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Week 1.
1) We begin with a definition. The modular group is the subgroup SL(2, Z)
of the matrix group SL(2, R) consisting of matrices with integer entries and
determinant 1.

There is an important action of SL(2, R) on the upper half plane U = {z =
x + iy | y > 0}, as fractional linear (Mobius) transformations:

τ 7→ aτ + b

cτ + d
. (1)

It is readily verified that the kernel of this action (the subgroup which
acts trivially, fixing all points) is the centre C2

∼= 〈±I2〉. The quotient group
PSL(2, R) acts faithfully on U and also on the boundary R̂ = R∪∞ ∼= S1; it is
shown in elementary accounts of complex analysis or hyperbolic geometry (see
for example [?], [?]) that the group action on R̂ is triply transitive.

2) The hyperbolic metric ds2
h is given by the formula

ds2
h = y−2(dx2 + dy2) (2)

on U : this is a Riemannian metric on the upper half plane. Because the action
defined in equation (1) is transitive on the points of U and also on the set of
unit tangent directions at each point (two simple exercises for the reader), the
space is a symmetric space in the sense of differential geometry.

Invariance of the metric under the (differential of the) action by SL(2, R)
is verified by a simple calculation (Exercise 1). Thus the real Mobius transfor-
mations form the (direct) isometry group of U : it is not hard to show that the
action is transitive and so no larger direct isometry group is possible .

Note that the space U is in fact Poincaré’s model of hyperbolic plane ge-
ometry. Geodesics between any two points are defined by circular arcs (or line
segments) orthogonal to the boundary real line. From this, we are able to use ge-
ometric ideas such as polygonal shape, convexity, length and area to illuminate
the group activity on U .
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3) The significance of U : lattices in the complex plane and their classification
by ‘marked shape’.

The upper half plane serves as parameter space for a range of interesting
objects: Gauss used it to classify binary quadratic forms, and several classical
authors established a link with complex tori and elliptic functions. We look at
this second aspect here.
Complex structures on a torus. The first item we consider is the shapes
of complex tori, surfaces of genus 1 with a complex analytic structure.

The classic Weierstrass theory of elliptic (i.e. doubly periodic meromorphic)
functions, which will be summarised later on, depends on this standard model
for a torus coming from a choice of generating set for the lattice of periods,
isomorphic to the (free abelian rank 2) fundamental group of the torus,

π1(X) = Z + Z.

Underlying this, there is the important concept of a homotopy-marking for the
surface, which underpins the theory of deformations, the rigorous study of vary-
ing shapes of torus. Intuitively, this boils down to considering the effect of
changing the shape of a fundamental parallelogram tile for this lattice group
of plane translations; a stricter method delivers a very precise description, a
genuine space of shapes, the first space of moduli, the precursor of a widespread
pattern of description for types of algebraic variety of specified type, a tool with
great influence in algebraic geometry and elsewhere.

From the uniformisation theorem or, alternatively, the Riemann-Roch the-
orem, one sees directly that a marked complex structure on the torus is tan-
tamount to this choice of two nonzero complex numbers {λ1, λ2} which are
linearly independent over the reals, representing the monodromy of a chosen
non-trivial holomorphic 1-form around the two generating loops; this deter-
mines a lattice subgroup Λ = 〈mλ1 + nλ2 | m,n ∈ Z of the additive group C
such that the complex torus is isomorphic to the quotient space C/Λ . A more
topological way to specify a marking begins from a choice of base point and
then two simple based loops whose homotopy classes generate π1(X, x0). This
determines (either by lifting paths to the universal covering plane or by integra-
tion) two Euclidean line segments, joining 0 to the complex numbers λ1 and λ2

respectively, which may be regarded as a geometric marking of the torus. The
standard picture of the torus X = X(λ1, λ2) is then obtained by identification
of opposite sides of the parallelogram with corners at the points 0, λ1, λ2 and
λ1 + λ2.

When are two marked complex torus structures equivalent? This means that
the tori are to be conformally homeomorphic, by a mapping which is produced
by a conformal (hence complex linear) map in the covering plane between the
two given markings. This happens if and only if there is a nonzero complex
scaling factor and perhaps a switch of ordering of the numbers, after which we
may assume that the marking pair is given by λ1 = 1, λ2 = τ with Im τ > 0 .
Thus, τ ∈ U .
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When do two such pairs determine the same quotient Riemann surface? The
corresponding normalised lattices Λτ = 〈m + nτ | m,n ∈ Z and Λτ ′ have to
coincide , which means that there are integers a, b, c, d such that

1 = cτ + d (3)
τ ′ = aτ + b, (4)

and satisfying ad− bc = 1, so that the process can be done in reverse. Thus the
two notions of equivalence taken together produce the action [?] of the modular
group on the space T1 of marked complex tori, given by the action of the homo-
geneous modular group Γ(1) = PSL2(Z) by fractional linear automorphisms:

τ 7→ aτ + b

cτ + d

of the hyperbolic plane U = {Im(τ) > 0} , as in .

In this way, we encounter the classic prototype for a discrete group action, as
first considered by Klein and by Poincaré, the modular group Γ1

∼= PSL(2, Z)
operating on the upper half plane.

4) Classification of group elements into types or conjugacy classes, and the
corresponding mappings of U .

For this, you can either use the classification of real (invertible) matrices by
eigenvalues or go by the closely related fixed point properties, which drive the
present geometrical approach. Recall first that a complex Möbius transforma-
tion distinct from the identity has either one or two fixed points in the Riemann
sphere CP1; the real coefficients force restrictions in the geometric types which
occur.
Definition. A real Möbius map is called elliptic if it has one fixed point
inside U . It is parabolic if it has one boundary fixed point, hyperbolic if it fixes
two boundary points.
Typical examples of parabolic transformation are real translations T (z) = z+b,
with b 6= 0: each preserves as a set every horizontal line. This is the family of
horocycles at ∞ . A conjugate map has the same property with respect to the
family of circles tangent to the boundary circle at the fixed point.

Hyperbolic transformations are conjugate to real dilations Uλ(z) = λz, with
λ > 1: Each one fixes a pair of points, and preserves the hyperbolic geodesic
joining them, acting on this as a hyperbolic translation from the repelling fixed
point (in the examples it is 0) towards the attracting fixed point ( at ∞ for Uλ).
An interesting example of a hyperbolic transformation in SL(2, Z) is the so-
called Arno’ld’s cat mapping) given by the matrix

T =
[

1 1
1 2

]
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This generates a semigroup of positive iterates, T ◦ T = T 2, T ◦ T 2 = T 3, . . .
, which distort the unit square (thought of as a tile within the real plane) by
stretching in one eigendirection and shrinking in the other to give a sequence
of parallelograms: when the result is projected onto the quotient torus, one
obtains a dissection of the tile first of all into three triangular pieces, but then
generating a more and more fragmented pattern as n grows. However, when
one takes a photographic image, which is produced by an array of m×m black
or white pixellated dots, this quotient map is really just a permutation of the
dots, and some large enough power of it gives the identity mapping, so that
the photograph reappears, a highly paradoxical effect when viewed among the
surrounding chaotic patterns. Look it up in (for instance) Anton & Rorres’s
Elementary Linear Algebra with applications (John Wiley & Sons, 2000).
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