Measure Theory: Exercises 4

1. Show that if $f : \mathbf{R} \to \mathbf{R}$ is differentiable everywhere on \mathbf{R} , this its derivative f' is Borel measurable.

2. For every i = 1, 2, ... define the function $f_i : [0, 1] \to \{0, 1\}$ by $f_i(t) = 1$ if the *i*th digit in the decimal representation of *t* is odd and $f_i(t) = 0$ if the *i*th digit in the decimial representation of *t* is even. For example, if x = .74182... then $f_1(x) = 1$, $f_2(x) = 0, f_3(x) = 1$, and so on. Show that there cannot exist a measure function $f : [0, 1] \to \{0, 1\}$ such that $\lim_{i\to\infty} f_i = f$ a.e.

3.Let f, g be continuous real-valued functions defined on **R**. Show that if $f = g \lambda$ -almost everywhere then f = g everywhere.

4. Consider the function g(x) = 0 if x = 0 or x is irrational, and $g(x) = \frac{1}{q}$ if $x = \frac{p}{q}$ and p, q are relatively prime and q > 0. Show that g is continuous λ -almost everywhere.