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1 Introduction to the main characters.

(1.1) We begin with a definition. The modular group is the subgroup SL(2, Z)
of the matrix group SL(2, R) consisting of matrices with integer entries and
determinant 1.

There is an important action of SL(2, R) on the upper half plane U = {z =
x + iy | y > 0}, as fractional linear (Mobius) transformations:

τ 7→ aτ + b

cτ + d
. (1)

It is readily verified that the kernel of this action (the subgroup which
acts trivially, fixing all points) is the centre C2

∼= 〈±I2〉. The quotient group
PSL(2, R) acts faithfully on U and also on the boundary R̂ = R∪∞ ∼= S1; it is
shown in elementary accounts of complex analysis or hyperbolic geometry (see
for example [?], [?]) that the group action on R̂ is triply transitive. In other
words, any ordered triple of points of R̂ can be mapped to the triple 0.1,∞

(1.2) The hyperbolic metric ds2
h is given by the formula

ds2
h = y−2(dx2 + dy2) (2)

on U : this is a Riemannian metric on the upper half plane. Because the action
defined in citeeq1 is transitive on the points of U and also on the set of unit
tangent directions at each point (two simple exercises for the reader), this space
is a symmetric space in the sense of differential geometry.

Invariance of the metric under the (differential of the) action by SL(2, R)
is verified by a simple calculation (Exercise 1). Thus the real Mobius transfor-
mations form the (direct) isometry group of U : it is not hard to show that the
action is transitive and so no larger direct isometry group is possible .

Note that the space U is in fact Poincaré’s model of hyperbolic plane ge-
ometry. Geodesics between any two points are defined by circular arcs (or line
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segments) orthogonal to the boundary real line. From this, we are able to use ge-
ometric ideas such as polygonal shape, convexity, length and area to illuminate
the group activity on U .

(1.3) The upper half plane U as a parameter space: lattices in the plane
and their classification by ‘marked shapes’.

The upper half plane serves as parameter space for a range of interesting
objects. Gauss used it to classify positive definite binary quadratic forms, and
an epic list of classical authors from Jacobi on established the link with complex
tori and elliptic functions. We look at this second aspect here.

Complex structures on a torus. The first item we consider is the shapes
of complex tori, surfaces of genus 1 with a complex analytic structure.

The classic Weierstrass theory of elliptic (i.e. doubly periodic meromorphic)
functions, which will be summarised later on, depends on this standard model
for a torus coming from a choice of generating set for the lattice of periods,
isomorphic to the (free abelian rank 2) fundamental group of the torus,

π1(X) = Z + Z.

Underlying this, there is the important concept of a homotopy-marking for the
surface, which underpins the theory of deformations, the rigorous study of vary-
ing shapes of torus. Intuitively, this boils down to considering the effect of
changing the shape of a fundamental parallelogram tile for this lattice group
of plane translations; a stricter method delivers a very precise description, a
genuine space of shapes, the first space of moduli, a ground-breaking step in al-
gebraic geometry, the precursor of a widespread pattern of description for types
of algebraic variety of specified type, a tool with great influence in mathematics
generally.

From the uniformisation theorem or, alternatively, the Riemann-Roch the-
orem, one sees directly that a marked complex structure on the torus is tan-
tamount to this choice of two nonzero complex numbers {λ1, λ2} which are
linearly independent over the reals, representing the monodromy of a chosen
non-trivial holomorphic 1-form around the two generating loops; this deter-
mines a lattice subgroup Λ = 〈mλ1 + nλ2 | m,n ∈ Z of the additive group C
such that the complex torus is isomorphic to the quotient space C/Λ . A more
topological way to specify a marking begins from a choice of base point and
then two simple based loops whose homotopy classes generate π1(X, x0). This
determines (either by lifting paths to the universal covering plane or by integra-
tion) two Euclidean line segments, joining 0 to the complex numbers λ1 and λ2

respectively, which may be regarded as a geometric marking of the torus. The
standard picture of the torus X = X(λ1, λ2) is then obtained by identification
of opposite sides of the parallelogram with corners at the points 0, λ1, λ2 and
λ1 + λ2.

When are two marked complex torus structures equivalent? This means that
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the tori are to be conformally homeomorphic, by a mapping which is produced
by a conformal (hence complex linear) map in the covering plane between the
two given markings. This happens if and only if there is a nonzero complex
scaling factor and perhaps a switch of ordering of the numbers, after which we
may assume that the marking pair is given by λ1 = 1, λ2 = τ with Im τ > 0 .
Thus, τ ∈ U .

When do two such pairs determine the same quotient Riemann surface? The
corresponding normalised lattices Λτ = 〈m + nτ | m,n ∈ Z and Λτ ′ have to
coincide, which means that there are integers a, b, c, d such that

1 = cτ + d (3)
τ ′ = aτ + b, (4)

and satisfying ad− bc = 1, so that the process can be done in reverse. Thus the
two notions of equivalence taken together produce the action given in equation
(1) above, of the modular group on the space T1 of marked complex tori, given
by the action of the homogeneous modular group Γ(1) = PSL2(Z) by fractional
linear automorphisms:

τ 7→ aτ + b

cτ + d

of the hyperbolic plane U = {Im(τ) > 0}.

In this way, we encounter the classic prototype for a discrete group action, as
first considered by Klein and by Poincaré, the modular group Γ(1) ∼= PSL(2, Z)
operating on the upper half plane.

4) Classification of real Möbius group elements into types or conjugacy
classes, and the corresponding mappings of U .

For this, you can either use the classification of real (invertible) matrices by
eigenvalues or go by the (closely related) fixed point properties, which motivate
the present geometrical approach. Recall first that any real or complex Möbius
transformation distinct from the identity has either one or two fixed points in
the Riemann sphere CP1; the real coefficients force restrictions in the geometric
types which occur.
Definition. A real Möbius map/isometry of U is called elliptic if it has one
fixed point inside U . It is parabolic if it has one boundary fixed point, hyperbolic
if it fixes two boundary points.
Note that elliptic elements have two complex conjugate fixed points , one in
each of the upper and lower half planes.

Typical examples of parabolic transformation are real translations T (z) =
z+b, with b 6= 0: each preserves as a set every horizontal line. This is the family
of horocycles at ∞ . A conjugate map has the same property with respect to
the family of circles tangent to the boundary circle at the fixed point.
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Hyperbolic transformations are conjugate to real dilations Vλ(z) = λz, with
λ > 1: Each one fixes a pair of points, and preserves the hyperbolic geodesic
joining them, acting on this as a hyperbolic translation from the repelling fixed
point (in the examples it is 0) towards the attracting fixed point ( at ∞ for Vλ).

Note. The fixed points of a Móbius map corresponding to a matrix T =
(

a b
c d

)
are given by the equation

cz2 + (d− a)z − b = 0.

Thus, the classification turns on the value of the discriminant

(d− a)2 + 4bc = (Trace2 − 4det)T :

if T (z) ∈ PSL(2, R), then we have

• T is elliptic if and only if Trace2T < 4.

• T is parabolic if and only if Trace2T = 4 .

• T is hyperbolic if and only if Trace2T > 4.

Note. An interesting phenomenon associated with a hyperbolic transformation
in SL(2, Z) is the so-called Arno’ld’s cat mapping given by the matrix

T =
[

2 1
1 1

]
This is a hyperbolic element with fixed points at (1 ±

√
5)/2. It generates a

semigroup of positive iterates, T ◦ T = T 2, T ◦ T 2 = T 3, . . ., which distort the
unit square (thought of as a tile within the real plane) by stretching in one
eigendirection and shrinking in the other, to give a sequence of parallelograms,
each of which has area 1 and projects onto the quotient torus, where the result
is that one obtains a dissection of the original tile first of all into three triangular
pieces; this is extended to a map of the plane T̃ by periodicity, and this same
mapping repeated, generating a more and more stretched out and fragmented
pattern as n grows. However, when one takes on the original tile a photographic
image, which is produced by an array of m×m black or white pixellated dots,
the effect of this map is really just a permutation of the dots, and some large
enough power of it gives the identity mapping on this finite subset although the
map itself is greatly different from the identity, so that the photograph reap-
pears, a highly paradoxical effect when viewed among the surrounding chaotic
patterns. It is discussed in (for instance) Anton & Rorres’s Elementary Linear
Algebra with applications (John Wiley & Sons, 2000). We note that all this
concerns the linear action of the transformation T in the plane projected to the
torus and has nothing to say directly about the nature of the corresponding
hyperbolic isometry. Further dynamical properties are discussed in V. Arnold’s
book Ordinary Differential Equations, Supplementary Chapters .
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A final pair of exercises to think about:
1. Find all compact subgroups of the Lie group SL(2, R).
[The stabiliser of any point is a compact subgroup, conjugate to the subgroup

PSO(2, R) stabilising i. If we let K be any compact subgroup, the set of images
of i under all T ∈ K is a compact subset C of U (why is this?). Conversely,
given any compact set C in the upper half plane, the set of elements γ ∈ G with
γ(i) ∈ C is compact. But is it a subgroup? (No!) So how can we pin down the
compact subgroups?]

2. Concerning the action of SL(2, R) on U , show that it is proper: that is,
prove that if K is any compact subset of U , then the set of all g in SL(2, R)
such that gK intersects K nontrivially is compact.

[This s the fundamental property which distinguishes actions of a lie group
on a space with compact stabilisers.]

2 Discontinuity and quotient surfaces.

1) Fundamental sets for discrete groups.

Definition. Let Γ be a discrete group acting by isometries on a metric
space X. A fundamental set for Γ is defined to be a closed set F with two key
properties.
(i) the interior of F , F 0, has empty intersection with each translate gF 0, g ∈
Γ \ Id .
(ii) the union of the g−translates of F covers the space.

For the modular group, there is a popular and convenient choice of funda-
mental set which we construct below.
Note. A group which acts properly and isometrically on a metric space with
discrete orbits can be given a fundamental set with a geometric flavour, called
a Dirichlet fundamental set. Roughly speaking, it is the set of points closer to a
designated base point z0 than to any other point of the Γ−orbit of z0. See the
exercises for Week 2.

In this special case, we use a more direct approach, following [?] . First of
all we mention three special elements of Γ: they are

T (z) = z + 1; U(z) =
−1
z

; S = T ◦ U, S(z) =
z − 1

z
.

Next we concentrate attention on a certain hyperbolic ideal triangle

D = {|z| > 1} ∩ {−1
2
≤ <(z) ≤ 1

2
} ∩ U
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in the upper half plane, with vertices at the points ρ = eiπ/3, ρ2(= ρ − 1) and
a third vertex at ∞, often called an ideal vertex. Edges joining these points are
hyperbolic geodesic line segments: the edges to ∞ are vertical half-lines.

It is easily seen that U and S are both elliptic torsion elements, of orders 2
and 3 respectively, and their fixed points are i and ρ.

These maps determine side-pairing transformations in Γ(1), precise confor-
mal mappings of the triangle D onto some neighbouring triangle which shares
an edge with D, thereby enjoying properties crucial to understanding the whole
action of Γ(1) on U . In particular, we can express the various transforms of D
by elements of Γ(1) in terms of words in these two letters, as we shall prove
below.

2) A fundamental set for SL(2, Z): Theorem 1 and two corollaries. In fact
we will prove that the subgroup Γ0 of Γ generated by T and U , which of course
contains S = T ◦ U , has T as fundamental domain.

Theorem 1. (a) For each z ∈ U , there exists γ ∈ Γ0 with γ(z) ∈ D.
(b) If z, z′ ∈ D with z′ = γ(z) and γ ∈ Γ0, then z ∈ ∂D.
(c) For all z ∈ D, the stability subgroup StabΓ(z) is trivial except for ρ, i and
ρ− 1.

Proof. (a) We have =γ(z) = (=z)|cz + d|−2. Now we claim that the set of all
values of this expression for Γg ∈ Γ0 has a maximum, say at z0 : this follows
from the fact that there are only a finite number of pairs c, d ∈ Z with |cz+d| less
than a given bound. Furthermore, any point z ∈ U has a translate T k(z) = z+k
with real part x in the interval |x| ≤ 1/2. Hence there is an element γ of Γ′

with z1 = γ(z0) ∈ D: for if not, then |z1| < 1 and =(−1/z1) > =z1 = =z0

contradicting our choice of z0. This proves (a).

(b) Let z, g(z) ∈ D, with g =
(

a b
c d

)
. Without loss of generality, we may

assume that =g(z) ≥ =z. Therefore |cz + d| ≤ 1 from the earlier calculation;
hence it follows that |c| ≤ 1, since |z| ≥ 1 and c, d are integers so |c| ≥ 2 is
impossible. Now examining in turn the three cases c = 0,±1 completes the
argument: for instance, if c = 0 then d = ±1 so g is a translation and z lies on
a vertical edge.

(c) This follows from the case analysis in (b). ♦

Corollary 1. Γ0 = Γ(1), that is, the modular group is generated by the two
elements S and T ; equally, it is generated by the pair T and U , or by the two
torsion elements S and U .

Corollary 2. The projection mapping π : U → X = U/Γ(1) is surjective
when restricted to D: π : D → X. by pasting of edges with the maps T and U .

Consider now the topology of the resulting quotient surface: the act of past-
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ing vertical edges gives an infinite cylinder, with lower end the section of the
unit circle. The lower end is then pasted shut using U , to give a topological
surface homeomorphic to the plane. [How would you justify this statement?]
We will consider later the process of compactifying this surface.

[Note: we also need to discuss further the role of ∞, images of corner points
of the triangle and the Riemann surface structure there.]
Final Remark. A closer analysis of this combinatorial structure on U shows
that the group Γ(1) has presentation

〈U, S‖U2 = S3 = Id〉.

Thus it is isomorphic to the free product of the two cyclic groups C2 and C3.
See the exercises for week 4 for more on this.

3) Automorphic forms: the definition and interpretation.
These are defined to be, in the first instance, functions on the upper half

plane which satisfy a certain functional equation with respect to the action of
our discrete group Γ:

f(γ(z)) = (cz + d)kf(z) for all γ =
az + b

cz + d
∈ Γ. (5)

Later there will be adjectives (like holomorphic, meromorphic ,...) attached
to this concept. Notice the specific multiplier which occurs: (cz + d)−2 = γ′(z),
implying that there is an interpretation of this formula in the case k = 2 as a
differential form on the quotient surface X = U/Γ, a section of the cotangent
bundle. For if we had a function F satisfying the equation with k = 0, which
would say that F (γ(z)) = F (z) for all γ ∈ Γ, that would project to give a
genuine function on X, while differentiation gives that F ′ satisfies with k = 2.
For even powers of k we say that such a function on X defines an automorphic
form of weight k/2 for Γ.

Poincaré and Klein studied these forms for arbitrary (finitely generated)
discrete groups Γ ⊂ PSL(2, R) in the late 19th Century, laying the ground
for a complete understanding of the basic structure of fields of meromorphic
functions and vector spaces of forms on the Riemann surfaces X = U/−. This
has developed today into a vast area involving the associated representation
theory and an elaborate conjectural picture of many aspects of mathematics
(including number theory, arithmetic geometry, conformal field theory, etc.)
within a categorical framework loosely called the Langlands Programme.

3 Automorphic forms as differentials on the quo-
tient Riemann surface.

Finiteness conditions are important in the study of Riemann surfaces as they
provide a framework in which a systematic approach to the general theory can
be made. In the present setting, as Poincaré was the first to recognise, we have
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the great opportunity afforded by the underlying hyperbollic geometry of the
upper half plane. Two notions of finiteness then turn out to be equivalent.
Definition A Riemann surface X is said to be of finite type if it has finite
topological type, that is, provided that the Euler characteristic χ(X) is finite.

Now it turns out that whenever a surface is expressible as a quotient X =
U/Γ of the hyperbolic plane, we have a direct geometric construction for it anal-
ogous to the situation just described for the modular group, where the passage
to a quotient space U/−, homeomorphic to the plane, was given in terms of
a polygonal fundamental set D. According to the results proved in week 2,
X(1) ∼= U/Γ(1) is equivalent to the topological quotient space achieved by iden-
tification of edges of D by means of the transformation T on the vertical edges
and U acting on the segment of unit circle from ρ to ρ− 1. This is homeomor-
phic to the plane with two special points distinguished, one corresponding to
the corner points ρ ≡ ρ− 1 and the other to i. Then, by means of the covering
properties of the projection map

πΓ : U → X(1)

we define a complex analytic structure on X(1). The local complex structure is
singular at these points in the sense that the coveriing map πΓ is ramified there,
i.e. not a smooth covering, but given by the finite cyclic quotient N(P )/Stab(P )
.
Definition. An orbifold cone point P of a quotient surface is a point at which
the stability group of a point z in U which projects to P is a finite cyclic subgroup
of Γ.

We note that in the natural structure at these points (e.g. in the orbit of i
and ρ the quotient surface has total angle 2π/N(P ).

Definition. A cusp point of a quotient hyperbolic surface X = U/Γ is an ideal
point associated with a boundary point Q of U which has nontrivial parabolic
stabiliser in Γ. Thus the stabiliser of Q in Γ is an infinite cyclic subgroup
generated by some parabolic element t conjugate to a translation z 7→ z + b,
b ∈ R. Together with such a point we have a family of horoball (or cusp)
neighbourhoods, determined by the family of tangent circles in the upper half
plane at that point. for the point ∞ there is the collection of horizontal lines
which determine half plane nbds of ∞ and then , after taking the quotient by
the stabiliser, we obtain a family of punctured discs of variable radius.

At ∞, with the stability group 〈T (z) = z + 1〉, we have the local parameter

q : z 7→ e2πiz,

which maps a cusp nbd {=z > y} onto an open disc D(0, r) with r = e−2πy.
All cusp points which lie in the same Γ−orbit are (of course) viewed as

identical: they determine the same boundary point of U/Γ, and there will be
horoball nbds for any two such equivalent points in U which are biholomorphi-
cally equivalent.
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Note 1. For a subgroup of the modular group of course, any cusp point Q lies
in Q∪∞ (Exercise: Why ?) and the stabiliser has b ∈ Z. The main example we
are studying, Γ(1) itself, has two distinct cone points and one cusp puncture.
em Note 2. There is an analogue of cusp-nbd for elliptic points: there exists

some open set V ⊂ U , a nbd of a reference point ζ in U with nontrivial Γ-
stabiliser StabΓ(ζ) = G = 〈γ|γm = 1〉, such that V is G-stable and projection
p : V → V/G is m-to-1 onto a nbd of the image point Q.

Theorem 3. Finite area for the fundamental domain implies finite type
Riemannian surface quotient.

Conversely, any finite type Riemann surface has such a representation via
a finite area fundamental domain for its fundamental group acting as covering
isometries.

Embedded in this result is an important special case of the famous Gauss-
Bonnet Theorem for surfaces with a Riemannian metric. The area of a region
in the hyperbolic plane is defined by integrating the hyperbolic area element
(dsh × dsh, obtained as the (tensor product) square of the length element):- d

A(F ) =
∫∫

F

dxdy

y2
.

We consider hyperbolic convex polygonal regions F bounded by a finite number
of hyperbolic line segments. To evaluate such an integral, we apply Green’s
Theorem: ∫ ∫

F

(
∂Q

∂x
− ∂P

∂y
)dx dy =

∫
∂F

Pdx + Qdy;

putting P = 1/y, Q = 0 we have ∂P/∂y = −1/y2, and so

A(f) =
∫

∂F

dx

y
.

Now this path integral is easy to evaluate over any segment of hyperbolic
geodesic in U : if the path ` follows a hyperbolic line, a circular path of Eu-
clidean radius r, from angle β to γ, then we find∫

`

dx

y
=

∫
d(r cos θ)

r sin θ
= −

∫ γ

β

dθ = β − γ;

thus the answer is independent of r.
• Exercise. Show that the integral along a vertical line segment is always
zero.

Now it is easy to complete the calculation for a closed piecewise geodesic
boundary ∂F :- the total effect coming from a sequence of arcs `j , j = 1, ...m is
to sum the various angular differences

A =
m∑

j=1

(βj − γj).
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To simplify this further, we convert the sum into a sum of interior angles of the
polygon F by using the outward pointing normals for the sides to keep track of
our orientation as we turn the corners at each vertex. After one circuit of the
polygon we have turned through a total angle 2π, as the result of a change in
the normal of γj − βj on each edge `j and π − αk at each corner Vk so that

2π = mπ −
∑

k

αk +
∑

j

(γj − βj).

But now putting this into our formula for A(F ) we obtain a famous result,
the Gauss-Bonnet formula.
Theorem For a hyperbolic polygon with m sides the hyperbolic area is given
by the formula:-

Area(F ) = (m− 2)π −
m∑

k=1

αk.

This spectacular fact tells us more about the differences between Euclidean
and hyperbolic gometry. It expresses the fact that the curvature of hyperbolic
space is negative, and can be seen to contrast strikingly with the formula for
area in spherical geometry.

As a special case we highlight the case of a triangle ∆ with interior angles
αk:

Area(∆) = π − (α1 + α2 + α3).

• Exercise. Prove that two triangles are congruent in hyperbolic geometry
if and only if they have equal angles.

Corollary. The area of the modular surface, equal to that of the triangle D
for the modular group, is π/3.

Proof. A(D = 2π(1− 1
2 −

1
3 ). ♦

The rest is still in preparation:
Cusps and horocycle cusp-neighbourhoods, leading to the q−expansion.

Also:-
The compact quotient C∪{∞} is holomorphically isomorphic to the Riemann

sphere.
This will follow from the existence of the j−function.
Examples of modular forms: Eisenstein series.
Convergence properties and modularity.

Poincaré’s moment of inspiration was to see that the non-Euclidean geometry
in U2 (or equivalently in D2) is inherited by every Riemann surface covered by
U : this of course includes all those of genus 2 or more. We have seen how to
construct some particular examples of surfaces covered by U directly from the
hyperbolic geometry, using polygons which tesselate the hyperbolic plane in the
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same way that parallelograms tile the plane. This construction method using
fundamental polygons applies without exception to all surfaces.

4 More on modular forms.

We make use of the space of lattices in C to clarify some points about Eisenstein
series – see problems for week 2.

Proof of convergence for Eisenstein series.
Definition of cusps and cusp forms.
Elliptic functions: Weierstrass ℘-function. Properties.
The discriminant form.

Final week: the graded ring of modular forms. Dimensions of spaces us-
ing the basic formula. Projective embedding of modular surfaces. Arithmetic
properties of the forms and modular equations. The modular j-function.

Applications. Survey of further results via arithmetic methods: Hecke op-
erators and Ramanujan’s τ−function. Finite index subgroups of Γ(1): Dessins
d’enfant. Links to conformal field theory and moonshine.

[?] L.V. Ahlfors , Complex Analysis (3rd Ed.) John Wiley & Sons.
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[?] E.G. Rees, Lectures on Geometry, Springer, Universitext Series.
[?] J-P. Serre, A Course in Arithmetic, Springer, Universitext Series.
[?] G. Shimura, Arithmetic Theory of Automorphic Functions, Princeton U.

Press.
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