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Representation of a multiplex 
A multiplex network of N nodes formed by M layers 

is fully specified by  
M adjacency matrices 

  with α=1, 2, … M  
of  matrix elements 

€ 

a[α ]

€ 

aij
[α ] =

1
0
⎧ 
⎨ 
⎩ 

if node i and node j are linked in layer α
otherwise



Supra-adjacency matrix 

   The supra-adjacency 
matrix includes all the 
links in each layers 
and the interlinks 

    It indicates if a node i in layer 
α is connected to a node j in 
layer β	
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€ 

Aiα , jβ =
aij
[α ] if α = β

δ ij if α ≠ β

⎧ 
⎨ 
⎪ 

⎩ ⎪ 



Diffusion in multiplex networks 

Interlinks are essential for diffusion across the 
layers of multiplex networks 

-ex: transportation networks, social online networks  

  
S. Gomez et al., Phys. Rev. Lett.(2013)    
M. De Domenico PNAS (2014) 



Diffusion 
 The diffusion equation on a multiplex network 

where it is possible to diffuse along interlinks  
 is given by  

€ 

d
dt
x i
[α ]

= −D[α ] aij
[α ] (x j

[α ] − xi
[α ] )

j=1...N
∑ +

β =1..,M
∑ D[α ,β ] (xi

[ β ] − xi
[α ] )

€ 

xi
[α ]

D[α ]

D[α ,β ]

Dynamical state of replica node (i,α) 

Intra-layer Diffusion constant 

Inter-layer diffusion constant 

Gomez et al. (2012) 



Diffusion in a single layer 

€ 

d
dt
x[α ] = −L[α ]x[α ]

  

€ 

x[α ] =

x1
[α ]

x2
[α ]

!
xM
[α ]

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

€ 

Lij
[α ] = D[α ] ki

[α ]δ ij − aij
[α ]( )

€ 

d
dt
x i
[α ]

= −D[α ] aij
[α ] (x j

[α ] − xi
[α ] )

j=1...N
∑

In matrix form the above equation reads 

with  

and the Laplacian matrix given by  



Diffusion in a single layer 
 For a network with a single connected component, 

the eigenvalues of the Laplacian can be ordered as 

 In networks with a spectral gap, the typical 
timescale for relaxation of the dynamics to the 
stationary state, is given by  

  

€ 

0 = λ1
[α ] < λ2

[α ] ≤ λ3
[α ] ≤…λM

[α ]

€ 

τ =
1
λ2
[α ]



General multilayer networks 

€ 

τ =
1
λ2

The diffusion equation reads in matrix form 

where the Supra-Laplacian is given by  

The typical timescale determining the relaxation dynamics is   

Gomez et al. (2012) 



Case of two layers (M=2) 

€ 

D[1] = D[2 ] = 1
D[1.2 ] = D[2,1] = Dx

Assuming 

we have  

€ 

Dx << 1 λ2 = 2Dx

Dx >> 1 λ2 =
λs
2
≥
λ2
[1] + λ2

[2 ]

2
≥min(λ2

[1] ,λ2
[ 2 ] )

Limit cases 

For small Dx, τ is controlled by the interlayer diffusion constant,  
For large Dx, the diffusion is faster than the diffusion  
on the slower layer and we can observe also superdiffusion   

Gomez et al. (2012) 



Smallest non-zero eigenvalue of the 
Supra-Laplacian 

Gomez et al. (2012) 



Epidemic spreading 



Si 

Si 

Ii 

Ij Ii Ij 

Ii 

+ +β	

µ

Susceptible            Infected     
Individual     Individual    
on node i      on node i    

   SIS Model on a network 

With node i nearest neighbour of node j 

Si 

SIS model 



Si 

Si 

Ii 

Ij Ii Ij 

Ii 

+ +β	

µ

Susceptible       Infected           Recovered 
Individual    Individual        Individual 
on node i     on node I     on node i  

   SIR Model on a network 

Ri 

Ri 

With node i nearest neighbour of node j 

SIR model 



€ 

ρ ∝
(λ − λc )

β for λ > λc
0 for λ ≤ λc

⎧ 
⎨ 
⎩ 

€ 

λ =
β
µ

The control parameter of the transition is 

The order parameter ρ is the total fraction 
of nodes that are infected in an outbreak 
started from a single node, that has the 
critical behavior   

Phase transition  



A typical epidemic spreading transition in the SIS 
model 

A similar behavior is followed by the order 
parameter as a function of the control parameter in 

the SIR model  

Phase transition  



A typical temporal profile of the fraction i(t) of 
infected individuals in the SIS and in the SIR model 

Temporal evolution of the number of  
infected individuals 



Mean-field approximation for  
SIS dynamics in single layer 

€ 

ρi( t + Δt) = ρi( t) + [1− ρi( t)]λ(Δt) aijρ j (t)
j
∑ −(Δt)ρi( t)

€ 

ρi
* ≈ λ aijρ j

*

j
∑

€ 

λc Λ = 1

The mean-field equation determining  
the probability ρi that node i is infected is given by  

Linearizing the steady state solution for ρi<<1  

The epidemic threshold λc satisfies 



Epidemic spreading in a 
multilayer network 

The infectivity can depend on the layers  
α and β	

of the two node in contact,  
we have then 

€ 

λ[α ,β ]



Mean-field approximation for  
SIS model in multilayer networks 

€ 

ρiα (t + Δt) = ρiα ( t) + [1− ρiα (t)](Δt) λ[α,β ]Aiα , jβ ρ jβ ( t)
j ,β
∑ −(Δt)ρiα ( t)

€ 

ρiα
* ≈ λ[α,β ]Aiα , jβ ρ jβ

*

j ,β
∑

€ 

ˆ Λ = 1

The mean-field equation determining  
the probability ρiα that node (i,α) is infected is given by  

Linearizing the steady state solution for ρiα<<1  

Cozzo (2013) 



Epidemics can spread in a 
multilayer network also if it 
cannot spread in the single 

layer taken in isolation 

de Arruda et al.  (2013) 



Interplay between structure 
and dynamics (M=2) 

de Arruda et al.  (2013) 



Interplay between structure 
and dynamics  

Multilayer network structure 

Susceptibility 

de Arruda et al.  (2013) 



Spreading of awareness and  
viral epidemic spreading  

Two coupled SIS model 
on the virtual contact and  
physical contact layer 

Unaware-Aware-Unaware 
Susceptible-Infected-Susceptible 

Granell et al.  (2013) 



Phase diagram of the model 
β C critical infection rate of the epidemic spreading 
λ infection rate of the awareness behavior 

For low λ the dynamics on the virtual layer does not affect the epidemic  
For high λ  the dynamics on the virtual layer retards the epidemics  

Granell et al.  (2013) 



Competing epidemics 

N neither of the epidemic spreads 
I (II) only the epidemics in the I (II) layer spreads 
III the epidemics spreads in both layers 

Epidemics I spreads in layer I 
Epidemics II spreads in layer II 
A single node can be infected at most with one disease 

Sahneh and Scoglio (2014) 



PageRank 



The Page Rank is based on a 
random walk 



The Page Rank is based on a 
random walk 

•  We assume to have a 
random walker on the 
node j of the  network 

j



The Page Rank is based on a 
random walk 

•  We assume to have a 
random walker on the 
node j of the  network 

•  With probability        the 
random walker hops to a 
neighbor node  

j

€ 

˜ α 



The Page Rank is based on a 
random walk 

•  We assume to have a 
random walker on the 
node j of the  network 

•  With probability        the 
random walker hops to a 
neighbor node  

•  With a probability 1- 	

	 it jumps to a random node  

j

€ 

˜ α € 

˜ α 



PageRank 

The PageRank xi of node i is the probability 
that in the stationary state we find the 

random walker on node i 

€ 

xi = ˜ α 
Aij

g j

x j
j
∑ + β

€ 

with
g j = max(k j ,1), ki

Aij =
1 if node j links to node i
0 otherwise
⎧ 
⎨ 
⎩ 

, ˜ α = 0.85

indicating the degree of node i 



Quantifying the  
centrality of the nodes  

with the  
Functional Multiplex PageRank 



Influences of multilinks 
In a multiplex network different pattern  of 
connections might contribute differently to 

the centrality of a node 

The influence of a multilink     
is indicated by      

€ 

z
! 
m 

  

€ 

! m 

J. Iacovacci et al. 2016 
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The random walker can jump 
to a random node 

(teleportation) 
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z(1,0 )

€ 

z(0 ,1)€ 

z(1,1)

The random walker can jump  
to a neighbor node, 

 with a probability proportional to  
the influence of the corresponding 

multilink 

(a) (b) 

Functional Multiplex PageRank 



Functional Multiplex PageRank 
 The Functional Multiplex PageRank assigns to each node 

a function indicating the centrality of the nodes when 
multilinks of different types have different influences  

It is given by 

where     
      and β>0 fixed by the  
      normalization condition   

  

  

€ 

Xi(z) = ˜ α 
j =1

N

∑
Aij

! 
m z
" m 

g j

X j (z) + βvi

  

€ 

g j = max 1, Aij

! m z
" 
m 

i=1..N
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

vi = θ Aij

! m z
" 
m 

j =1..N
∑ + A ji

! m z
" 
m 

j =1..N
∑

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

z
" 
0 = 0, ˜ α > 0

€ 

Xi(z)
i=1

N

∑ = 1

  

€ 

z
! 
m 



Functional Multiplex PageRank 

The centrality of a node i 
is a function 

depending on the values of the influences z 
attributed to multilinks  
For a duplex network 

€ 

Xi(z)

€ 

z = (z(1,0 ),z(0,1),z(1,1))



Non-linear effects due to the 
overlap of the links 

The Functional Multiplex PageRank allows 
for the inclusion of strong non-linear effects 

due to the overlap of the links. 
 For example,  in a duplex network we can have 

and we can weight multilinks (1,1) much more or much less 
than the sum of the weight of multilinks (0,1) and (1,0).  

  
€ 

z(1,1) ≠ z(0,1) + z(1,0 )



Absolute Multiplex PageRank 
From the  

Functional Multiplex PageRank  
we can extract the  

Absolute Multiplex PageRank 
given by 

which can provide an overall ranking of the nodes 
of the multiplex network    

€ 

Xi
* =max

z
Xi(z)



The case of a duplex network 
(M=2) 

 The Functional Multiplex PageRank, 
 depends only of the direction of the 

vector of influences z, therefore we take 

      
   with  

€ 

z(1,0 ) = sinθ cosφ
z(0 ,1) = sinθ sinφ
z(1,1) = cosθ

€ 

θ,φ ∈[0,π /2]
€ 

z(1,0 )

€ 

z(0 ,1)

€ 

z(1,1)

€ 

θ

€ 

φ€ 

z



Top ranked airports in the 
duplex 

Lufthansa/British Airways 
network according to the  

Absolute Multiplex PageRank 

  



Different pattern to success 
of major airports 

•  For φ=0o θ=90o 
multilinks (1,0) 
have major 
influence 

•  For φ=90o θ=90o 
multilinks (0,1) 
have major 
influence 

•  For  θ=0o multilinks 
(1,1) have major 
influence 



Correlations between the 
pattern to success 

€ 

ρ =
XiX j − Xi X j

σ iσ j

€ 

Y =
1

NφNθ s=1.. Nθ

∑ Y(φr,θ s )
r=1.. Nφ

∑

σ i = Xi
2 − Xi

2

where the average and the standard deviation  
are calculated on a grid (φr ,θs) with  

r=1,2,..,Nφ and s=1,2,…,Nθ  



Correlations between the 
pattern to success 

between major airports 



Duplex connectome network 
of C.elegans 

Top ranked neurons       Pearson correlations 

Similar neurons types have 
correlated pattern to success  



Conclusions 
  

Multilayer networks display properties that are not observed 
in single networks taken in isolation  

•  For strong diffusion constant between the layers, diffusion 
 is faster than in the slowest layer and one can also observe 

superdifusion 
•  Epidemics can spread in the multilayer network also when it 

cannot spread in the single layers taken in isolation. Epidemic 
spreading is strongly affected by the strcuture of the 
multilayer network 

•  The Functional Multiplex PageRank is based on the random 
walk on multiplex network. It assigns a function to a node the 
pattern of success  and detects nodes with similar role  

Diffusion and epidemic spreading  
are fundamental dynamical processes which  

display a rich interplay between structure and dynamics 
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