Measure Theory: Exercises 2

1. Show that for each bounded subset A of **R** that there is a Borel set B of **R** such that $A \subseteq B$ and $\lambda^*(B) = \lambda^*(A)$.

2. Show that a subset A of the real numbers is Lebesgue measurable if and only if for every finite length interval I it holds that $\lambda^*(A \cap I) + \lambda^*(I \setminus A) = \lambda^*(I)$.

3. Let A be a subset of **R**. Show that the following are equivalent:

(a) A is Lebesgue measurable,

(b) A is the union of an F_{σ} and a set of Lebesgue measure zero, (c) there is a set B that is an F_{σ} and satisfies $\lambda^*(A\Delta B) = 0$ (where Δ stands for symmetric difference).

4. Show that there is a closed subset C of [0,1] of positive Lebesgue measure that contains no open subset of [0,1].