Modular Group and Modular Forms: Exercises 1, Week 1. Nov. 2008

These problems are on basic material, involving facts about group actions, function theory on complex tori and other surfaces.

- 1. Show that the action of $G = SL(2, \mathbb{R})$ on the upper half plane is transitive: given any two points $z \neq w$, there is an element $\gamma \in G$ with $w = \gamma(z)$. Show also that the action is transitive on the tangent space at each point: for any two unit tangent vectors u, v based at z, say, there is a γ with $\gamma'(z).u = v$.
- **2.** Show that the hyperbolic line element ds_h^2 is *G*-invariant.
- **3.** Show that the set of matrices $\gamma \in G$ which fix the point *i* is the compact subgroup $K = SO(2, \mathbb{R}) \cong S^1$ of rotation matrices. Deduce that the space \mathcal{U} is isomorphic to the (right) *K*-coset space $K \setminus G$.
- 4. Find all the compact subgroups of G. [In other words, what are the compact subgroups of K?]
- 5. Show that the modular group $SL(2,\mathbb{Z})$ acts transitively on the set $\mathbb{Q} \cup \infty$. Hence find parabolic elements of the modular group which fix a given rational point p/q.

Weekly course summary:

In preparation, to appear next week.