Measure Theory: Exercises 1

1. Consider the collection \mathcal{A} of subsets A_{1}, A_{2}, \ldots of the integers such that $A_{i}=\{n i \mid n$ is an integer $\}$.
Determine what is $\sigma(\mathcal{A})$.
2. Give an example of a decreasing sequence $B_{1} \supset B_{2} \supset \cdots$ such that none of the B_{i} has finite measure and $\lim _{i \rightarrow \infty} \mu\left(B_{i}\right) \neq$ $\mu\left(\cap_{i=1}^{\infty} B_{i}\right)$.
3. If A_{1}, \ldots, A_{n} are measurable sets each of finite measure show that $\mu\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{S \subseteq\{1,2, \ldots, n\}}(-1)^{|S|+1} \mu\left(\cap_{i \in S} A_{i}\right)$.
4. Determine the smallest sigma algebra on \mathbf{R} that is generated by the collection of all one-point subsets of \mathbf{R}.
