
Measure Theory Third Week
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Theorem (1.4.10):

Let A be a Lebesgue measurable subset of
R such that λ(A) > 0.

The set diff (A) := {x − y | x, y ∈ A}
contains an open interval containing 0.
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Proof: Without loss of generality, we can
assume that A is compact.

With λ(A) = r > 0,

there is an open set B such that B contains
A and λ(B) < (1 + ǫ)r. for any ǫ > 0.

We require that ǫ be less than 1.

As R\B is a closed, disjoint from A

and thus has a positive distance d to A,

A + δ is contained in B for all δ satisfying
|δ| < d.
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But if there were no overlap between the sets
A and A + δ for δ < d,

then A∪ (A+ δ) would be a Lebesgue mea-
surable set of measure 2r inside of B,

which is impossible since λ(B) < (1 + ǫ)r.

So for any given δ with |δ| < d there is an
a ∈ A ∩ A + δ,

meaning that a = a′ + δ for some other
a′ ∈ A and δ = a− a′. ✷

We see that for every ǫ there is a d such that
all but an ǫ fraction of the set A is used to
get the difference set to include (−d, d).
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Theorem (1.4.11): There is a partition
of R into two parts A,B,

meaning A ∩ B = ∅ and A ∪ B = R,

such that for every finite interval I :

λ∗(A ∩ I) = λ∗(B ∩ I) = λ∗(I) and

every Lebesgue measurable subset C either
contained in A or B has measure zero.

Note: The natural idea, a homomorphism
from R to Z2 and letting A = φ−1(0) and
B = φ−1(1), is not possible.

Whenever φ(r) = 1 then what should be
φ(r

2
)?
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Proof:

Let W = Q + Z
√
2,

φ : W → Z2 is defined by

φ(a
b
+ n

√
2) = n(mod2).

Because
√
2 is irrational, φ is well defined

and a homomorphism.

Also both G0 := φ−1(0) ⊂ W and G1 :=
φ−1(1) ⊂ W are dense in R.
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Define an equivalence relation ∼ by

r ∼ s if and only if r − s ∈ W .

Let E be a set such that |E ∩ B| = 1 for
every equivalence class B.

For every r ∈ R, r = e + a
b
+ n

√
2,

for some e ∈ E, a, b ∈ Z, n ∈ Z.

A is the subset where n is even and B is the
subset where n is odd.

A and B are well defined because r cannot
equal e′ + a′

b′ + n′√2 for any other choices,

as then e and e′ would belong to the same
equivalence class.
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Assume that eitherA orB contained a Lebesgue
measurable set of positive measure.

Either A−A or B −B must contain some
member of the dense set G1, or

a0
b0
+n0

√
2 = e1+

a1
b1
+n1

√
2−e2− a2

b2
+n2

√
2

with n0 odd, both n1 and n2 either even or
odd, and e1, e2 ∈ E.

As e1 and e2 cannot be distinct (otherwise
they would represent the same equivalence
relation), n0 = n1 + n2 would be a contra-
diction.
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Now suppose that either A∩ I or B∩ I has
an outer Lebesgue measure less than I for
some finite interval I .

That meansA∩I orB∩I can be covered by
some open set of measure strictly less than
I .

implying that either I\A = I∩B or I\B =
I ∩A contains a closed set of positive mea-
sure, which neither does. ✷
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A measure µ of a measure space (X,A, µ)
is complete

if A ∈ A, µ(A) = 0 and B ⊆ A imply that
B ∈ A.

With (X,A, µ) a measure space,

the completion Aµ is the collection of sub-
sets A

for which there are sets E,F ∈ A
with E ⊆ A ⊆ F and µ(F\E) = 0.

The completion µ is the measure defined on
Aµ

such that µ(A) = µ(E) = µ(F ).

This is well defined as there cannot be two
such levels.
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Lemma (1.5.1): Let (X,A, µ) be a mea-
sure space.

Aµ is a σ-algebra on X that includes A
and µ is a measure defined on Aµ that is
complete.
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Proof: Containment of A in Aµ and clo-
sure by complementation are trivial.

If A1, A2, . . . is a sequence of sets in Aµ

and Ei and Fi are sequences in A
with ∀ i Ei ⊆ Ai ⊆ Fi and µ(Fi\Ei) = 0

then by countable additivity

0 =
∑∞

i=1
µ(Fi\Ei) ≥ µ(∪∞

i=1
(Fi\Ei)) ≥

µ(∪∞
i=1

Fi\ ∪∞
i=1

Ei) ≥ 0.

And if the A1, A2, . . . are disjoint the same
pairs Ei and Fi of sequences show that
∑∞

i=1
µ(Fi) =

∑∞
i=1

µ(Ei) ≤ µ(∪∞
i=1

Ai) ≤∑∞
i=1

µ(Fi),

hence equality. ✷
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Let (X,A, µ) be a measure space,

and A any subset of X .

µ∗(A) = inf{µ(B) | A ⊆ B, B ∈ A} and

µ∗(A) = sup{µ(B) | A ⊇ B, B ∈ A} .

13



Lemma: µ∗ is an outer measure.

Proof: µ∗(∅) = 0 and monotonicity are
trivial.

Let A1, A2, . . . be a sequence of sets.

Suppose that
∑∞

i=1
µ∗(Ai) < ∞:

For every i = 1, 2, . . . let Bi be a set in A
containing Ai

such that µ(Bi) ≤ µ∗(Ai) +
ǫ
2i
.

B = ∪∞
i=1

Bi includes A = ∪∞
i=1

Ai and
∑∞

i=1
µ∗(Ai) ≥

∑∞
i=1

µ(Bi) − ǫ ≥ µ(B) −
ǫ ≥ µ∗(A)− ǫ. ✷
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Lemma (1.5.5) Given that µ∗(A) < ∞,
A belongs to Aµ if and only if µ∗(A) =
µ∗(A).

IfA belongs toAµ then there are setsE,F ∈
A such that E ⊆ A ⊆ F and µ(F\E) = 0.

From µ(E) ≤ µ∗(A) ≤ µ∗(A) ≤ µ(F )

all are equal.
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On the other hand, if µ∗(E) = µ∗(E) < ∞
there are sequences of sets A1, A2, . . . and
B1, B2, . . .

with Ai ⊆ E and E ⊆ Bi and

µ(Ai) ≥ µ∗(E)− 1

2i
and µ∗(E)+ 1

2i
≥ µ(Bi).

The sets A = ∪∞
i Ai and B = ∩∞

i Bi

are both in A and have the same common
measure size µ∗(E) = µ∗(E).
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