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recap on Orthogonality
Notes

Let u be a positive Borel measure with support S defined on R (represented

by the linear functional ,f) for which moments of all orders exist, i.e. ,

m,,:/x”dp(x) < o, n=0,1,2,....
S

we have seen that...

A sequence of monic polynomials {P,},>0 with deg P, = n is orthogonal w.r.t.
the measure p if

(2. xKPo(x)) ::/Ska,,(x)du(x):Nn Sok k=012...n.

where S is the support of i and N, is the square of the weighted L2-norm of
P, given by
Nn:/sxnpn(x)dp(xpo




recap on Orthogonality
Notes

The system

(L, XK Pa(x)) ::/Ska,,(x)du(x):O k=0,1,2,...,n—1.

is a linear system of n equations for the n unknown coefficients ¢, j of

n
Po(x)= ¥ cpix® with cpp=1.
k=0

The system has a unique solution because the matrix of the system is the Gram

matrix

mp  mp ... mp_1

m ma ... my .
where my = /X du(x).
JS

Mp-1 My ... Mop2

which is a positive definite matrix whenever the support of p contains at least
n points.

Multiple Orthogonal Polynomials
Notes
A sequence of Multiple Orthogonal Polynomials is a sequence of polynomials of
one variable which is defined by orthogonality relations with respect to r

different measures i, ..., Uy, where r > 1.
Some remarks:

» The case where r = 1 reduces to the standard notion of orthogonality;

» These polynomials should not be confused with multivariate or

multivariable orthogonal polynomials of several variables nor with matrix
orthogonal polynomials;

» Other terminology is also used such as:

> Hermite-Padé polynomials, motivated by the link with Hermite-Padé
approximation or simultaneous Padé approximation, following the works by
(Nuttall, 84), (de Bruin, 85), (Sorokin, 84 & 90), (Bultheel et al., 05);

> Polyorthogonal polynomials after (Nikishin & Sorokin, 91);

> Vector orthogonal polynomials following (Van Iseghem, 87), (Kaliaguine,

95), (Sorokin & Van Iseghem, 97)

> The so-called d-orthogonal polynomials initiated by (Maroni, 89) and
followed by Douak, Ben Cheikh and many others up to now: these are

multiple orthogonal polynomials near the diagonal and d is the number of
orthogonality measures.

Multiple orthogonal polynomials
Notes
There are two types of multiple orthogonal polynomials: type | and type Il

In either cases, the polynomials will be depend on the multi-index

fi=(n,...,n,) €N’

with length
[fil = ni+...4+n

Type | multiple orthogonal polynomials are collected in a vector of r
polynomials

(Ar1(x),- - Az r(x))

where deg Az j(x) < nj—1s.t.

.
Z/SXkAﬁ_j(x)d[ij(x):O, for k=0,1,...|# -2
j=1

s =
Z/_gx‘""lAﬁJ(x)duj(x):l + (normalisation)
j=1

which gives a linear system of |7i| equations for the |f| unknown coefficients of
the polynomials Aj;(x) for j=1,...r.



Type | multiple orthogonal polynomials

(A71(x),. - Asir(x)) where deg A ;j(x) < nj—1s.t.

il/sxkAﬁ_j(x)duj(x):oA for k=0,1,...|7—2 )
F=
F o s i =1 @)
=

This gives a linear system of |7i| equations for the |7i| unknown coefficients of
the polynomials Az ;(x) for j=1,...r.

The index 7 is normal if the relations (1) determine the polynomials uniquely,
which corresponds to say that

#0/| where Mﬁ:|: M,(,p Mﬁf) Mr(wf) }
with

mg) m(l’l) - "",(;j),l

U) U) G)
. my m3 mp j [
) = : D 51 and m(kj):/sxkd“f(x)

() ()] ()]

M1 M +nj—2

Type Il multiple orthogonal polynomials

The type Il multiple orthogonal polynomialsfor 7i corresponds to the monic
polynomials P(x) of degree |r| for which

/Skaﬁ(x)duj(x):o, k=0,...nj—1, (3)
forj=1,..., r.

The conditions (3) give a system of |A| equations for the || unknown
coefficients of the monic Pz(x).

The matrix of this linear system is
mi=[m M@ o owmp ]
i m na n,
which is the transpose of M.

Hence the system (3) has a unique solution if the multi-index 7 is normal, i.e.
det M5 #0.

Type | and Type Il multiple orthogonal polynomials

A multi-index 7 is normal

= detMH:det[ YR Ry ]#0
mé‘” m%i) mrtvi),1
) 0
R m. m. e my; . X
where M,(,f) - 1 2 " and m&l) :/Sxkdﬂj(x)
0) 0) 0
Mil-1 M| MGl 4 n—2

<= the type | vector (Aj1(x),... Az ,(x)) exists and is unique

<= the monic type Il multiple orthogonal polynomials Pj; exists and is
unique

Notes

Notes

Notes




Special systems: Angelesco systems
Notes

Definition. The vector measures (li1,...,1,) form an Angelesco system if
the supports of the measures are subsets of disjoint intervals
ie.,

supp(l;) C Sj and 5;NS; =0 whenever i # j.

Usually one allows that the intervals are touching, so that

;‘,‘ N §j:0 whenever i # j.

Special systems: Angelesco systems
Notes

Definition. The vector measures (1,..., ) form an Angelesco system if
the supports of the measures are subsets of disjoint intervals
ie.,

supp(i;) C Sj and S;NS; = 0 whenever i # j.

Usually one allows that the intervals are touching, so that

§,- n §j:® whenever i #j.

Theorem. (Angelesco, Nikishin)

The type Il multiple orthogonal polynomials P; has exactly n; distinct zeros on

,%j forj=1,....r.

Special systems: AT systems
Notes

Definition. The system of linearly independent functions ¢, ..., ¢, form a
n

Chebyshev system on [a, b] if every linear combination Z i0i(x) with

i=1

0) has at most n—1 zeros on [a, b].

Example. €% xe®X . xM~1etxX  eCrX yelrx  Mr—leCX \ith ¢; # <

whenever i # j, is a Chebyshev system of order |7 on R.




Special systems: AT systems

Notes
Definition. The system of linearly independent functions ¢,..., @n form a
n
Chebyshev system on [a, b] if every linear combination Z ai@i(x) with
i=1
(a1,...,an) #(0,...,0) has at most n—1 zeros on [a, b].
Example. €% xe®X . xM~1etxX eCrX yelrx  xMr—leGX \ith ¢; # <
whenever i # j, is a Chebyshev system of order |7 on R.
Definition. (AT-system) The measures (l1,...,1,) form an AT-system on
the interval [a, b] if the measures are all absolutely continuous with respect to a
positive measure [ on [a, b], i.e.
() = wj () (x). J=Looor,
and, for every 7, the functions
wi(x), . XM wy (), wa(x), . X" o (x), . Wi (%), X" Lw, (x)
are a Chebyshev system on [a, b].
Special systems: AT systems
Notes
Theorem. If (uy,...,H,) is an AT-system on the interval [a, b], then the type
Il multiple orthogonal polynomials Pj(x) has exactly |7| distinct zeros on (a, b)
and hence 7i is a normal index.
Theorem. For an AT-system, the function
r
Qi(x) =Y A j(x)w;(x)
j=1
has exactly |ii| — 1 sign changes on (a, b).
Biorthogonality
Notes

In an AT-system every measure U is absolutely continuous w.r.t. a given
measure [ on [a, b] and duy(x) = wy(x)du(x).

In an Angelesco system we can define = i3 +... 4 i, If all intervals [a;, bj]
are disjoint then dp,(x) = wi(x)du(x) where

1, if x€[ak, b
) =20 = { o xR

If bj = a;;1 then we consider y; = fi; +c18p, and fj+1 = fj 1+ 285, so that
fi; and I; 1 have no mass at b; = aj; 1. Then the absolutely continuity w.r.t.
to =3 +...+ U, still holds, but with

C;
Wj = X(a;.5)(X) + ﬁ%{bj)(x)

o]

Wit = K(aji,by0) (X) Lapn) ()

at+co




Biorthogonality

Notes
For an AT-system and an Angelesco system we have
duj(x) = wi(x)du(x), j=1,2,...,r.
Based on the type | orthogonality relations, then for the type | functions
r
Qa(x) =Y, A j(x)w;(x)
j=1
we have
b
/ Qi()x*du(x) =0, k=0,1,....|F|—2
a
b
[ @sxx i au) =1
a
Biorthogonality
Notes
For an AT-system and an Angelesco system we have
dpi(x) = wi(x)du(x), j=1,2,...,r.
Based on the type | orthogonality relations, then for the type | functions
r
Qi(x) =Y Asj(x)w;(x)
j=1
we have
b k
/ Qi()xkdu(x) =0, k=0,1,....|7—2,
a
b .
[ @sG0xtau() = 1
a
The type Il multiple orthogonal polynomials Pj; and these type | functions
Q5 (x) satisfy biorthogonality:
b 0, ifm<n,
/ Pa(x)Qa(x)di(x) = { 0, if |7 < |2,
a 1, if i = |m|—1.
Recurrence relations - type Il multiple orthogonal polynomials
Notes

Nearest neighbour recurrence relations for type Il multiple orthogonal
polynomials (see Van Assche, 11)

.
xPii(x) = Piiya (x) + b1 Pa(x) + Y 25 Pa—g (x)
Z

J

.
xP5(x) = Pritg (x) + b Pa(x)+ ) 25, Pi—g (x)
=i

where

~—
Jth entry



https://www.sciencedirect.com/science/article/pii/S0021904511000840

Recurrence relations - type | functions

Nearest neighbour recurrence relations for type | functions

xQii(x) = Qii—g, (x) + bri—g 1 Qr(x) + Y 2 Qv (x)
=1

xQ5(x) = Qs () + bii—g, r Qa(x) + Y a5 Qiiy (x)
=1

where

~—
Jjth entry

Recurrence relations - coefficients

Theorem. (Van Assche,11)
The recurrence coefficients (az1.....az,) and (bs1,...,bs ) satisfy the partial
difference equations

biitg.j— bij = biiyg,i — bii

S . —det bArai bai
Y ansg— ) npak=det| [T
k=1 k=1 n+é.j nJj

by —bive,i

it b j — bs i

forallj=1,...,r.

Example. Multiple Hermite polynomials.

These are given by
/ XM Hi(x)e X T¥dx =0,  k=0,1,...,n—1,

for 1 <j <'r, where c; # c; whenever i # j. The recurrence relation is explicitly
given as

c 1
xH5(x) = Hita, (x) + 5 Hilx) + 5 Y niHi-g(x),
j=1

for 1< k <r, so that

bij=cj/2, apj=nj/2, 1<j<r.

see (Van Assche & Coussement, 01) and (Van Assche, 11)

Notes

Notes

Notes




Multiple Hermite polynomials: application to RMT

Notes
Let M be a random Hermitian matrix of size N x N, and consider the ensemble
with probability distribution
1 > N
—exp (—Tr(M —AM)) am, dM=TJdm;; [ dm;,
Zy i=1 1<i<j<N
where A is a fixed Hermitian matrix (the external source).
Property. Suppose A has eigenvalues ci,...,c, with multiplicities nq,...,n,,
then .
E(det(M—z Iy)) = (~1)/ Hz(2).
For further information, | suggest to read (Martinez-Finkelshtein & Van Assche,
16) including the connection to links to non-intersecting Brownian motions.
Example. Multiple Laguerre polynomials of first kind.
Notes
These are given by the orthogonality relations
/ KM Ly(x)x%e™Xdx =0,  k=0,1,...,m—1,
o
for 1<j<r, where a,...,0 > —1 and &; — ¢Z.
They can be obtained using the Rodrigues formula
Al —x 2 o 9V nve) ox
1 X[ (x) = — i+ ) o 4
(D70 = [T (% G )« @)
where the product of the differential operators can be taken in any order. This
Rodrigues formula is useful for computing the recurrence coefficients.
Example. Multiple Laguerre polynomials of first kind. (cont.)
Notes
Indeed,
h o |7 - dam +o - o d" +o
n, —X _ n n, — n — n;i i —X
/0 X" Li(x)x% e = (-1) -/0 Xt lﬁ)“ 1,-:1_£<X < >e dx

and integration by parts (n1 times) gives

~ a— o oo r dni
— (,1)\n +ny (n/ + ,-,jl 1>n1[ /0 Xt I_Iz <X7“"' g Xn,+a;> e X dx.
. e

Repeating this r times gives

o r o
/ x"VLa(x)x%e™ = T(nj+aj+1) H (nj tYy a')n,-!A
0

i=1 ni

From the definition of multiple orthogonality, we have

[xmLax) dmix)

T e —
[x7 M 5(x) du(x)

which implies

nj+ 0 — o

E
agj = nj(nj + o) H ——— j=1,..., r. (5)

=1z


http://www.ams.org/publications/journals/notices/201609/rnoti-p1029.pdf
http://www.ams.org/publications/journals/notices/201609/rnoti-p1029.pdf

Example. Multiple Laguerre polynomials of first kind. (cont.)

The recurrence coefficients by, can be obtained by comparing the coefficients
of xI7l in the recurrence relation

r
XL5(x) = Liyeg (x) + bz iLs(x) + Z ajlig(x), i=1...,r—1

They are
b= Al +m+ou+1,  k=1...r (6)

Example. Multiple Laguerre polynomials of the second kind
These are given by the orthogonality relations
/ XK Ly(x)x%e %% dx = 0, k=0,1,...,n;—1,
0

for 1 <j <r, where & > -1, c1,...,¢c, >0 and ¢; # ¢; whenever i # j. They
can be obtained using the Rodrigues formula

(lncnj> L (X)_H( dx”;e c,x)xwm @

j=1

where the differential operators in the product can be taken in any order. A
useful integral is

e
Je (e e e o= (0 R T

+a+1
0 =1 Ix"i 10|

which can be evaluated by using integration by parts in a similar way as in the
previous example. Observe that the right hand side has a zero at A = ¢; of
multiplicity nj. Using (7) we thus have for A >0

[ ettt o= PR+ 1) Fra A e,

a+1
IR a =0 a1

Example. Multiple Laguerre polynomials of the second kind (cont.)

Clearly

dk oo
W/ e M X L5(x) dx
0

:(—l)k/ xKeTx*Ls(x)dx =0, 0< k< nj,
rA=g 0

which confirms the orthogonality relations, and for k = nj

e r(|a+a+1) r G
/ X" e xLy(x)dx = —=——=2njl [] 1-2).
Jo Cj\'n\+n,+a+1 i <
The fact that

[xmLax) dn(x)
A j =
’ /"ﬁlLﬁ &(x) duj(x)

implies
_ (Al+a)n;
= 5 ,
<
For the coefficients by 4 a comparison of the coefficients of x!7l on both sides of
the recurrence relation satisfied by L;(x), and Eq. (23.4.5) in (Ismail) leads to

1<j<r. (8)

|Al+o+1 s nj
o +Yy 2

b= (9)

=19

Notes

Notes

Notes




Multiple Laguerre polynomials of second kind: an application to RMT

John Wishart (1928) introduced the Wishart distribution for N x N positive
definite Hermitian matrices

M= XXx*, XecN<(N+p)

where all the columns of X are independent and have a multivariate Gauss
distribution with covariance matrix X:

1 i ,
7. (—Tr(Z M)) (det M)PdM.

If £ = Iy, then Laguerre polynomials (with & = p) play an important role.

If =1 has eigenvalues ci,..., ¢, with multiplicities ny,..., ny, then multiple
Laguerre polynomials of the second kind are crucial:

E(det(M—2z Iy)) = (*l)ng'E(z)‘

for further details see
Kuijlaars, A.B.J.: Multiple orthogonal polynomials in random matrix theory. In: Bhatia, R. (ed.)
Proceedings of the International Congress of Mathematicians, vol. I1l, Hyderabad, India, pp
1417-1432 (2010)

Example. Jacobi-Pifieiro multiple orthogonal polynomials

These are multiple orthogonal polynomials on [0,1] for the Jacobi weights
x(1 —x)P, with ay,...,0,,>—1 and o; — aj ¢ Z. They satisfy

1
/XkPH(X)Xaj(I*X)ﬁdX:O, k=0,1,....,nj—=1, 1<j<r.
0

They are given by the Rodrigues formula
r
(DT + 05+ B +1)n; (1-x)P Pa(x)
j=1

J
r dni ~
_ —q nj+a; 1— 1A+
J'I;II(X T J>( S

j

where the product of differential operators is the same as for the multiple
Laguerre polynomials of the first kind.

Example. Jacobi-Pifieiro multiple orthogonal polynomials (cont.)

One has

1 r - n
P01 — x)B dx = (—1)/7 Iy (% = V), Fy+1)r(a+pg+1)
Jy ¥Pi 0 ax= (1) T+ o+ B+1)n  T(7+B+7+2)

so that

Notes

Notes

Notes

L (YY) T+ g+ DT(JA| + B +1)

1 r
4 po(x)(1—x)P dx = ——— 1
.Ax A()(—x)" dx O (Al +e+B+1)n T(A+m++B+2)

Using the expression for aj; (as in the previous examples) to then find for
1<j<r

T nj+oj—a; IL[ ||+ ai+B
*ai,:“

o
" il +ni + ai + B

i=1izj M~ Mi + 0

« nj(n;+ 04)([7A| + B)
(17 + nj + o+ B+ 1)(IA| + nj + a5 + B)(|Al + nj+ o+ B~ 1)

(10)



https://www.worldscientific.com/doi/abs/10.1142/9789814324359_0104
https://www.worldscientific.com/doi/abs/10.1142/9789814324359_0104
https://www.worldscientific.com/doi/abs/10.1142/9789814324359_0104

Example. Multiple Charlier polynomials

The orthogonality relations are

o ak
Yy cﬁ(k)k‘i| =0, (=0,1,...,n;
Pt k!

for 1 <j <r, where a; >0 and a; # a; whenever i # j. The recurrence relation
is given by

xCi(x) = Gy, (x)+ (ar + [A]) Ca(x) + i{lnjajcﬁ,%(x)
j=

so that
bsj = |il+aj, asj=njaj, 1<j<r.

Recurrence relations - particular paths

Let (fix)k>0 be a path in N” starting from 7 = 0, such that 71 — iy = & for
some i=1,..., r. Then

.
xPy, (x) = Pﬁk+](X)+ Z lx;,k_jPﬁH(x).
/=0

An important case is the stepline
r—j

—
fe=(i+1,...,i+17....0), with k=ri+j, for j=0,...r—1.

J

where |fig| =k =ri+].

Recurrence relations - particular case: the stepline

For the the stepline
r—j
—_
A =(i+1....i+1,7....1), with k=ri+j, for j=0,...r—1.
—_—

J

we consider
By (x) = P (x), for k>0.

Hence By (x) satisfies the following recurrence relation of order r+1, in the
sense that there exist coefficients B and yk) for j=0,1,...,r —1 such that

,
XBp = Br1(x) +BnBa(x)+ X 1) Ba1 i
k=1

The polynomial sequence {B,},>0 is an r-orthogonal polynomial sequence...
to be explained....

Notes

Notes

Notes




r-orthogonal polynomials

Definition. The monic r-orthogonal polynomial sequence {B} >0 for
(t1,...,1r) is such that

X Ba0dmi () = 0. 0 = et
/SX”B,,,H,l(x)du/(x) =0, n>0,

foreach j=1,...,r. (Maroni, 89)

Theorem. The monic polynomial sequence {By}n>0 is r-orthogonal iff
(=)
xBn = Bp1(x) + BnBn(x) + Z Yn,k+1Bn—k
k=1

with 75(1)r+1 #0forn>r.

Associated banded Hessenberg matrix

We can now introduce the banded Hessenberg matrix H, such that

Bo(x) Bo(x) 0
Bi(x) Bi(x) :

n . =x . —Ba(x)| -
: : 0

Bn-1(x) Bp_1(x) 1

Notes

Notes

Exercise. Find an explicit expression for H, based on the recurrence relation

.
XBa= Bpy1(x)+BaBa(x)+ ¥ %71 By .
k=1

Hence, each zero of By(x) is an eigenvalue for H,.

The matrix Hy, is not symmetric and there is no obvious way to do so for r > 2.

No reason, in general, for the eigenvalues (zeros) to be real. Nonetheless in
several examples it is the case.

An important case is when the banded Hessenberg matrix has only non zero
entries on the extremes of the band. This means that

XBp = Boy1(x) + 15 Baer.

Comments on r-orhogonality and multiple orthogonality

v

The examples seen are extensions of classical orthogonal polynomials, in
the sense that the corresponding weight functions satisfy a Pearson
equation

(9 ()W (X)) + wi(x)wi(x) =0
with deg ¢y <2 and degyy =1.

v

There are also well studied cases where r-orthogonal polynomials arise
from an extension of Hahn's classical character and this gives rise to
weight functions that are solution to a second order differential equation
(certainly not of Pearson type)! For such type of weights, the concept of
multiple orthogonality is quite natural.

v

The concept of "classical” in the context of multiple orthogonality is not
unique. Depending on which property of the very classical polynomials one
takes, this will give rise to completely independent multiple orthogonal
polynomials.

v

There are also examples of extensions of semiclassical polynomials into the
context of multiple orthogonality. Typically, examples of Angelesco
systems, such as the Jacobi-Angelesco polynomials or the Jacobi-Laguerre
polynomials. The realm of extensions goes beyond these notions...

Notes




The case of 2-orthogonal polynomials

The monic 2-OPS {Pp}p>0 for u = (ug, uy) satisfies a third order recurrence
relation (see Van Iseghem'88, Maroni'89)

Pn1(x) = (x = Bn) Pa(x) = @ Pp-1(x) = Yn-1Pn-2(x) (11)

with Po(x) =1, Pi(x)=x—o and Py(x) = (x—B1)Pi(x)— .

The case of 2-orthogonal polynomials

The monic 2-OPS {Pp}n>0 for u= (uo, uy) satisfies a third order recurrence
relation (see Van Iseghem'88, Maroni'89)

Pny1(x) = (x = Bn) Pn(x) = @ Pn-1(x) = Yn-1Pn-2(x) (11)
with Po(x) =1, Pi(x)=x—Po and Pp(x) = (x—P1)Pi(x)— .

Expressions for the recurrence coefficients follow immediately from the
definition. For instance,

< up, X" Popyn > < up, X" Pz >

242 = , n>0.
< g, X"Pyp, > Pont < u1,x"Papy1 >

Yen+1=

Conversely, we also have
n
. 1
No(n) :=< o, x" " Papi2 >= [ toks1
k=0

n
Ni(n) =< u1,x" " Popi3 >= [] toks2. for n>0.

2-orthogonal polynomials: a revisited example

The type Il multiple Laguerre polynomials of second kind for r = 2 measures on
the step-line are

Bon(xX) = Lnmy(x)r  B2n+1(X) = Lins1.n)(x)

satisfy

XBi(x) = Bpy1(x) + BaBa(x) + 1V Bo_1 + 1

1Bn—2
where

Pon=3n+0o1+1, Popt1=3n+0+2,

A = n@Bnton+ ), By =3m2+n(3+ 0+ )+ o +1,

)ég) =n(n+oq)(n+ 0y — o), 72(?1)“ =n(n+a)(n+op—oy).

Notes

Notes

Notes




Example 1 — The 2-orthogonal polynomials with constant rec coef

Notes
The sequence of polynomials {P,(x)}n>0 satisfying the recurrence relation
dno 4
Ppt1(x) = xPp(x) =3 E'Dn—Z(X)
is 2-orthogonal with respect to U = (ug, u) such that
(x3 —1)uf + 3xPuy — Sxug =0
u =3(x% —1)uh — 3x%uo
Such vector functional admits an integral representation on the real line as
follows
1
<upf(x)> = / f(x)¥ [(1+ VI3 (11— x3)3|dx
Jo
oo
+/ £(x)3¢™ | A1 v/x cos(V/3x) + Aax?sin(V3x) | dx,
0
< fx)> = /f(x)Ul(x)dx
(See Douak&Maroni'97 for further details.)
Example 3. 2-orthogonal polynomials with exponential weights
Notes
Consider the monic polynomials P, , of degree n+ m for which
/ X Py m(x)exp(=x3 + tx)dx =0, j=0,...,n—1,
JTouly
/ X Pp m(x)exp(—x3 4+ tx)dx =0, j=0,...,m—1,
JTouUl,
B}
with [ = {z € C:argz = 27/3} k=0,1,2.
(see Van Assche & Filipuk & Zhang (2015)) fo
L}
Rodrigues’ formula:
3 —1)" d" .3
X +szn.n+m(X) _ ( 3n) = (e X +tXP0,m(X))
St _(=nnan St
Py () = g g (€7 Po())
where Pp, o and Py ,, are orthogonal polynomials...
. ( Case t =0 already in Pélya and Szegé (1925).
and {Pyyc}i is 2-OPS. Special case of Gould-Hopper polynomials (1962).)
Hahn 'Classical’ 2-orthogonal polynomials
Notes

Definition
A monic 2-OPS {Pp}p>0 is "classical” in Hahn's sense when the sequence of

its derivatives {Qn}n>0, with

1
Qn(x) = mPZH(X)

is also a 2-OPS.

Hence, as a monic 2-OPS, the sequence {Qn}n>0 satisfies a third order

recurrence relation:

Qur1(x) = (x = Bn) Qn(X) = @ Qu-1(x) ~ Ta-1Qn-2(x), n>2,  (12)

with Qo =1, Q1(x) =x— o and Qa(x) = (x— 1) Q1(x) — &1.




" Classical” 2-orthogonal polynomials

On the other hand, the 2-orthogonality of {Py} >0 for U = (ug, u1)
and the 2-orthogonality of {Qp}n>0 for V = (vp,v1) implies

% u
[0 ]=e[ 2] @
and also that ,
V; u
FIEE
with
_ | %0 @01 _10 1
07[ f10 011 ] and W7[ y(x) ¢ }

where y(x) = %Pl(x) and = 7%,

whilst deg{¢0,0,90,1,¢1,1} <1 and deg¢ o <2.

" Classical” 2-orthogonal polynomials

Theorem
The monic 2-OPS {Pp}p>0 for U= (uo,u1) is "classical” iff there are
polynomials y and ¢; ;, with i,j € {0,1}, and a constant { such that

(& wllml) [ tl[2]-[2] oo

where deg{¢0,0,90.1,91.1} <1, deg10 <2 and degy =1.

Relation (15) reads as follows

([ +l2]-[5]

(Maroni& Douak'92, Maroni'99)

" Classical” 2-orthogonal polynomials

Corollary
If the monic 2-OPS {Pp}n>o for U = (ug,uy) is "classical”, then

e(x) ((q)uc)" — (0 + )~ ax))uo) +(b(x) —a'(x))uo>
) (M - d(X)Uo> ,

c(x)ur = pug—d(x)ug .

where

a(x) = 90.0(x) (91 1(x) + € ) — dr0(x) (91 (x)+1)
bx) = 96,0(x) (01200 + ) = (64,0 +1) (91,000 + ¥())
<) = 001(x) (8] 1(x) ) = 011(x) (962 (x) +1)

d(x) = 901(x) (81,00) + ¥(x)) = 01.1()8,0(x)

(16)

and

#(x) = det® = o,0(x)91,1(x) — Po,1(x)91,0(x)

Notes

Notes

Notes




" Classical” 2-orthogonal polynomials
Notes

Consequently, we have

%rﬂ»l =

2n+1 1*("+1)¢6‘1(0)
2n+3 |\ 1-ngf (0) |Pr?

and

Lengthier expressions can be obtained relating the recurrence coefficients

Bos Bo: o, and o,

Example 2. On 2-orthogonal polynomials with Bessel weights
Notes

Pn1(x) = (x = Bn) Pa(x) = @ Pp-1(x) = Yn-1Pn-2(x)

with

Br=3n%+ (0 +2B+3)n+(1+a)(1+B)

on=n(3n+a+B)(n+a)(n+p), n>1,
to=n(n+1)(n+a+1)(n+a)(n+B+1)(n+B), n>2,

They satisfy the 3rd order recurrence relation

X2PY 4+ (3+a+B)xP! + ((e+1)(B+1)—x)P, = —nP,

and are 2-OPS for U = (ug, uy) satisfying

uf —(a+B—1xuh — (x—aB)ug=0 , (a+1)(B+1)ur=—(xup)

Such vector functional U = (ug,u1) admits the following integral representation

Foo
<upf(x)> = W/O FOOXB2K, g (2yx)dx,

oo ’
< fx)> = W/O F0) (@21, _p(2/5)) dx,

(See Ben Cheikh&Douak'00 and Van Assche& Yakubovich'00.)

3-fold symmetric (not necessarily 2-orthogonal) polynomials
Notes
Definition
A monic polynomial sequence {By} >0 is 3-fold symmetric if and only if

Bp(e® x) = 5 By(x)

and

B(eF x) =¢"5" By(x), n>0.

In other words, this is to say that there exist three sequences {BH]}nzo with

j €{0,1,2} such that
Bsn(x) = BP(x3),
Bani1(x) = xBI(3),

Banta(x) = x2BI(x3),

(The sequences {BH]}nEO are the components of the cubic decomposition of
the 3-fold symmetric sequence {Bj}n>0.)
(see Barrucand&Dickinson'66)



3-fold symmetric 2-orthogonal polynomials

Notes
Whilst we are dealing with 3-fold symmetric and 2-orthogonal sequences, we
recall the following result.
Theorem (Douak & Maroni'92)
Let {Pn}n>0 be a 2-orthogonal polynomial sequence for U = (ug,u1). Then,
{Pn}n>0 is 3-fold symmetric iff if satisfies the third order recurrence relation
Pni1(x) = xPn(x) = Yo-1Pn-2(x), n> 2,
with Po(x) =1, P1(x) = x and Pa(x) = x2.
(Observe that this is a three-term recurrence relation!)
Moreover, we have
3-fold symmetric 2-orthogonal polynomials
Notes
Lemma (Douak & Maroni'92)
If the a 3-fold symmetric sequence {Pp} >0 is 2-orthogonal, then the three
components in the cubic decomposition of {Pp}n>0 are also 2-orthogonal
fulfilling the recurrence relations:
3 K]\ plk K] plk k] plk]
P10 = (o= B I ) — el PL, () — o8, PIL (),
where
[K] _
Bn" = Van—14k + Vanik + Vnt1rk, 120,
K
Oﬂr[u 1= V3n—24kVn-+k + Van—14kV3n—3+k T Vn—2+kV3n-1+k> 121,
Yo = Vn—2+kVntkVnt2+k 70, 122,
for each k =0,1,2.
3-fold symmetric 2-OPS
Notes

Theorem. (Aptekarev et al.'00)

If y>0for n>1in

Pnt1(x) = xPn(x) = ¥n—1Pn-2(x),

then {P,} >0 is a 2-OPS w.r.t. the vector of linear functionals (ug,u;) and

< g, F(x) >= L- £(x)dpto(x) an

<. F(x) >:/S F(x)dp (x) (18)

where S represents the starlike set

2
Si=Jrk with I =[0,e2"*/300),
k=0

and the measures have a common support which is a subset of S and are
invariant under rotations of 27/3.




3-fold symmetric 2-OPS

Notes

Theorem. (Ben Romdhane’08)

Let {Pn}n>0 be a 2-OPS satisfying

Pni1(x) = xPn(x) = Yp-1Pn—2(x).

If ¥, > 0, then the following statements hold

(a) If x is a zero of P3,;, then ¥ x are also zeros of P3nyj with @ = e27i/3

(b) 0'is a zero of P3,; of multiplicity j when j =1,2

(c) P3pyj has n distinct positive real zeros

(d) Between two real zeros of P33 there exist only one zero of P32

and only one zero of P31
3-fold symmetric 2-OPS
Notes
Theorem. (AL & Van Assche’18)
Let {Pn}n>0 be a 2-OPS satisfying Ppi1(x) = xPn(x) — Ya—1Pn-2(x).
If
0< ¥n < cn®+o0(n%)
(with ¢, a > 0), then the largest zero xp, is s.t.
3
Xnn < 22761/3#"/3 + o(n"‘/3).
Hahn-classical 3-fold symmetric 2-orthogonal polynomials
Notes

These satisfy a third order differential equation

Lemma (Douak&Maroni'97)

If a 2-symmetric 2-OPS {Py} >0 is "classical”, then each polynomial is a

solution of the third order differential equation

(anx® — bn)Py + cnsz;,’+1 +dnxP), 1 = enPny1
where
ap = (0n—-1)(Vnt1-1)
b =  Tas3((043)0ns2—(142))((144)One1 —(1+3))((145)Ons2—(n+4))
no - (n+3)(n+4)
= OpOpr1—1—(n—3)(0n—1)(Fp41—1)
dn = nYnp1—(n—1)0n(20n11-1)
en = nY41, forany n>1,

with ag = bg = ¢cg = dy = ep = 0.




3-fold symmetric 2-orthogonal " classical” polynomials: the simplest case

Here Qn(x) := %HP,’HI(X) = Pp(x). Additionally

Yot1 = (n+1)(n+2), and

and

7P,’,’Lrl(x)+xP,'7+1(x) =nPpy1(x), n>0.

ug —x ug=0

Remark. The polynomials appear in the Vorob'ev-Yablonski polynomials
associated with rational solutions of Painlevé Il equations (Clarkson &

Mansfield'03)

3-fold symmetric 2-orthogonal "classical” polynomials: case A

Integral representation

<ug,f> = /I_f(x)Wg(x)dx, forall fe 2,

<up,f> = /I_f(x)Wl(x)dx, forall fe 2,

where Wy :T =ToUlN UMy — R defined by

(AL&VA)

Wo(x) = Ai(x)Ir, —e 23 Ai(e 27 /3x) I, — eM 3 Ai(e?™/3x)Ir,

with rk:{w: arg(w):ZkT”},with k=0,1,2,

. . . 2
where the orientations of Iy are all taken from left to right

Plot of the zeros of P3g, P31 and Ps3;

Remarks.
- All the zeros of P(x) are located on MoUI; Ul

- n=30

n=31
n=32

- In each Iy, between two zeros of P, there is one zero of P, and Py 1.

Notes

Notes

Notes
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