Measure Theory: Exercises 1

- 1. Consider the collection \mathcal{A} of subsets A_1, A_2, \ldots of the integers such that $A_i = \{ni \mid n \text{ is an integer}\}.$ Determine what is $\sigma(\mathcal{A})$.
- 2. Give an example of a decreasing sequence $B_1 \supset B_2 \supset \cdots$ such that none of the B_i has finite measure and $\lim_{i\to\infty} \mu(B_i) \neq \mu(\bigcap_{i=1}^{\infty} B_i)$.
- 3. If A_1, \ldots, A_n are measurable sets each of finite measure show that $\mu(\bigcup_{i=1}^n A_i) = \sum_{S \subseteq \{1,2,\ldots,n\}} (-1)^{|S|+1} \mu(\bigcap_{i \in S} A_i)$.
- 4. Determine the smallest sigma algebra on \mathbf{R} that is generated by the collection of all one-point subsets of \mathbf{R} .