc increases 
with decreasing γ exponent  

Fixed minimal degree (Baxter et al.)   Fixed average degree (Parshani et al.) 



Cascade of failure events at 
the percolation transition 

Buldyrev et al. Nature  



Partial interdependence 
changes the nature of the 

percolation transition 

Allowing for partial 
interdependence 
can change the 
nature of the 
transition from 
discontinuous to 
continuous.   



Duplex network with Poisson 
Layers and Link Overlap 

€ 

k01 = k10 = c1
k11 = c2

Duplex networks with Poisson multidegree distribution with 

   MCGC 

    

€ 

S = p 1− 2e−c1 S−c2 ( S+S2,1 ) + e−2 c1 S−c2 ( S+S2,1 )( )
S(1,1),( 1,0 ) = S2,1 = p e−c1 S−c2 ( S+S2,1 ) − e−2c1 S−c2 ( S+2S2,1 )( )



Phase diagram for  
the MCGC in a duplex 

network 

€ 

k01 = k10 = c1
k11 = c2

Duplex networks with Poisson multidegree distribution with 

Cellai et al (2016) 



Multiplex network with three 
Poisson layers and link overlap 

€ 

k001 = k010 = k100 = c1
k110 = k101 = k011 = c2
k111 = c3

Multiplex networks with three layers with Poisson multidegree 
distribution  

The determination of the MCGC involve solving a non-linear 
system of three variables 

The network has a continuous phase transition only for 
complete overlap of the links   



Multiplex networks with 
correlated multidegrees 

This theory can be extended to multiplex networks with 
correlated multidegrees 

Dissasortative correlations  Assortative correlations 

Baxter et al. 2016 



Competing networks 

Region III: 
Bistable 
region, 
either one of 
the networks 
percolates 

Region II: 
only one 
network can  
percolate 

The function of a node in a network  
is incompatible with the function 

of the same node in the other network network 

K. Zhao et al. JSTAT (2013) 
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Percolation in  
 network of networks 



Network of Networks Case I 

If a network is  
interacting with 
another 
network all the 
nodes of the 
network are 
interdependent 
with their 
“replica nodes” 
on the other 
network  and 
vice versa. 



The network of networks 

Interacting networks   Supernetwork 



Network of Networks Case I 

A node is in the 
mutually connected 
giant component if all 
the nodes that can be 
reached by interlinks 
have  at least one 
neighbor in their layer 
that is in the 
percolation cluster. 



Robustness of the network of 
networks 

•  The robustness of a  network of 
networks belonging to the case I is 
independent on the structure of the 
network of networks as long as the 
network of networks is connected. 

•  All the layers start to percolate when the 
fraction of non-damaged nodes p>pc 

•  The transition is discontinuous as long as 
M>1 if the layers are not correlated. 

G. Bianconi, S.N. Dorogovtsev and J. F. F. Mendes 2014 



Network of networks Case II 

Every layer α has a 
supradegree q,α. 

Therefore every 
node of layer α has 
qα links to qα 
replica nodes in 
some other layer 
chosen randomly 



Main results for case II  

•  The layers with higher superdegree are more 
fragile than layers with low superdegree. 

•  In the networks there are multiple percolation 
transitions corresponding to the activation of 
layers with increasing value of the 
superdegree. 

•  Each of these transitions is discontinuous is the 
networks in the different layers are not correlated 
for r=1 

•  If r<1 some of these transitions can become 
continuous 



Percolation in layers with 
superdegree q 

Case γ=2.8 
c=20 

Multiple phase transitions! 
Layers with larger superdegree are more  

vulnerable! 
G. Bianconi and S.N Dorogovstev (2014) 



Nature Physics News & Views  



Redundant interdependencies 

 If a node is interdependent on each one of 
its replica nodes, the more layers we add 

the more fragile is a network. 
 If, instead interdependencies are redundant  

 and a  node is the Redundant MCGC if at 
least one replica node is active,  

 then more layers we add to the network 
the  more robust it becomes 



Redundant interdependencies 
boost the robustness of 

multilayer networks 

Radicchi Bianconi 2016 



Conclusions 
  

 Percolation in multilayer interdependent networks 
              display surprising novel phenomena  
•  In presence of interdependencies, the percolation transition 

becomes discontinuous and hybrid and is characterized by 
large avalanches of failure events. 

•  In presence of partial interdependencies it can become 
continuous. 

•  In network of networks it is possible to observe multiple 
phase transition. 

•  Redundant interdependencies might explain why many 
natural made networks have many layers as in this 
framework the robustness increases with the number of 
layers. 

Percolation on interdependent networks 
captures the possible mechanisms  
yielding fragile multilayer networks 
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Message passing algorithm 
for percolation 



Message passing algorithms 
are widely used for 

characterizing critical 
phenomena and dynamical 

systems in complex networks 
•  Percolation on single networks 
(Karrer, Newman, Zdeborova PRL 2014) 
•  Network control 
(Liu, Slotine & Barabasi Nature 2011)  
•  Epidemic spreading in multi-slice networks 
(Valdano et al. PRX 2015) 



Message passage algorithm 
for the Giant Component of a single 

network 

€ 

σi→ j = si 1− (1−σl→ i )
l∈N( i)\ j
∏

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

σi = si 1− (1−σl→ i )
l∈N ( i)
∏

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

The initial node damage is indicated by  the variables si  
associated to the nodes of the network: 

si=0 if node i is damaged and si=1 otherwise. 
The message going from node i to not j follows 

The  node i is in the giant component if σi=1 otherwise σi=0 where  



Message passage algorithm 
for the  

Mutually Connected Giant Component 
in absence of link overlap 

€ 

σi→ j = si
α=1,M
∏ 1− (1−σl→ i)

l∈Nα ( i)\ j
∏

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

σi = si
α=1,M
∏ 1− (1−σl→ i)

l∈Nα ( i)
∏

⎛ 

⎝ 
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⎠ 
⎟ ⎟ 

The initial node damage is indicated by putting 
si=0 if node i is damaged and si=1 otherwise. 

The generic message going from node i to node j is updated 
according to 

A node i is in the MCGC if  σi=1 where   



Case of a Poisson multiplex 
network with M Layers 

Nodes are damaged with probability 1-p  
Fraction of nodes in the GC of single Poisson layer 

with average degree c:  

  Fraction of nodes in the MCGC of  multiplex 
network with M Poisson layers of  average 

degree c: € 

S = p 1− e−cS( )

€ 

S = p 1− e−cS( )M



Percolation on two interdependent 
Poisson networks with average degree c  

€ 

g(x = S / p) = x − 1− e−cpx( )2 = 0

The percolation transition at cp=2.455…  
is discontinuous! 



Discontinuous Emergence of the 
mutually connected giant component in a 

duplex of Poisson network 

    1 
 S 

  

 0  
! !                          1!                         2.455.. ! cp!

Buldyrev et al Nature 2010, Baxter et al. PRL 2012 

Square-root  
singularity 

Discontinuity 



Percolation in  
multiplex networks  

with overlap of the links: 
the message passing 

approach 



Directed percolation problem 
Nodes in the directed mutually connected giant 
component (DMCGC) can be found by using the 

same algorithm used in absence of overlap of the 
links 

In absence of overlap of the links  
DMCGC=MCGC 

Specifically we will have   

€ 

σi→ j = 0



Difference between the 
DMCGC and the MCGC 

Min et al. (2015) Cellai et al. (2016)              

€ 

h

€ 

j



Why in presence of overlap  
the DMCGC is not equal to  

the MCGC 

€ 

∞

€ 

∞

 Network            Cavity network removing 
          one node  

Not in the DMCGC 

Not in the DMCGC 
According to the  
Message Passing 
algorithm 



Required properties of the 
message passing algorithm 

for the MCGC 
•  The MCGC must be of maximum size:  

– the messages are polarized  
– the sender node must assume that the target 

node is in the MCGC. 
•  The messages must indicate the set of 

layers                           that connect the 
sender node to the MCGC.  

  

€ 

! n = (n1, n2 …, nM )



The algorithm 
      The message        

    indicates that 
assuming that j belongs to the MCGC  
- node i must be in the MCGC 
-  node i connects node j to the MCGC 

exclusively through the layers α with  
It follows specifically that we have 

  

€ 

! n i→ j = (ni→ j
[1] ,ni→ j

[2 ] ,…ni→ j
[M ] ), ni→ j

[α ] = 0,1

  

€ 

! n i→ j = (1,0)
€ 

ni→ j
[α ] = 1



Non-trivial cases for M=2 

  

€ 

! n i→ j = (1,0)
  

€ 

! n i→ j = (1,0)

  

€ 

! n i→ j = (0,1)
  

€ 

! n i→ j = (0,1)

  

€ 

! n i→ j = (1,0)

  

€ 

! n i→ j = (1,1)



How this algorithm can 
predict 

that node j and h  
are in the MCGC 

Cellai et al. (2016) 



Duplex network with Poisson 
Layers and Link Overlap 

€ 

k01 = k10 = c1
k11 = c2

Duplex networks with Poisson multidegree distribution with 

   MCGC 

   DMGC 

€ 

S = p 1− 2e−c1 S−c2 ( S+S2,1 ) + e−2 c1 S−c2 ( S+S2,1 )( )
S(1,1),( 1,0 ) = S2,1 = p e−c1 S−c2 ( S+S2,1 ) − e−2c1 S−c2 ( S+2S2,1 )( )

€ 

S = p 1− 2e−( c1 +c2 )S + e−( 2 c1 +c2 )S( )



Phase diagram for  
DMCGC and MCGC 

DMCGC     MCGC 

€ 

k01 = k10 = c1
k11 = c2

Duplex networks with Poisson multidegree distribution with 

Cellai et al. PRE (2013); Cellai et al (2016) 



Conclusions 
We have formulated a message passing theory for percolation and directed 

percolation in multiplex network with link overlap. 
•  Both algorithms reduce to percolation in multiplex network in absence of 

overlap and to percolation on single network in presence of complete 
overlap. 

•  The algorithm for directed percolation has an epidemic spreading 
interpretation. The algorithm for percolation does not  have a feed-
forward character. 

•  The two critical phenomena have different phase diagrams. 

The algorithm for the MCGC can be used to study  
1.  the robustness of real multiplex networks and  
2. to study the percolation phase diagram of multiplex networks with link 

overlap and  arbitrary number of layers. 
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