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A (very short) Introduction to Cardinals

I The cardinality of a set A is equal to the cardinality of a set
B, denoted |A| = |B|, if there exists a bijection from A to B.

I A countable set A is an infinite set that has the same
cardinality as the set of natural numbers N. That is, the
elements of the set can be listed in a sequence
A = {a1, a2, a3, . . . }.
If an infinite set is not countable, we say it is uncountable.

I The cardinality of the set of real numbers R is called
continuum.
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Examples of Countable Sets

I The set of integers Z = {0, 1,−1, 2,−2, 3,−3, . . . } is
countable.

I The set of rationals Q is countable.
For each positive integer k there are only a finite number of
rational numbers p

q in reduced form for which |p|+ q = k. List
those for which k = 1, then those for which k = 2, and so on:

Q =
{0

1
,
1

1
,
−1

1
,
2

1
,
−2

1
,
1

2
,
−1

2
,
1

3
,
−1

3
, . . .

}
I Countable union of countable sets is countable.

This follows from the fact that N can be decomposed as the
union of countable many sequences:

1, 2, 4, 8, 16, . . .
3, 6, 12, 24, . . .
5, 10, 20, 40, . . .
7, 14, 28, 56, . . .

3 / 96



Cantor Theorem

Theorem (Cantor) For any sequence of real numbers
x1, x2, x3, . . . there is an x ∈ R such that x 6= xn for every n. That
is, R is uncountable.

Proof.

I Let I1 be a closed interval such that x1 6∈ I1.

I Let I2 be a closed subinterval of I1 such that x2 6∈ I2.

I Proceeding inductively, let In be a closed subinterval of In−1

such that xn 6∈ In.

I The nested sequence of intervals has a non-empty
intersection. If x ∈

⋂
In, then x 6= xn for any n.
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Homeworks

1. Show that every (open or closed) interval has continuum
many points.

2. Show that N has countably many finite subsets and
continuum many infinite subsets.

3. Show that there are continuum many irrational numbers.

4. Show that there are continuum many infinite sequences of 0’s
and 1’s.

5. The Cantor set is created by repeatedly deleting the open
middle thirds of a set of line segments. One starts by deleting
the open middle third (1

3 , 2
3) from the interval [0, 1], leaving

two line segments: [0, 1
3 ] and [23 , 1]. Next, the open middle

third of each of these remaining segments is deleted, leaving
four line segments: [0, 1

9 ], [29 , 1
3 ], [23 , 7

9 ] and [89 , 1]. And so on.
The Cantor set contains all points in the interval [0, 1] that
are not deleted at any step in this infinite process.
Show that the Cantor set has continuum many points.
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Baire Category Theorem and the Banach-Mazur Game

I A set A ⊂ R is dense in the interval I , if A has a non-empty
intersection with every subinterval of I . It is dense, if it is
dense in every interval.

I More generally: a subset A of a topological space X is dense
if it meets each non-empty open subset of X .

I A set A ⊂ R is nowhere dense if it is not dense in any interval,
i.e. every interval has a subinterval contained in the
complement of A.

I More generally: a subset A of a topological space X is
nowhere dense if every non-empty open subset of X has a
non-empty open subset contained in the complement of A.

Example. The set of rational numbers Q ⊂ R is countable and
dense. The Cantor set is not countable and it is nowhere dense.

Remark. Any subset of a nowhere dense set is nowhere dense.
The union of finitely many nowhere dense sets is nowhere dense.
The closure of a nowhere dense set is nowhere dense.
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Baire Category Theorem

Definition.

I A set is said to be of first category if it can be represented as
a countable union of nowhere dense sets.

I A set is of second category if it is not of first category.

I The complement of a first category set is called residual.

Theorem (Baire Category Theorem) Every non-empty open
subset of R is of second category, i.e. it cannot be represented as a
countable union of nowhere dense sets.

Proof.

I Suppose G =
⋃

n An, where G is non-empty open and each An

is nowhere dense. Choose an interval I0 ⊂ G .

I Choose a closed subinterval I1 ⊂ I0 disjoint from A1. Choose a
closed subinterval I2 ⊂ I1 disjoint from A2. And so on.

I The intersection
⋂

In is non-empty, and it is disjoint from
each An. This is a contradiction since

⋂
In ⊂ I0 ⊂ G .
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Duality on R

Sets of measure zero and sets of first category are “small” in one
sense or another:

Both are σ-ideals.
Both include all countable subsets.
Both include some uncountable subsets, e.g. Cantor set.
Neither class includes intervals.
The complement of any set of either class is dense.
Etc...

Duality Principle

I sets of measure zero ↔ sets of first category

I sets of positive measure ↔ sets of second category

I sets of full measure ↔ residual sets
(We will make this explicit later.)
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However...

Theorem. R can be decomposed into the union of two sets A and
B such that A is of first category and B is of measure zero.

Proof.

I Let q1, q2 . . . be an enumeration of Q.

I Let Iij denote the open interval (qi − 1
2i+j , qi + 1

2i+j ).

I Let Gj =
⋃∞

i=1 Iij and B =
⋂∞

j=1 Gj .

I Then B ⊂ Gj for each j , hence the measure of B is at most∑∞
i=1 |Iij | =

∑∞
i=1

2
2i+j = 1

2j−1 → 0 as j →∞. Hence B is a
null set.

I On the other hand, Gj is dense and open, therefore its
complement is nowhere dense.

I A = R \ B =
⋃∞

j=1(R \ Gj) is of first category.
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The Banach-Mazur Game

Player (I) is “dealt” an arbitrary subset A ⊂ R. The game is played
as follows:

I Player (I) chooses arbitrarily a closed interval I1.

I Player (II) chooses a closed interval I2 ⊂ I1.

I Player (I) chooses a closed subinterval I3 ⊂ I2.

I Etc... Together the players determine a nested sequence of
closed intervals I1 ⊃ I2 ⊃ . . . , (I) choosing those with odd
index, (II) those with even index.

I If
⋂

In has a point common with A then (I) wins; otherwise
(II) wins.

Question. Which player can ensure, by choosing his intervals
cleverly, that he will win, no matter how well his opponent plays?
That is, which player has a “winning strategy”?
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Winning Strategy

A strategy for either player is a rule that specifies what move he
will make in every possible situation:

I At his nth move, (II) knows which intervals I1, I2, . . . , I2n−1

have been chosen before (and he knows the set A). From this
information, his strategy must tell him which closed interval
to choose for I2n.

I Thus, a strategy for (II) is a sequence of interval-valued
functions fn(I1, I2, . . . , I2n−1). The rules of the game demand
that fn(I1, I2, . . . , I2n−1) ⊂ I2n−1. The function fn must be
defined for all intervals that satisfy

I1 ⊃ I2 ⊃ · · · ⊃ I2n−1 and I2k = fk(I1, . . . , I2k−1). (∗)

I This is a winning strategy of (II), if
⋂

In is disjoint from A for
any sequence of intervals that satisfy (∗). The winning
strategy of (I) is defined analogously.
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Main Theorem

Theorem. Player (II) has a winning strategy if and only if A is of
first category.

Remark. Player (II) cannot have a winning strategy if A contains
an interval. So this theorem implies Baire Category Theorem: sets
containing intervals, in particular, non-empty open sets are of
second category.

Proof of: A is of first category =⇒ (II) has a winning strategy.

I Write A =
⋃

An, where each An is nowhere dense.

I In his nth step, player (II) can choose an interval I2n disjoint
from An.

I Then
⋂

In is disjoint from each An, hence it is disjoint from
A.
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Proof of: (II) has a winning strategy =⇒ A is of first
category

I Let f1, f2, . . . be a winning strategy for (II).
I Choose closed intervals I1, I2, . . . such that the intervals

Ji = f1(Ii ) are pairwise disjoint and their union is dense. Then
A1 = R \

⋃
i Ji is nowhere dense.

I Choose closed intervals Ii1, Ii2, Ii3, . . . inside each interval Ji ,
such that the intervals Jij = f2(Ii , Ji , Iij) are disjoint, and their
union is dense in Ji . Then A2 = R \

⋃
ij Iij is nowhere dense.

I Choose a dense set of closed intervals Iij1, Iij2, Iij3, . . . inside
each interval Jij , such that Jijk = f3(Ii , Ji , Iij , Jij , Iijk) are
disjoint, and their union is dense in Jij . And so on.

I Claim: A ⊂
⋃

n An. Suppose there is x ∈ A \
⋃

n An.
I Since x 6∈ A1, therefore there is an index i such that x ∈ Ji .
I Since x 6∈ A2, there is an index j such that x ∈ Jij .
I And so on. This defines a nested sequence of intervals so that

x is in their intersection. Since x ∈ A, this contradicts the
fact that Ii , Ji , Iij , Jij , Iijk , . . . is a winning game for (II).
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Complete Metric Spaces

I A metric space is a set X with a distance function d(x , y)
defined for all pairs of points of X and satisfying:

I d(x , y) > 0 for all x 6= y , and d(x , x) = 0
I d(x , y) = d(y , x)
I d(x , z) ≤ d(x , y) + d(y , z) (triangle inequality)

I A sequence x1, x2, . . . of points of X converges to a point
x ∈ X if d(xn, x) → 0. A sequence is convergent, if it
converges to some point.

I A sequence of points x1, x2, . . . is called a Cauchy sequence, if
for each ε > 0 there is a positive integer n such that
d(xi , xj) < ε for all i , j ≥ n.

I Every convergent sequence is Cauchy, but the converse is not
generally true. However, there is an important class of metric
spaces in which every Cauchy sequence is convergent. Such a
metric space is called complete.
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Baire Category Theorem in Complete Metric Spaces

I We denote B(x , r) = {y : d(x , y) < r} the ball of centre x
and radius r .

I A set G ⊂ X is open, if for each x ∈ G , G contains some ball
with centre x . The balls B(x , r) are open sets, and arbitrary
unions and finite intersections of open sets are open. The
complement of an open set is closed. A set F ⊂ X is closed if
and only if x1, x2, · · · ∈ F , xn → x imply x ∈ F .

I The smallest closed set that contains a set A is the closure of
A. It is denoted by cl(A). The largest open set contained in A
is called the interior of A. It is denoted by int(A).

I The notion of open and closed sets allow us to define dense
sets, sets of first and second category, etc.

Definition. A topological space X is called a Baire space if every
non-empty open set in X is of second category.

Theorem. Every complete metric space is a Baire space.
15 / 96



Homeworks

1. Prove the theorem that every complete metric space is a Baire
space. (Where did your proof use that the metric space is
complete? It should.)

2. A topological space is called separable, if it contains a
countable dense set. A separable complete metric space is
called a Polish space.
Formulate an analogue of Banach-Mazur Game in Polish
spaces, and prove that (II) has winning strategy if and only if
A is of first category.

3. The Choquet Game is played as follows. Player (I) chooses a
non-empty open set G1 ⊂ X . Player (II) chooses a non-empty
open subset G2 ⊂ G1. Player (I) chooses a non-empty open
subset G3 ⊂ G2. And so on. Player (I) wins if

⋂
Gn = ∅.

Find a winning strategy for X = R.
Find a winning strategy if X is a Polish space.
Prove that Player (I) has no winning strategy if and only if X
is a Baire space.
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Concluding Remarks

In Homework 3, “Player (I) has no winning strategy” is not the
same as “Player (II) has a winning strategy”. For infinite games it
may happen that none of the two players have a winning strategy.

Even in the Banach-Mazur Game: we proved that Player (II) has
winning strategy if and only if A is of first category. Denote
B = R \ A. It is not difficult to see that Player (I) has a winning
strategy if and only if there is an interval I1 so that I1 ∩B is of first
category. Then Player (I) can choose this interval I1 as his first
move, then he plays so that

⋂
n In is disjoint from B.

Fact. There is a set A ⊂ R such that A is of second category, and
I ∩ B is of second category for each interval I . Therefore none of
the players has a winning strategy in the corresponding
Banach-Mazur Game.
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Baire Category Theorem as a Proof of Existence

Baire Category Theorem is an important tool in analysis for
“proving existence”. An illustrating example is the proof of the
existence of nowhere differentiable functions.

Many examples of nowhere differentiable continuous functions are
known, the first having been constructed by Weierstrass:

f (x) =
∞∑

n=0

an cos(bnπx),

where 0 < a < 1, b is a positive odd integer, and ab > 1 + 3
2π.

It is quite hard to prove that Weierstrass’ function is nowhere
differentiable. But Weierstrass’ function is far from being an
isolated example: Banach gave a simple proof that, in the sense of
category, almost all continuous functions are nowhere
differentiable. It turns out that, in fact, it is exceptional for a
continuous function to have a derivative anywhere in [0, 1]:
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Typical Continuous Functions

Theorem (Banach) A typical continuous function is nowhere
differentiable.

Definition. By typical we mean that all continuous functions,
except for those in a first category subset of C [0, 1], exhibit the
behaviour we describe. That is, a property T is typical, if
{f ∈ C [0, 1] : f has property T} is residual in C [0, 1].

Note that if T1,T2, . . . are typical properties, then “T1 and T2

and. . . “ is also typical.

As usual, C [0, 1] denotes the space of all continuous functions
defined on the interval [0, 1], with the so-called uniform metric:
d(f , g) = maxx∈[0,1] |f (x)− g(x)|. The metric is called uniform
because fn → f if and only if fn converges to f uniformly. This is a
Polish space, so Baire Category Theorem can be applied for C [0, 1].
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Proof of Banach Theorem

A function f is said to be locally increasing at a point x , if there is
a small neighbourhood of x in which f (y) ≤ f (x) for all y ≤ x and
f (y) ≥ f (x) for all y ≥ x . The proof of Banach Theorem is based
on the following lemma:

Lemma. A typical continuous function is not locally increasing at
any point.

Since shifted copies of residual sets are residual, as a corollary of
the lemma we can see:

Corollary. For any given g ∈ C [0, 1] and for a typical continuous
function f ∈ C [0, 1], f + g is not locally increasing at any point.

By choosing g(x) = nx (where n ∈ N is arbitrary), we can see that
f (x) + nx is not locally increasing at any point for a typical
continuous function f . In particular, f cannot have a derivative
f ′(x) > −n at any point.
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Proof of the Lemma

Let An denote the set of those continuous functions for which
there is an x such that f is locally increasing on [x − 1

n , x + 1
n ]. It

is enough to show that the sets An are closed and they have empty
interior. This shows they are nowhere dense.

I An is closed for each n: suppose that f1, f2, · · · ∈ An, and
fn → f uniformly. We need to show that f ∈ An.
For each fk there is an xk so that fk is locally increasing on
[xk − 1

n , xk + 1
n ]. By choosing a subsequence, we can assume

that x1, x2, . . . converges, say to a point x . It is easy to verify
that f is locally increasing on [x − 1

n , x + 1
n ].

I An has empty interior: we need to show that An contains no
open ball B(f , r) = {g ∈ C [0, 1] : ∀x , |f (x)− g(x)| ≤ r}.
Indeed, it is easy to see that for every f ∈ C [0, 1] and for
every r > 0 we can choose an appropriate saw-tooth function
g ∈ C [0, 1] such that g ∈ B(f , r) but g 6∈ An.
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Another Application: Besicovitch Sets

A Besicovitch set is a subset of Rn which contains a line segment
in each direction. Besicovitch sets are also known as Kakeya sets.

In 1917 Besicovitch was working on a problem in Riemann
integration, and reduced it to the question of existence of planar
sets of measure 0 which contain a line segment in each direction.
He then constructed such a set.

Many other ways to construct Besicovitch sets of measure zero
have since been discovered. Here we show a proof of T.W. Körner
(Studia Math. 158 (2003), no. 1, 65–78.) of the existence of
Besicovitch sets in R2. This proof shows that “a typical
Besicovitch set” has measure zero. Of course, in order to
understand what we mean by a “typical Besicovitch set” first we
need to define an appropriate metric space whose “points” are
Besicovitch sets.
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Hausdorff Distance

Definition. Let F1 and F2 be two non-empty closed subsets of the
unit square [0, 1]2. The Hausdorff distance dH(F1,F2) is the
minimal number r such that the closed r -neighborhood of F1

contains F2 and the closed r -neighborhood of F2 contains F1.

It is easy to check that dH is a metric; the resulting metric space is
denoted by F .

The “points” of F are the non-empty closed subsets of [0, 1]2.

F is separable, since finite sets of points with rational coordinates
form a countable dense subset of F .
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F is complete

Proof. Let F1,F2, . . . be a Cauchy sequence in F . Let F be the
set of limit points of sequences xk with xk ∈ Fk . We show that F
is the limit of the sequence Fk .

1. F is not too large:
I Pick ε > 0. Take N so large that m, n ≥ N implies

dH(Fm,Fn) < ε.
I Since Fn is in the ε-neighbourhood of FN for each n ≥ N,

clearly F is also in the ε-neighbourhood of FN .

2. F is not too small:
I Pick Ni strictly increasing so that m, n ≥ Ni implies

dH(Fm,Fn) < ε
2i .

I For any x ∈ FN1 there are points xk ∈ Fk for each N1 < k ≤ N2

for which d(x , xk) < ε
2 . Similarly, there are points xk ∈ Fk for

N2 < k ≤ N3 for which d(xN2 , xk) < ε
4 . And so on.

I This defines a sequence xk converging less than ε
2 + ε

4 + · · · = ε
away from x , hence FN1 is in the ε-neighbourhood of F .
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Construction of Besicovitch sets: Main Lemma

Notation. Let K denote the set of closed subsets of [0, 1]2 that
can be written as a union of line segments connecting the top and
bottom sides of [0, 1]2, containing at least one line segment of
each direction of angle between 60◦ and 120◦.

One checks easily that K is a closed subset of F . In particular, K
is complete.

Our aim is to show that a typical element of K has Lebesgue
measure zero. Then, taking the union of three rotated copies of a
null set K ∈ K we obtain a Besicovitch set of measure zero. It is
enough to prove the following lemma:

Main Lemma. Let I ⊂ [0, 1] be any line segment of length ε.
Then a typical element of K intersects each horizontal line
segment of the strip S = {(x , y) ∈ [0, 1]2 : y ∈ I} in a set of linear
measure at most 100ε.
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Proof of Main Lemma
Let L denote the set of those K ∈ K for which K ∩ S can be
covered by finitely many triangles whose union meets each
horizontal line segment of S in a set of measure less than 100ε.
Clearly, L is an open subset of K.

Claim. L is dense.

Proof. Let K ∈ K and δ > 0. Choose finitely many line segments
L1, L2, . . . , Ln of angles 60◦ = θ1 < θ2 < · · · < θn = 120◦

connecting the top and bottom sides of [0, 1]2 so that

1. dh(
⋃n−1

k=1 Lk ,K ) < δ;

2. |θk+1 − θk | < δ for k = 1, 2, . . . , n − 1.

3. Let Pk denote the intersection of Lk and of the horizontal
middle line of S . Then the line segments passing through the
points Pk of angle in [θk , θk+1] join the top and bottom sides
of [0, 1]2.

Let L be the union of all line segments as in 3. If δ is small
enough, then dH(K , L) < ε and L ∈ L.
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Third Application: Typical Homeomorphisms

A bijection f is called a homeomorphism, if it is continuous and it
has a continuous inverse.

Remark. If f : [0, 1] → [0, 1] is a homeomorphism then it is either
strictly increasing or strictly decreasing. Hence x , f (x), f (f (x)), . . .
is a monotone sequence for each x ∈ [0, 1]. However, the
homeomorphisms of the square [0, 1]2 are more interesting:

Theorem. There is a homeomorphism T : [0, 1]2 → [0, 1]2 such
that x ,T (x),T (T (x)), . . . is dense in [0, 1]2 for some x.

Notation. We denote x = T 0(x), T (x) = T 1(x),
T (T (x)) = T 2(x), T (T (T (x))) = T 3(x), etc. Also T−1(x) is the
inverse image of x , T−2(x) = T−1(T−1(x)), etc.

T 0(x),T 1(x),T 2(x), . . . is called the orbit of x .
A point x is recurrent, if for any open set G 3 x there is an n ≥ 1
so that T n(x) ∈ G . That is, its orbit has a subsequence
converging to x .
The point x is periodic, if its orbit is periodic.

27 / 96



Metric on Homeomorphisms

Our aim is to show that for a “typical” homeomorphism there is an
x with dense orbit. A metric on the space of all homeomorphisms
of [0, 1]2:

d(S ,T ) = max
x∈[0,1]2

|T (x)− S(x)|+ max
x∈[0,1]2

|T−1(x)− S−1(x)|

That is, homeomorphisms T1,T2, . . . converge to T if Tn → T
uniformly and T−1

n → T−1 uniformly. With this metric, the space
of homeomorphisms is a complete metric space (see homeworks).
We make the problem harder and demand in addition that
T : [0, 1]2 → [0, 1]2 preserves measure (that is, each set X has the
same measure as its image T (X )):

Theorem. For a typical measure preserving homeomorphism
T : [0, 1]2 → [0, 1]2, the orbit of a typical point x ∈ [0, 1]2 is dense.

The set of all measure preserving homeomorphisms is a closed
subset of all homeomorphisms, so it is also a complete metric
space. We denote it by M.
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Poincaré Recurrence Theorem

Lemma (Poincaré Recurrence Theorem)
Let T be a measure preserving homeomorphism. Then all points
are recurrent except a set of first category and measure zero.

Proof.

I Let Q1,Q2, . . . be an enumeration of all open squares with
rational vertices contained in [0, 1]2. Need to show that, for
each k, {x ∈ Qk : T n(x) 6∈ Qk for any n ≥ 1} is of first
category and measure zero.

I Fix k and let R = Qk \
⋃∞

n=1 T−n(Qk).

I The sets R,T (R),T 2(R), . . . all have the same measure.
They are also pairwise disjoint: indeed, if T i (R) ∩ T j(R) 6= ∅
for some i < j , then T i−j(Qk) ∩ R ⊃ T i−j(R) ∩ R 6= ∅,
contradiction). So they must have zero measure.

I It is also clear that R is (relatively) closed in Qk , and since it
has zero measure, it has empty interior. Closed sets of empty
interior are nowhere dense.
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Further Lemmas

Lemma. For a typical T ∈ M, a typical point x ∈ [0, 1]2 is
non-periodic. (Proof: Homework.)

Lemma. Let Q1,Q2, . . . be an enumeration of squares as before.
Then Eij =

⋃∞
k=1{T ∈ M : Qi ∩ T−k(Qj) 6= ∅} is dense in M.

Proof. Fix a homeomorphism T for which a typical point x is
non-periodic, and a small ε > 0. By Poincaré Recurrence Theorem,
a typical x ∈ [0, 1]2 is recurrent. Choose x1, x2, . . . , xN so that
B(x1, ε) ⊂ Qi , B(xN , ε) ⊂ Qj , and B(xk , ε) ∩ B(xk+1, ε) 6= ∅.
Choose a recurrent non-periodic point xk from B(xk , ε), and let
nk ≥ 1 with T nk (xk) ∈ B(xk , ε). Furthermore, let xk be chosen so
that it does not belong to the orbit of any of the points
x1, x2, . . . , xk−1.
It is easy to define a homeomorphism S ∈ M that moves each
point of [0, 1]2 by at most 10ε, identity in a neighborhood of all
the points T (xk),T 2(xk), . . . ,T nk−1(xk) for all k, and it maps
T nk (xk) to xk+1. Then the homeomorphism (S ◦ T )n1+n2+···+nN

takes x1 to xN . Since d(S ◦ T ,T ) ≤ 10ε, Eij is dense. 30 / 96



Proof of the Theorem

Recall that we are proving:

Theorem. For a typical measure preserving homeomorphism
T : [0, 1]2 → [0, 1]2, the orbit of a typical point x ∈ [0, 1]2 is dense.

Proof.

I By the previous Lemma,
Eij =

⋃∞
k=1{T ∈ M : Qi ∩ T−k(Qj) 6= ∅} is dense in M. It is

also clear that Eij is open. Hence
⋂

ij Eij is residual.

I For any T ∈
⋂

ij Eij we have Qi ∩
(⋃∞

k=1 T−k(Qj)
)
6= ∅ for all

i , j . Hence Gj =
⋃∞

k=1 T−k(Qj) is a dense open subset of
[0, 1]2.

I Then
⋂

j Gj is a residual subset of [0, 1]2. For any x ∈
⋂

j Gj

and for any j , T k(x) ∈ Qj for some k, hence the orbit of x is
dense.
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Homeworks

1. Prove that C [0, 1] is a Polish space.

2. Let A ⊂ [0, 1] be an arbitrary set of first category. Is it true
that f (A)

I has measure zero
I is of first category

for a typical continuous function f ?

3. Show that

d(S ,T ) = max
x∈[0,1]2

|T (x)− S(x)|+ max
x∈[0,1]2

|T−1(x)− S−1(x)|

is a complete metric on the space of all homeomorphisms of
[0, 1]2.

4. Prove that for a typical measure-preserving homeomorphism
of [0, 1]2, a typical point x ∈ [0, 1]2 is non-periodic.

5. Is it true that for a typical homeomorphism of [0, 1]2 (without
assuming measure-preserving) there is an x with dense orbit?

32 / 96



Measurable and Baire Sets
An interval I ⊂ Rd is a rectangular parallelepiped with edges
parallel to the axes. It is the product of n 1-dimensional intervals.
The volume of I is denoted by |I |.
The infimum of the sums

∑
|Ik |, for all sequences I1, I2, . . . of

open intervals that cover E , is called the outer (Lebesgue) measure
of E . It is denoted by λ∗(E ).

Facts.

I If A ⊂ B, then λ∗(A) ≤ λ∗(B).

I If A =
⋃∞

k=1 Ak , then λ∗(A) ≤
∑∞

k=1 λ∗(An).

I For any interval I , λ∗(I ) = λ(I ).

Definition. A set E is a null set, if λ∗(E ) = 0.

Definition. E is measurable, if for every ε > 0 there is a closed set
F and an open set G such that F ⊂ E ⊂ G and λ∗(G \ F ) < ε.

Proposition. Any interval, open set, closed set, null set is
measurable.
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Sigma-algebra of Measurable Sets

Theorem. The class of measurable sets is the σ-algebra generated
by open sets together with null sets. The outer measure λ∗ is
countably additive on measurable sets; it is called Lebesgue
measure and it is denoted by λ. It is a complete measure.

I A class of sets S is called σ-algebra, if it contains the
countable intersections, countable unions, and complements
of its members:
A1,A2, · · · ∈ S =⇒

⋂∞
n=k Ak ∈ S ,

⋃∞
k=1 Ak ∈ S , Rd \ Ak ∈ S .

I For any class of sets there is a smallest σ-algebra that
contains it; namely, the intersection of all such σ-algebras.
This is called the σ-algebra generated by the sets.

I A function f : S → R is countably additive, if
f (

⋃∞
k=1 Ak) =

∑∞
k=1 f (Ak) holds whenever A1,A2, . . . are

disjoint members of S .
I When every subset of a null set belongs to S , it is said to be

complete.
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Regularity Properties

Since the σ-algebra of measurable sets includes all intervals, it
follows that it includes all open sets, all closed sets, all Fσ sets
(countable unions of closed sets), all Gδ sets (countable
intersections of open sets), etc. Moreover:

Theorem. A set E is measurable if and only if it can be written as
an Fσ set plus a null set (or as a Gδ set minus a null set).

Proof. If E is measurable, for each n there is a closed set Fn ⊂ E
and an open set Gn ⊃ E such that λ(Gn \ Fn) < 1/n. Then⋃∞

n=1 Fn is Fσ, and E \
⋃∞

n=1 Fn is a null set since it is contained in
Gn \ Fn for each n. Similarly,

⋂∞
n=1 Gn is Gδ, and (

⋂∞
n=1 Gn) \ E is

a null set.

Theorem.

I For any set E , λ∗(E ) = inf{λ(G ) : E ⊂ G ,G is open}.
I If E is measurable, then

λ∗(E ) = sup{λ(F ) : F ⊂ E ,F is bounded and closed}.
(Conversely, if this equation holds and λ∗(E ) < ∞, then E is
measurable.) 35 / 96



Lebesgue Density Theorem

Definition. A measurable set E has density d at a point x , if
limr→0

λ(E∩B(x ,r))
λ(B(x ,r)) exists and is equal to d .

Notation. Let φ(E ) denote the set of those points x ∈ Rd at
which E has density 1. (Then E has density 0 at each point of
φ(Rd \ E ).)

Theorem (Lebesgue Density Theorem)
For any measurable set E , λ(E 4 φ(E )) = 0.

This implies that E has density 1 at almost all points of E and
density zero at almost all points of Rd \ E . For instance, it is
impossible that a measurable set has density 1/2 everywhere.

Lemma (Vitali Covering Theorem)
Let B be a collection of balls centered at the points of a set E , so
that B contains arbitrary small balls at each point x ∈ E. Then B
has a subcollection B′ that consists of disjoint balls of B and
covers all points of E except for a null set.
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Proof of Lebesgue Density Theorem

I It is enough to show that E \ φ(E ) is a null set. We may also
assume that E is bounded. Fix ε > 0. Let A denote the set of
those x ∈ E for which there is an arbitrary small ball B(x , r)

with λ(E∩B(x ,r))
λ(B(x ,r)) < 1− ε. It is enough to show that A is a null

set.

I Let G ⊃ A be an open set with λ(G ) < λ(A)
1−ε , and let B

denote the collection of all balls B(x , r) ⊂ G as above. We
apply Vitali Covering Theorem to choose a subcollection B′
that covers A except for a null set.

I The total measure of the balls of B′ is at most λ(G ) < λ(A)
1−ε

and at least∑
B∈B′

λ(E ∩ B)

1− ε
=

λ(E ∩ (
⋃

B∈B′ B))

1− ε
≥ λ(A)

1− ε
,

a contradiction.
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Proof of Vitali Covering Theorem

We can assume that E is bounded. We construct inductively a
disjoint sequence of members of B.

I Let ρ0 be the supremum of the radii of the balls in B. We can
assume that ρ0 < ∞. Choose B1 of radius at least ρ0/2.

I Having chosen B1, . . . ,Bn, let Bn be the set of members of B
that are disjoint from B1, . . . ,Bn. Let ρn be the supremum of
the radii of the balls in Bn and choose Bn+1 ∈ Bn of radius
larger than ρn/2.

Claim. E = A \
⋃∞

n=1 Bn is Lebesgue null.

Proof.

I The balls 3B1, 3B2, . . . cover A, so λ(A) ≤ 3d
∑∞

n=1 λ(Bn).

Choose N1 so that
∑N1

n=1 λ(Bn) ≥ 1
4d λ(A).

I Similarly, 3BN1+1, 3BN1+2, . . . cover A \
⋃N1

n=1 Bn, therefore

there is an N2 so that
∑N2

n=N1+1 λ(Bn) ≥ 1
4d λ(A \

⋃N1
n=1 Bn).

I Etc. By induction,
λ(A \

⋃Nk
n=1 Bn) ≤ (1− 1

4d )k+1λ(A) → 0. 38 / 96



Property of Baire

Recall that a set A is measurable if it belongs to the σ-algebra
generated by open sets together with null sets.

Definition. A set A has Baire property, if it can be represented in
the form A = G 4 P, where G is open and P is nowhere dense.

Theorem. The class of sets having the Baire property is a
σ-algebra. It is the σ-algebra generated by open sets together with
sets of first category.

Proof.

1. Complement: If A = G 4 P then Rd \A = (Rd \G )4 P, and
if G is open then Rd \ G is closed. Any closed set is the union
of its interior and a nowhere dense set.

2. Countable union: If An = (Gn \ Pn) ∪ Qn where Gn is open
and Pn,Qn are of first category, then G =

⋃∞
n=1 Gn is open,

P =
⋃∞

n=1 Pn, Q =
⋃∞

n=1 Qn are of first category, and
G \ P ⊂

⋃∞
n=1 An ⊂ G ∪ Q.

3. Countable intersection:
⋂∞

n=1 An = Rd \
⋃∞

n=1(Rd \ An).
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Measure and Category: Similarities and Differences

Theorem. A set has Baire property if and only if it can be written
as a Gδ set plus a first category set (or an Fσ set minus a first
category set).

Proof. Write A = (G \ P) ∪ Q, where G is open, P,Q are of first
category. Since the closure of a nowhere dense set is nowhere
dense, P can be covered by an Fσ set F of first category. Then
A = (G \ F ) ∪ ((G ∩ F ) \ P) ∪ Q, where G \ F is Gδ,
((G ∩ F ) \ P) ∪ Q ⊂ F ∪ Q is of first category.

Theorem. For any set A having the Baire property there is a
unique regular open set G (i.e. int(cl(G )) = G) and a set P of
first category such that A = G 4 P.

Proof. Write A = H 4 P where H is open and P is of first
category. Then G = int(cl(int(cl(H)))) ⊃ H is regular open, and
G \ H is nowhere dense (see homeworks).
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Steinhaus Theorem

Theorem (Steinhaus) If A has positive measure, then its
difference set A− A = {a− b : a, b ∈ A} contains an open
neighborhood of the origin.

Theorem. If A is of second category, then A− A contains an open
neighborhood of the origin.

Proof.

I If A is of second category, write A = G 4 P, G is non-empty
open, P is of first category. Take a ball B ⊂ G . If x ∈ Rd has
length small enough, then B ∩ (B + x) is a non-empty open
set, so there is a y ∈ (B ∩ (B + x)) \ (P ∪ (P + x)). Then
x = y − (y − x), y ∈ A, y − x ∈ A.

I If A is of positive measure, there is a ball B centered at a
density point of A such that P = B \ A has measure less than
λ(B)/2. If x is small enough then
(B ∩ (B + x)) \ (P ∪ (P + x)) has positive measure, so it has
a point y and x = y − (y − x), y ∈ A, y − x ∈ A.
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Lusin Theorem

Definition.

I A function f is called measurable, if f −1(G ) is measurable for
every open set G .

I A function f is Baire, if f −1(G ) has the Baire property for
every open set G .

Theorem (Lusin) A function f is measurable if and only if for
each ε > 0 there is a set E with λ(E ) < ε such that the restriction
of f to Rd \ E is continuous.

Theorem. A function f is has the Baire property if and only there
is a set P of first category such that the restriction of f to Rd \ P
is continuous.

Remark. A measurable function need not to be continuous on the
complement of a null set.
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Proof of Luzin Theorem
1. Category:

I Let I1, I2 . . . be an enumeration of rational open intervals. If f
is Baire, write f −1(In) = Gn 4 Pn, P =

⋃
Pn. The restriction

g of f to Rd \ P is continuous, since g−1(In) = Gn \ P, and
Gn \ P is relatively open in Rd \ P.

I Conversely, if the restriction g of f to the complement of P is
continuous, then for any open set G , g−1(G ) = H \ P, H is
open, P is of first category, H \ P ⊂ f −1(G ) ⊂ H ∪ P.

2. Measure:
I If f is measurable, for each rational Ii there is a closed Fi and

open Gi so that Fi ⊂ f −1(Ii ) ⊂ Gi , λ(Gi \ Fi ) < ε/2i . Let
E =

⋃
(Gi \ Fi ). Then λ(E ) < ε, and if g denotes the

restriction of f to Rd \ E , g−1(Ii ) = f −1(Ii ) \ E = Gi \ E .
I Conversely, suppose that there are sets E1,E2, . . . ,

λ(Ei ) < 1/i , the restriction fi of f to Rd \ Ei is continuous.
Then for any open set G , f −1

i (G ) = Hi \ Ei , Hi is open.
Putting E =

⋂
Ei we have

f −1(G ) \ E =
⋃

(f −1(G ) \ Ei ) =
⋃

f −1
i (G ) =

⋃
(Hi \ Ei ).

Since all the sets Hi \ Ei are measurable and E is null, f −1(G )
is measurable.
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Egoroff Theorem

Theorem (Egoroff) If f1, f2, . . . are measurable functions and
fn(x) → f (x) at each point x of a set E of finite measure, then for
each ε > 0 there is a set F with λ(F ) < ε so that f1, f2, . . .
converges uniformly on E \ F .

Proof. Let En,k = {x ∈ E : |fi (x)− f (x)| ≥ 1/k for some i ≥ n}.
Then, for each fixed k, the sets E1,k ,E2,k , . . . are decreasing and
they have empty intersection. So if nk is large enough then
λ(Enk ,k) < ε/2k . We can take F =

⋃
k Enk ,k .

Remark. The category analogue of Egoroff Theorem fails. There
are functions f1, f2, · · · : R → R so that fn(x) → 0 for each x ∈ R,
but any set on which fn converges uniformly is nowhere dense.
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Fubini Theorem
In what follows, we fix d1, d2, and understand ’measurable’, ’null
set’, ’has Baire property’, etc in the appropriate spaces.

Notation. For any A ⊂ Rd1 and B ⊂ Rd2 ,
A× B = {(x , y) : x ∈ A, y ∈ B} ⊂ Rd1+d2 . For any E ⊂ Rd1+d2 ,
the set Ex = {y : (x , y) ∈ E} ⊂ Rd2 is a vertical section of E .
Horizontal sections are defined analogously.

Fubini Theorem

1. If E is measurable, then Ex is measurable for all x except a
set of measure zero.

2. If E is a null set, then Ex is a null set for all x except a set of
measure zero.

3. If E is measurable and it has positive measure, then Ex has
positive measure for positively many x .

Moreover, λ(E ) =
∫

λ(Ex) dx .

Proof. See any standard textbook on measure theory.
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Kuratowski-Ulam Theorem

The category analogue of Fubini Theorem is the following:

Theorem. (Kuratowski-Ulam)

1. If E has Baire property, then Ex has Baire property for all x
except a set of first category.

2. If E is of first category, then Ex is of first category for all x
except a set of first category.

3. If E is a Baire set of second category, then Ex is a Baire set of
second category for a set of x’s of second category.

Lemma. If E is nowhere dense, then Ex is nowhere dense for all x
except a set of first category.
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Proof of Kuratowski-Ulam Theorem

Proof of Kuratowski-Ulam Theorem. It is clear that the lemma
implies part 2. To show 1, let E = G 4 P, G is open, P is of first
category. Every section of an open set is open, hence Ex has Baire
property whenever Px is of first category. By 2, this is the case for
all x except a set of first category. In 3, G is non-empty and using
2 again we can see that Ex is of second category for every x for
which Ex meets G .

Proof of Lemma. Since the closure of a nowhere dense set is
nowhere dense, we can assume without loss of generality that E is
closed. Let G be its complement, then G is open and dense.
For any rational open interval In ∈ Rd2 , let Gn be the projection of
the part of G that lies in the horizontal strip determined by In:

Gn = {x : (x , y) ∈ G for some y ∈ In}.

Each Gn is dense and open, so the complement of
⋂

Gn is of first
category. If x ∈

⋂
Gn then Gx is open and dense, hence Ex is

nowhere dense. 47 / 96



Homeworks

1. Show that for any open set G , int(cl(int(cl(G )))) is regular
open, and int(cl(int(cl(G )))) \ G is nowhere dense.

2. Find functions f1, f2, · · · : R → R so that fn(x) → 0 for each
x ∈ R, but any set on which fn converges uniformly is
nowhere dense.

3. Learn the proof of Fubini theorem.

4. For any two topological spaces X and Y , the product
topology on X × Y is generated by the sets G × H, where
G ⊂ X , H ⊂ Y are open. In other words, A ⊂ X × Y is open
if and only if for any (x , y) ∈ A there are neighbourhoods of x
in X and y in Y whose product is in A.

I Find Baire spaces X and Y for which Kuratowski-Ulam
Theorem fails.

I Show that Kuratowski-Ulam Theorem holds if X and Y are
Polish spaces.
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Cardinality Revisited

Definition. Suppose that P is a set and that ≤ is a relation on P.
Then ≤ is a partial order if it is reflexive, antisymmetric, and
transitive, i.e., for all a, b, c ∈ P we have

I a ≤ a (reflexivity)

I if a ≤ b and b ≤ a then a = b (antisymmetry)

I if a ≤ b and b ≤ c then a ≤ c (transitivity)

A partial order is a (total) order if for all a, b ∈ P we have

I a ≤ b or b ≤ a (totality)

If P is a partially ordered set, and if S is a (totally) ordered subset,
S is called a chain.

In a partially ordered set, the concepts of a is the greatest element
(a ≥ x for all x ∈ P) and a is maximal (x ≥ a implies x = a) are
not the same.
The least element, minimal elements are defined analogously. We
can also define lower bound, upper bound, greatest lower bound
(infimum), least upper bound (supremum) of any subset of P.
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Zorn Lemma
If it exists, the greatest element of P is unique. If there is no
greatest element, there can be many maximal elements. Also, in
infinite sets, maximal elements may not exists. An important tool
to ensure the existence of maximal elements under certain
conditions is Zorn Lemma:

Zorn Lemma. Every partially ordered set, in which every chain has
an upper bound, contains at least one maximal element.

This is not a Proof. We are going to define elements
a0 < a1 < a2 < ... in P. This sequence is really long: the indices
are not just the natural numbers, but there are also ’infinite
indeces’, called ordinals.

We pick a0 ∈ P arbitrary. If some of the a’s have been already
defined and they form a totally ordered subset T , then, by the
assumption of the Lemma, this T has an upper bound. If there is
no maximal element, we can choose the next a to be larger than
the upper bound of T . The infinite chain of a’s we obtain has no
maximal element, contradiction. 50 / 96



Well-ordering

Definition. A well-ordering on a set P is a total order on P with
the property that every non-empty subset of P has a least element.

Theorem. In a well-ordered set every element, except a possible
greatest element, has a unique successor. Every subset which has
an upper bound has a least upper bound. There may be elements
(besides the least element) which have no predecessor.

Examples.

I The standard ordering of N is a well-ordering, but standard
ordering of Z is not.

I The following ordering on Z is a well-ordering: x ≤ y if and
only if one of the following conditions hold:

I x = 0
I x is positive and y is negative
I x and y are both positive, and x is smaller than y
I x and y are both negative, and y is smaller than x

That is, 0 < 1 < 2 < · · · < −1 < −2 < . . .
−1 has no predecessor. 51 / 96



An Introduction to Ordinals

Ordinals describe the position of an element in a sequence. They
may be used to label the elements of any given well-ordered set,
the smallest element being labeled 0, the one after that 1, the next
one 2, and so on. After all natural numbers comes the first infinite
ordinal, ω, and after that come ω + 1, ω + 2, ω + 3, . . . , after all
these come ω + ω,... (Exactly what addition means we will not
define: we just consider them as names.)

Ordinals measure the ”length” of the whole set by the least ordinal
which is not a label for an element of the set. For instance, for
{0, 1, 2, . . . , 11} the first label not used is 12, for N it is ω, for Z
with the well-ordering defined above it is ω + ω.

Now we don’t want to distinguish between two well-ordered sets if
they have the same ordering, i.e. if there is an order-preserving
bijection between them. An ordinal is defined as an equivalence
class of well-ordered set.
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Ordering the Ordinals

Definition. Let P and Q be well-ordered sets with ordinal numbers
α and β. We say that α < β, if A is order isomorphic to an initial
segment of B, that is, there is a b ∈ B and an order-preserving
bijection between A and {x ∈ B : x < b}.
Similarly as in the “proof” of Zorn Lemma, it “can be shown” that
this is a total order: any two ordinals are comparable. Moreover:

Fact. The order defined above is a well-ordering of the ordinals.

Definition. If α is an ordinal, its successor is denoted by α + 1.
Those ordinals that have a predecessor, i.e. they can be written in
the form α + 1, are called successor ordinals. An ordinal which is
neither zero nor a successor ordinal is called a limit ordinal.
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Transfinite Induction

Transfinite induction is an extension of mathematical induction to
well-ordered sets. Suppose that P(α) is true whenever P(β) is true
for all β < α. Then transfinite induction tells us that P is true for
all ordinals.
Usually the proof is broken down into three cases:

I Zero case: Prove that P(0) is true.

I Successor case: Prove that for any successor ordinal α + 1,
P(α + 1) follows from P(α) (or, if necessary, follows from
“P(β) for all β ≤ α”).

I Limit case: Prove that for any limit ordinal α, P(α) follows
from “P(β) for all β < α.”

Transfinite induction can be used not only to prove things, but also
to define them: in order to define aα for ordinals α, one can
assume that it is already defined for all smaller β. We use
transfinite induction and properties of aβ’s to show that aα can be
defined. This method is called transfinite recursion.
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Cardinality and the Continuum Hypothesis

Each ordinal has an associated cardinality, the cardinality of the
well-ordered set representing the ordinal. The smallest ordinal
having a given cardinality is called the initial ordinal of that
cardinality.

The αth infinite initial ordinal is denoted by ωα. So ω0 = ω is the
ordinal corresponding to the natural order on N, ω1 is the smallest
uncountable ordinal, ω2 is the smallest ordinal whose cardinality is
greater than the cardinality of ω1, and so on. The smallest ordinal
that is larger than ωn for each n is ωω, then comes ωω+1, etc.

“Any set can be well-ordered”, so its cardinality can be written in
the form ωα for some ordinal α. Let c denote the cardinality of a
set of continuum many points. How can we find α so that c = ωα?

Continuum Hypothesis (CH) The continuum hypothesis says
that there is no set whose size is strictly between that of the
integers and that of the real numbers. That is, c = ω1.

Cohen proved that the continuum hypothesis is neither provable
nor disprovable. 55 / 96



Borel Sets
Recall that sets belonging to the σ-algebra generated by open and
null sets are called measurable sets, and the elements of the
σ-algebra generated by open and first category sets are the sets
with Baire property. We now consider the σ-algebra generated by
open sets only. The sets belonging to this σ-algebra are called
Borel sets. More generally:

Definition. A topological space is a set X together with a
collection T of subsets of X satisfying the following:

I ∅ ∈ T , X ∈ T

I The union of any collection of sets in T is also in T .

I The intersection of any finite collection of sets in T is also in
T .

The elements of X are called points, the sets in T are the open
sets, and their complements in X are the closed sets. Interior and
closure are defined in the usual way.
Sets belonging to the σ-algebra generated by open sets are called
Borel sets. 56 / 96



Borel Hierarchy

Borel sets are the sets that can be constructed from open or closed
sets by repeatedly taking countable unions and intersections.
More precisely, let X be a topological space, and let P be any
collection of subsets of X . We will use the notation:

I G = all open sets of X
I F = all closed sets of X
I Pσ = all countable unions of elements of P
I Pδ = all countable intersections of elements of P

So
I Gδ = countable intersections of open sets
I Fσ = countable unions of closed sets
I Gδσ = countable unions of Gδ sets
I Fσδ = countable intersections of Fσ sets
I Gδσδ = countable intersections of Gδσ sets
I Fσδσ = countable unions of Fσδ sets
I etc

We may also need to define classes obtained in countable many,
but more than ω steps. 57 / 96



Borel Hierarchy Continued

Denote

P0 = F Q0 = G
P1 = Gδ Q1 = Fσ

P2 = Fσδ Q2 = Gδσ

. .

. .

. .
Pα =

( ⋃
β<α Qβ

)
δ

Qα =
( ⋃

β<α Pβ
)
σ

for all α < ω1. For each α, if A ∈ Pα then X \ A ∈ Qα and vica
versa. Also, Pβ ⊂ Qα and Qβ ⊂ Pα if β < α. Any set belonging
to any of these classes is a Borel set. The converse is also true:

Claim. B =
⋃

α<ω1
Pα =

⋃
α<ω1

Qα = Borel sets.

Proof. We need to show that B is a σ-algebra. It is enough to
show that if A1,A2, · · · ∈ B then

⋃
An ∈ B,

⋂
An ∈ B. Let

α1, α2, . . . such that An ∈ Pαn , and choose α that is larger than
each αn (see homeworks). Then

⋃
An ∈ Qα,

⋂
An ∈ Pα+1.
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Product of Topological Spaces

Question. We have seen that any Borel set can be obtained in ω1

steps. But do we really need ω1 steps? We will see that the answer
is yes. In order to prove this we need some preparations.

Definition. If X and Y are topological spaces, then X × Y is
defined to be the topological space whose points are pairs
{(x , y) : x ∈ X , y ∈ Y } and a set A ⊂ X ×Y is open if and only if
it is the union of sets of form G × H, where G ⊂ X , H ⊂ Y are
open.

Definition. More generally, if Xi (i ∈ I ) are topological spaces,
then the points of the product

∏
i∈I Xi are the points of the

Cartesian product of the sets Xi , and a set A is open if and only if
it can be written as a union of cylinder sets. A cylinder set is a
product of subsets Ai ⊂ Xi , finitely many of which are arbitrary
open sets and all the others are the whole space Xi .

Fact. A sequence of points xn ∈
∏

i∈I Xi converges to x ∈
∏

i∈I Xi

if and only if each coordinate of the sequence xn converges to the
appropriate coordinate of x. 59 / 96



Basic Examples

I Product of Euclidean spaces
Rd1 × Rd2 × · · · × Rdn = Rd1+d2+···+dn .

I For any topological space X , we denote by XN the countable
product X × X × X × . . . .

Theorem. Consider {0, 1} with the discrete topology (i.e. all four
subsets are open). Then {0, 1}N is homeomorphic to the Cantor
set.

Proof. For any infinite sequence i = {i1, i2, . . . } ∈ {0, 1}N, let
f (i) =

∑ 2ik
3k . This is a bijection between {0, 1}N and the Cantor

set, and it maps the cylinder sets of {0, 1}N to the points of the
intervals of length 1/3k , k ∈ N of the construction of the Cantor
set. Therefore it is easy to check that the image and preimage of
each open set is open, f is a homeomorphism.

Theorem. Consider N with the discrete topology (i.e. all subsets
are open). Then NN is homeomorphic to R \Q.
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Proof that NN is Homeomorphic to the Irrationals

I Let q1, q2 . . . be an enumeration of Q. We define inductively
for each finite sequence of natural numbers
n = {n1, n2, . . . , nk} an open interval In as follows.

I Let I1, I2, . . . be an enumeration of the components of
R \ (Z ∪ {q1}).

I If In = (a, b) has already been defined, choose xi ∈ (a, b) ∩Q
for each i ∈ Z such that limi→−∞ xi = a, limi→+∞ xi = b,
0 < xi+1 − xi < 1/(k + 1).

I If qk+1 ∈ In then we also require x0 = qk+1.
I Let In1, In2, . . . be an enumeration of the components of

(a, b) \ {xi : i ∈ Z}.
I Then cl(In1n2...nk

) ⊂ In1n2...nknk+1
, and since the length of

In1n2...nk
is at most 1/k, In1 ∩ In1n2 ∩ In1n2n3 ∩ . . . is a point for

any (n1, n2, . . . ) ∈ NN. We denote it by f (n1, n2, . . . ). This
defines a bijection between NN and R \Q.

I The image of the cylinder sets are those points of R \Q that
are in an interval In, so the image and preimage of each open
set is open, f is a homeomorphism.
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Universal Sets

Definition. If A ⊂ X × Y , then Ax = {y ∈ Y : (x , y) ∈ A},
Ay = {x ∈ X : (x , y) ∈ A} are called the sections of A.

Definition. The set A is called a universal Pα set in X × Y , if

I A is Pα (according to the product topology), and

I For any Pα set B ⊂ X there is a y so that Ay = B.

Universal Qα sets are defined analogously.

Example. Let X be a Polish space, and let x1, x2, . . . be a
countable dense set in X , and let B1,B2, . . . be an enumeration of
all balls with centre xk and rational radius. Then

{
(x , (n1, n2, . . . )) ∈ X × NN : x ∈

∞⋃
k=1

Bnk

}
is a universal open set in X × NN. Its complement is universal
closed.
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Borel Hierarchy Continued

Theorem. If X ,Y are Polish spaces and Y is uncountable, then
for each α there are universal Pα and Qα sets in X × Y .

Corollary. If X is an uncountable Polish space and α < ω1, then
the sets Pα \ Qα, Qα \ Pα, Pα \

⋃
β<α(Pβ ∪ Qβ),

Qα \
⋃

β<α(Pβ ∪ Qβ) are non-empty.

Proof. Let A be a universal Pα set in X × X . Let B be its
intersection with the diagonal B = {x ∈ X : (x , x) ∈ A}. Then B
is Pα. But A 6∈ Qα. Indeed, suppose that A ∈ Qα. Then
X \ A ∈ Pα, so there is a y so that X \ A = By . Both y ∈ A and
y 6∈ A lead to a contradiction. So A ∈ Pα \ Qα, and then
X \ A ∈ Qα \ Pα. This also shows that Pα \

⋃
β<α(Pβ ∪ Qβ) and

Qα \
⋃

β<α(Pβ ∪ Qβ) are non-empty, since Pα =
⋃

β<α(Pβ ∪ Qβ)

would imply Qα =
⋃

β<α(Pβ ∪ Qβ).
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Universal Pα in X × NN

I We prove by transfinite induction. We have already seen that
there are universal open and closed sets, so the statement is
true for α = 0. Let B1,B2, . . . be balls as in that proof.

I There are countably many ordinals less than α. Let β1, β2, . . .
be an enumeration of all ordinals less than α that contains
each β < α infinitely many times, and let An be a universal
Pβn set in X × NN.

I Choose continuous functions φn : NN → NN so that for any
sequence v1, v2, · · · ∈ NN there is a v ∈ NN so that
φn(v) = vn for each n (see homeworks). Let
Bn = {(x , v) ∈ X × NN : (x , φn(v)) ∈ An}. Then Bn is Pβn ,
since Bn is the preimage of An under the continuous mapping
(x , v) → (x , φn(v)). Therefore B =

⋃∞
n=1 Bn is Qα. We show

that B is universal Qα (and then its complement is universal
Pα).
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Universal Pα in X × NN continued

I Let C be an arbitrary Qα set in X . Then C can be written as⋃
Cn, where Cn is Pβn in X (we use here that β1, β2, . . .

contains every β < α infinitely many times). Since An is
universal Pβn , there is vn ∈ NN so that Cn = Avn

n .

I Choose v for which φn(v) = vn. Then
Bv =

⋃
n Bv

n =
⋃

n{x : (x , φn(v)) ∈ An} =
⋃

n{x : (x , vn) ∈
An} =

⋃
n Avn

n =
⋃

n Cn = C .

Lemma. Every uncountable Polish space has a subset
homeomorphic to NN.

Proof. See homeworks.

Proof of the existence of universal Pα, Qα sets in X × Y :
Let Z ⊂ X be homeomorphic to NN, and let A be a universal Pα

set in X × Z . Let B be a Pα set in X × Y for which
A = (X × Y ) ∩ B. Then B is a universal Pα set in X × Y .
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Another Application of Universal Sets

Universal sets can often be used to construct sets with unexpected
properties. An example is the following:

Theorem. There is a set A ⊂ R2 such that:

I A contains exactly one point on each horizontal line.

I Every open cover G ⊃ A contains a horizontal line.

Proof.

I Let H be a universal closed set in R2 × R. For each y for
which there is an x with (x , y , y) ∈ H, choose such an x = xy .
Otherwise choose xy arbitrarily. Let A = {(x , y) : x = xy}.

I Let G ⊃ A be open. Our aim is to show that G contains a
horizontal line, i.e. F = R2 \G does not meet every horizontal
line. Since F is closed, there is a z such that Hz = F .

I F cannot meet the horizontal line {(x , y) : y = z}, since
otherwise (x , z) ∈ F , (x , z , z) ∈ H, (xz , z , z) ∈ H, (xz , z) ∈ A,
(xz , z) 6∈ F , (xz , z , z) 6∈ H, contradiction.
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Remarks
In the last construction, the points xy can be chosen in such a way
that A is Borel (see homeworks). Arguments using universal sets
usually lead to constructions of Borel sets. Constructing non-Borel
sets are often much easier, and analysts regard them to be
cheating.

Question. It is an open problem whether there is a Borel set A
that meets every ’almost horizontal’ curve in a set of linear
measure zero, but every open set G covering A meets an ’almost
horizontal’ curve in a large set: the measure of its projection to the
x axis is at least 1.

Let ε > 0 be fixed. We say that a curve is almost horizontal, if its
chords have angle at most ε, or, equivalently, they are graphs of a
Lipschitz function with Lipschitz constant at most ε. It is an easy
exercise to show that A cannot be Fσ. It is already an open
problem whether A can be Gδ.
The assumption that A is Borel is important. We will see later that
there are non-Borel counterexamples.
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Homeworks

1. Show that for any sequence of countable ordinals α1, α2, . . .
there is a countable ordinal α that is larger than each αn.

2. Let X1,X2, . . . be topological spaces of finitely many points,
each of them is equipped with the discrete topology (all
subsets are open). Show that

∏
Xi is homeomorphic to the

Cantor set.
3. Prove that every uncountable Polish space has a subset

homeomorphic to NN. Hint:
I Show that every uncountable Polish space has a subset

homeomorphic to the Cantor set.
I Show that the Cantor set has a subset homeomorphic to NN.

4. Find continuous functions φn : NN → NN so that for any
sequence v1, v2, · · · ∈ NN there is a v ∈ NN so that
φn(v) = vn for each n.

5. Show that there is a Borel set A ⊂ R2 that contains exactly
one point on each horizontal line, and such that every open
cover G ⊃ A contains a horizontal line.
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Cheating Constructions

Transfinite induction is often used in analysis to construct
pathological examples of sets and functions, (or, assuming
continuum hypothesis, to show that certain statements cannot be
proved/disproved). Some illustrative examples are the following:

Example 1: Previous construction revisited. Let yα (α < c) be
a well-ordering of R and let Gα (α < c) be an enumeration of
those open subsets of R2 that do not contain any horizontal line.
For each α, choose a point (xα, yα) 6∈ Gα. The set
A = {(xα, yα) : α < c} contains one point on each horizontal line,
and A 6⊂ Gα for any α.

Example 2: Positive sets without collinear points. There is a
planar set of full (outer) measure that has no three collinear
points. Indeed, let Fα (α < c) be an enumeration of closed sets of
positive measure. For each α choose a point xα ∈ Fα that is not
on the line connecting xβ, xγ for any β, γ < α (cf. Homework 1).
Then the complement of A = {xα : α < c} does not contain any
closed set of positive measure.
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Bernstein Sets

Theorem (Bernstein) There is a set A ⊂ R such that both A and
its complement intersect each closed subset of R of continuum
many points. Such sets are called Bernstein sets.

Proof.

I There are continuum many uncountable closed subsets of R.
Let Fα (α < c) be a well ordering of such sets. They all have
continuum many points, since they contain a copy of NN.

I Choose two points x0, y0 ∈ F0 arbitrarily. In the αth step
choose xα, yα ∈ Fα that are different from all the points xβ,
yβ chosen before. This can be done, since Fα has continuum
many points (i.e. more than the what we have chosen before).

I Let A = {xα : α < c}. Since xα ∈ A, it meets all the sets Fα.
Since yα 6∈ A, its complement meets each Fα.
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Properties of Bernstein Sets

Theorem. Bernstein sets are non-measurable.

Proof. If A is measurable, then either A or its complement has
positive measure, and so contains a closed set F of positive
measure. Every set of positive measure is uncountable.

Theorem. Bernstein sets do not have Baire property.

Proof. Suppose that A has Baire property. Either A or its
complement is of second category. If A is of second category, then
A = G 4P, where G is a non-empty open and P is a first category
set.

Write P =
⋃

Pn where Pn is nowhere dense, and choose two
disjoint closed intervals I0, I1 ⊂ G disjoint from P1. Inductively, if
the intervals Ii have been defined for each sequence i of 0’s and 1’s
of length k, choose two disjoint closed intervals Ii0, Ii1 ⊂ Ii disjoint
from Pk+1. Then C =

⋂∞
k=1

⋃
i∈{0,1}k Ii is a closed subset of

G \ P ⊂ A and has continuum many points.
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A Construction Using (CH): Sierpinski Theorem

Theorem (Sierpinski)

I Assuming (CH), there is a set A ⊂ R2 that has countably
many points on each vertical line and misses only countably
many points on each horizontal line.

I The converse is also true. If there is a set A ⊂ R2 that has
countably many points on each vertical line and misses only
countably many points on each horizontal line, then (CH)
holds.

Corollary. The existence of a set A described above is neither
provable nor disprovable.

Proof of (CH)=⇒ existence of A.
Let xα (α < c) be a well-ordering of R, and let
A = {(xα, xβ) : β < α}. Because of (CH), for each α there are
only countably many β with β < α.
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Proof of Existence of A =⇒ (CH)

Let xα (α < c) be a well-ordering of R. We define another well
ordering as follows:

1. For any given y ∈ R, let α = α(y) be the least index for
which (xα, y) ∈ A.

2. For any given α, there are only countably many points on the
vertical line x = xα. We order these points into a sequence.

3. For any u, v ∈ R we define u < v if
I either α(u) < α(v), or
I α(u) = α(v) = α and (xα, u) < (xα, v) according to the

ordering defined in Step 2.

This is a well ordering. Since each horizontal line misses only
countably many points, α(y) < ω1 for each α, and our ordered
sequence has length ω1.
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Sierpinski-Erdős Duality Theorem

Theorem (Sierpinski) Assuming (CH), there exists a one-to-one
mapping f : R → R such that f (E ) has measure zero if and only if
E is of first category.

Theorem (Erdős) Assuming (CH), there exists a one-to-one
mapping f : R → R such that f = f −1 and f (E ) has measure zero
if and only if E is of first category.

Corollary (Duality Principle) Let P be any proposition involving
solely the notions of nullset, first category, and notions of set
theory (cardinality, disjointness, etc) that are invariant under
one-to-one transformations. Let P∗ be the proposition obtained by
replacing “nullset” by “first category set”. Then each of the
propositions P and P∗ implies the other, assuming (CH).
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Proof of Sierpinski-Erdős Duality Theorem

I Decompose R into the disjoint union of two sets A and B,
where A is of first category and B is a null set.

I We choose Xα (α < c) Lebesgue null subsets of A, and Yα

(α < c) first category subsets of B, such that
I Xβ ⊂ Xα, Yβ ⊂ Yα for any β < α
I Xα \

⋃
β<α Xβ , Yα \

⋃
β<α Yβ are uncountable

I each Gδ Lebesgue null subset of A is contained in Xα for large
enough α, and each Fσ first category subset of B is contained
in Yα for large enough α

I Let f be a bijection that maps X0 onto Y0 and maps
Xα \

⋃
β<α Xβ onto Yα \

⋃
β<α Yβ for each α. This defines

f : A → B. We define f on B to be the inverse of f : A → B.
I Let C be an arbitrary Lebesgue null set. Then

f (C ) = f (A ∩ C ) ∪ f (B ∩ C ) ⊂ f (A ∩ C ) ∪ A. Since every
Lebesgue null set is contained in a Gδ Lebesgue null set, there
is an α such that A ∩ C ⊂ Xα. Hence
f (C ) ⊂ f (Xα)∪A = Yα ∪A is of first category. Similarly, if D
is of first category then f (D) is Lebesgue null.
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Homeworks

1. Show that less than continuum many lines cannot cover any
closed planar set of positive measure. (Hint: show that any
closed set of positive measure contains a copy of the Cantor
set without 3 collinear points)

2. Use transfinite induction and (CH) to construct a (non-Borel)
set A ⊂ R2 that meets every ’almost horizontal’ curve in a set
of linear measure zero, but every open set G covering A meets
an ’almost horizontal’ curve in a set of full linear measure.
(Hint: well-order all curves and all open sets).

3. Find interesting applications of the Duality Principle in
Chapter 20 of the book ’Oxtoby: Measure and Category’.
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Determinacy of Borel Games

We consider two players, Player (I) and Player (II), with Player (I)
going first. They play ”forever”, that is, their plays are indexed by
the natural numbers. When they are finished, a predetermined
condition decides which player won.

Consider a subset A ⊂ NN. In the game GA, (I) plays a natural
number n0, then (II) plays n1, then (I) plays n2, and so on. Then
(I) wins the game if and only if (n0, n1, n2, . . . ) ∈ A, otherwise (II)
wins.

A strategy for a player is a way of playing in which his moves are
entirely determined by the foregoing moves: a strategy for Player
(I) is a function that accepts as an argument any finite sequence of
natural numbers of even length, and returns a natural number. If σ
is such a strategy and (n0, . . . , n2k−1) is a sequence of natural
numbers, then n2k = σ(n0, . . . , n2k−1) is the next move (I) will
make, if he is following the strategy σ. Strategies for (II) are just
the same, substituting ”odd” for ”even”.
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Determinacy

A strategy is winning, if the player following it must necessarily
win, no matter what his opponent plays. If σ is a strategy for (I),
then σ is a winning strategy for (I) in the game GA if, for any
sequence of natural numbers (n1, n3, n5 . . . ), the sequence of plays
produced by σ

n0 = σ(∅), n1, n2 = σ(n0, n1), n3, n4 = σ(n0, n1, n2, n3), . . .

is an element of A.

A game is determined if there is a winning strategy for one of the
players.

Note that there cannot be a winning strategy for both players for
the same game, for if there were, the two strategies could be
played against each other. The resulting outcome would then, by
hypothesis, be a win for both players, which is impossible. But it
may happen that none of the players have a winning strategy, i.e.
the game is not determined.
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Rules of the Game
The ”rules” of the game are also encoded in the set A: if one of
the players chooses a natural number that is not allowed by the
rules of the particular game, he loses, i.e. no matter how the
players continue playing, the sequence obtained will belong to the
complement of A.
However, sometimes it is more convenient to separate the ”rules”
from A. Let T be a set of finite sequences, such that every initial
segment (including ∅) of an element of T is also in T , and such
that every element of T is a proper initial segment of an element in
T . Such a set is called a tree. Let F(T ) denote the collection of
all infinite sequences (n1, n2, . . . ) all of whose finite initial segments
belong to T . For each A ⊂ F(T ) we define the game G (A,T ):
Player (I) picks (n0) ∈ T , (II) picks n1 with (n0, n1) ∈ T , (I) picks
n2 with (n0, n1, n2) ∈ T , etc. A strategy for (I) is a function σ
whose domain is the set of all elements of T of even length such
that always (n0, . . . , n2k−1, σ(n0, . . . , n2k−1)) ∈ T . A strategy for
(II) is similarly defined. The game G (A,T ) is determined if one of
the players have a winning strategy. 79 / 96



Finite Games are Determined

Familiar games, such as chess or tic-tac-toe, are always finished in
a finite number of moves. If such a game is modified so that a
particular player wins under any condition where the game would
have been called a draw, then it is always determined.

The proof that such games are determined is rather simple: Player
(I) simply plays not to lose; that is, he plays to make sure that
Player (II) does not have a winning strategy after (I)’s move. If
Player (I) cannot do this, then it means Player (II) had a winning
strategy from the beginning. On the other hand, if Player (I) can
play in this way, then he must win, because the game will be over
after some finite number of moves, and he can’t have lost at that
point.

This proof does not actually require that the game always be over
in a finite number of moves, only that it be over in a finite number
of moves whenever (II) wins. This condition, topologically, is that
the set A is closed (see the definition next slide).
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Topology of F(T )

We give F(T ) the topology inherited from the product topology of
NN: a subset of F(T ) is open if it is a union of cylinder sets, i.e.
sets of form {x : p is an initial segment of x} with p ∈ T .

More generally:
Let T be an arbitrary tree, i.e. a set of sequences of finite length
(not necessary of natural numbers!) s.t.

I every initial segment of an element of T is also in T
I every element of T is a proper initial segment of an element

in T .

Let F(T ) denote the collection of all infinite sequences all of
whose finite initial segments belong to T . The cylinder sets of
F(T ) are sets of form {x : p is an initial segment of x} with
p ∈ T . A subset of F(T ) is open if it is a union of cylinder sets. A
subset A ⊂ F(T ) is Borel if it is in the σ-algebra generated by the
open subsets of F(T ).

We say that the game G (A,T ) is closed if A is closed, G (A,T ) is
open if A is open, etc. 81 / 96



Borel Games are Determined

Recall that if the Banach-Mazur game for a set A is determined,
then either (II) has a winning strategy, in which case A is of first
category, or (I) has a winning strategy, in which case the
complement of A is of first category inside some interval I .
As a corollary we can see that if A is a Bernstein set, i.e. both A
and its complement meet each closed subset of R in continuum
many points, then the Banach-Mazur game is not determined.
Bernstein sets are never Borel sets. Our main theorem is:

Theorem (Martin) All Borel games are determined.

Remark. If T consists of finite sequences of natural numbers, i.e.
F(T ) ⊂ NN, then the classes ”Borel games G (A,T )” and ”games
GA where A is Borel” coincide. Indeed, for every such T , F(T ) is
a closed subset of NN. Therefore A ⊂ F(T ) ⊂ NN is a Borel
subset of NN if and only if it is a Borel subset of F(T ).
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Proof

The idea of the proof of Martin’s Theorem is to associate to the
game G (A,T ) an auxiliary game G (Ã, T̃ ), which is known to be
determined, in such a way that a winning strategy for any of the
players in G (Ã, T̃ ) gives a winning strategy for the corresponding
player in G (A,T ). In the game G (Ã, T̃ ) the players play essentially
a run of the game G (A,T ), but furthermore they choose in each
turn some additional objects, whose role is to ensure that the
payoff set becomes simpler.

First we will show that closed and open games are determined.
Then we show how to find an auxiliary game for a closed or open
game. Then, using transfinite induction, we will show how to find
an auxiliary game if A =

⋃
Ai ∈ Qα, provided that we have already

defined the auxiliary game for each Ai , where Ai ∈ Pβi , βi < α,
and we will show how to find an auxiliary game for the
complement of A (which is in Pα).
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Step 1: Closed Games

Theorem (Gale-Stewart) All closed games are determined.

Note that by symmetry, all open games are determined as well.

Proof. Suppose that (II) does not have a winning strategy. Then
let (I) play according to the ”play not to lose” strategy: if (II) does
not have a winning strategy after some steps, (I) can always move
in such a way that (II) will not have a winning strategy after (I)’s
move.
Suppose that this is not a winning strategy, (I) loses. Since the
complement of A is open, the sequence they obtain belongs to a
cylinder set that is disjoint from A. This is a contradiction, since
cylinder sets are determined by some finite number of coordinates,
so (I) already lost the game after finitely many steps.

Notation. If (I) has a winning strategy, then those positions from
which he can win is a subtree of T . We denote this subtree by TA.
We call it the winning subtree.
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Step 2: Auxiliary Games of Closed Games G (A, T )

Fix an even natural number k. Define T̃ = T̃ (T ,A, k) as follows:
I Sequences of length at most k in T̃ are the same as in T . If

(a0, a1, . . . , ak−1) have been already chosen, then in the kth
step, (I) chooses a subtree TI ⊂ T and an ak , such that:

I TI is a (I)-imposed subtree, i.e. if (b0, . . . , bj) ∈ TI , j is even,
and (b0, . . . , bj , bj+1) ∈ T , then (b0, . . . , bj , bj+1) ∈ TI

I (a0, a1, . . . , ak−1, ak) ∈ TI .
I In the next step, (II) chooses a subtree TII ⊂ TI and an ak+1.

For choosing TII he has two options:
I winning option: TII can be the set of all initial segments and

continuations of a sequence p ∈ TI , such that (a0, . . . , ak) is
an initial segment of p, and the cylinder set determined by p is
in the complement of A.

I losing option: if (II) has a strategy to ensure that the final
sequence will be in A, he can choose its “winning subtree”
TII = (TI )A. Then of course F(TII ) ⊂ A.

Player (II) chooses ak+1 so that (a0, a1, . . . , ak , ak+1) ∈ TII ,
and they continue choosing ak+2, ak+3, . . . so that
(a0, a1, . . . , ak , ak+1, . . . , aj) ∈ TII for all j .
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The set Ã
After countably many steps, the players define a sequence

(a0, a1, . . . , ak−1, (TI , ak), (TII , ak+1), ak+2, ak+3, . . . )

whose initial segments are in T̃ , i.e. the sequence is in F(T̃ ).
There is a natural projection π : F(T̃ ) → F(T ) that maps the
sequence above to (a0, a1, . . . , ak−1, ak , ak+1, . . . ) ∈ F(T ). For
any B ⊂ F(T ) we define B̃ = π−1(B), i.e. the sequence above
belongs to B̃ if and only if (a0, a1, . . . , ak−1, ak , ak+1, . . . ) ∈ B.

A set is called clopen, if it is both closed and open.

Claim. Ã ⊂ F(T̃ ) is clopen.

Proof. If in the (k + 1)th step (II) chooses the winning option
then he wins G (Ã, T̃ ) and if he chooses the losing option then he
loses G (Ã, T̃ ). So both Ã and its complement can be written as a
union of cylinder sets that are determined by sequences obtained in
the (k + 1)th step.
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Transfer of Strategies of Player (I)

Suppose that σ is a strategy of Player (I) in T̃ (not necessarily a
winning strategy). We define a strategy σ0 in T , as follows:

I (I) starts following the same strategy σ as in T̃ . In the kth
step he chooses ak if σ tells him to choose (TI , ak). Then (II )
chooses an ak+1, which is automatically in TI since TI is
(I)-imposed.

I Of course, in this game Player (II) does not choose any TII .
Nevertheless, Player (I) “assumes” that Player (II) did choose
TII , moreover, he assumes that Player (II) chose the losing
option TII = (TI )A. He keeps assuming this and proceeds
according to his strategy σ until (if ever) he finds out that he
was wrong, i.e. (TI )A does not exist, or they arrive at a finite
sequence p that does not belong to (TI )A.
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Transfer of Strategies of Player (I) Continued

I When this happens, Player (I) plays a winning strategy for
G (F(TI ) \ A,TI ), reaching (since A is closed) a sequence p
that determines a cylinder set that belongs to the complement
of A. Now (I) assumes that (II) took the winning option in the
(k + 1)th step with this p, and proceeds with σ accordingly.

Claim. For any sequence (a0, a1, . . . , ak , ak+1, . . . ) ∈ F(T ) that is
consistent with the strategy σ0, there are TI , TII so that
(a0, a1, . . . , (TI , ak), (TII , ak+1), . . . ) ∈ F(T̃ ) is consistent with σ.

Corollary. For any B ⊂ F(T ), if σ is a winning strategy in
G (B̃, T̃ ), then σ0 is a winning strategy in G (B,T ).
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Transfer of Strategies of Player (II)

Suppose now that σ is a strategy of Player (II) in T̃ . We define a
strategy σ0 in T , as follows:

I Player (II) starts following the same strategy σ as in T̃ . In the
kth step (I) chooses ak , but he does not choose any TI .
Player (II) considers all possible choices of TI for which his
strategy σ would have told him to reply with the winning
option. For each such TI there is a finite sequence p so that
(II) would choose TII to be the initial segments and
continuations of p. Let P be the collection of all these finite
sequences p, and let B ⊂ F(T ) be the set of all infinite
sequences that do not have any initial segment belonging to
P. Then B is closed.

I Now (II) assumes that (I) chose TI = TB , i.e. the winning
subtree for B. He follows his strategy σ accordingly, until (if
ever) he finds out that his assumption was wrong, i.e. either
TB does not exists, or (a0, a1, . . . , ak) 6∈ TB , or they arrive at
a finite sequence that is not in TII .
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Transfer of Strategies of Player (II) Continued

I Note that if TB exists and (a0, a1, . . . , ak) ∈ TB then, because
of the definition of B, (II) has to choose the losing option, i.e.
TII = (TB)A. This is a (II)-imposed subtree of TB . When (II)
finds out that he was wrong, he has a strategy to ensure that
the final sequence will not be in B. Then he follows this
strategy, until a sequence p ∈ P is reached. Then he assumes
that in the kth step (I) chose a TI so that his strategy σ
called for a winning TII defined by this p, and then follows σ
accordingly.

Then, similarly as for strategies of (I):

Claim. For any sequence (a0, a1, . . . , ak , ak+1, . . . ) ∈ F(T ) that is
consistent with the strategy σ0, there are TI , TII so that
(a0, a1, . . . , (TI , ak), (TII , ak+1), . . . ) ∈ F(T̃ ) is consistent with σ.

Corollary. For any B ⊂ F(T ), if σ is a winning strategy in
G (B̃, T̃ ), then σ0 is a winning strategy in G (B,T ).
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Step 3: Induction

Let T be an arbitrary tree, let A be a Borel subset of F(T ), and
let k be an even integer. We will construct a tree T̃ = T̃ (T ,A, k)
and a projection π : T̃ → T , so that

I For any finite sequence x ∈ T̃ , π(x) is a finite sequence in T
of the same length. The sequences of length at most k are the
same in T and T̃ , and π on these sequences is the identity.

I If x is an initial segment of y then π(x) is an initial segment
of π(y).

Then π can be extended to the infinite sequences F(T̃ ) → F(T ).
For any B ⊂ F(T ), we denote B̃ = π−1(B). We will define T̃ s.t.

I Ã is clopen in F(T̃ ).

Furthermore, we will find for each strategy σ (of either player) in
T̃ a strategy σ0 of the same player in T , so that

I σ0 restricted to sequences of length at most n depends only
on σ restricted to sequences of length at most n.

I If x ∈ F(T ) is a play consistent with σ0, then there is a
y ∈ F(T̃ ) so that π(y) = x , and y is consistent with σ.
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Induction Continued
As before, we can see that for any B ⊂ F(T ), if σ is a winning
strategy in G (B̃, T̃ ) then σ0 is a winning strategy in G (B,T ). In
particular, if G (B̃, T̃ ) is determined then G (B,T ) is determined.

Since Ã ⊂ F(T̃ ) is closed, it follows from Step 1 that G (Ã, T̃ ) is
determined. So if we indeed can find for any T and for any Borel
set A ⊂ F(T ) (and for some k) the tree T̃ and the mapping
σ → σ0 as described on the previous slide, then we proved that
G (A,T ) is determined.

I We have already seen how to find T̃ and σ → σ0 if A is
closed.

I If we can find T̃ and σ → σ0 for some Borel set A, then we
can choose the same T̃ and σ → σ0 for the complement of A;
indeed, the only assumption on A was that Ã ⊂ F(T̃ ) must
be clopen. If Ã is clopen then so is Ãc .

I Therefore it is enough to construct T̃ and σ → σ0 for
A ∈ Qα, and we can assume that we already know how to
construct these objects for any set B ∈

⋃
β<α(Pβ ∪ Qβ).
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Construction of a tree T̂
Let A =

⋃
Ai , where Ai ∈ Pβi , βi < α.

I Let T1 = T̃ (T ,A1, k), and find for each strategy σ1 in T1 a
strategy σ0 in T satisfying the induction hypothesis. Let π1

denote the projection T1 → T .
I Since π1 is continuous, π−1

1 (A2) is a Pβ2 subset of F(T1).
Let T2 = T̃ (T1, π

−1
1 (A2), k + 2), and find for each strategy σ2

in T2 a strategy σ1 in T1 satisfying the induction hypothesis.
Let π2 denote the projection T2 → T1.

I Etc. Let
Tn = T̃ (Tn−1, π

−1
n−1 ◦ π−1

n−2 ◦ · · · ◦ π−1
1 (An), k + 2n − 2), and

find for each strategy σn in Tn a strategy σn−1 in Tn−1

satisfying the induction hypothesis. Let πn denote the
projection Tn → Tn−1.

Recall that sequences of length at most k are the same in T and
T1, sequences of length at most k + 2 are the same in T1 and T2,
etc. Let T̂ be the set of all sequences of length at most k + 2n in
Tn, for all n.
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Construction of T̃
It is clear that T̂ is a tree, and there is a natural projection
π̂ : T̂ → T , defined by π̂(x) = π1 ◦ π2 ◦ · · · ◦ πn(x) if x ∈ T̂ has
length at most k + 2n.

Denote B̂ = π̂−1(B) ⊂ F(T̂ ) for any B ⊂ F(T ).

We know that π−1
i ◦ π−1

i−1 ◦ · · · ◦ π−1
1 (Ai ) is clopen in F(Ti ). Since

the projection T̂ → Ti is continuous, Âi is clopen in F(T̂ ). Hence
Â =

⋃
Âi is open in T̂ . It is not necessarily true that Â is closed in

T̂ . But since it is open, we can apply the induction hypothesis
once more and choose T̃ = T̃ (T̂ , Â, k). Then Ã ⊂ F(T̃ ) is clopen,
and all requirements are satisfied.

We still have to show that for any strategy σ in T̂ there is a
strategy τ in T of the same player so that

I τ restricted to sequences of length at most n depends only on
σ restricted to sequences of length at most n.

I If x ∈ F(T ) is a play consistent with τ , then there is a
y ∈ F(T̂ ) so that π̂(y) = x , and y is consistent with σ.
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Construction of the Strategy τ

Let σ be a strategy of Player (I) in T̂ . We denote T0 = T , and
define a strategy τn on Tn for each n ≥ 0.

I Sequences of length at most k + 2n are the same in Tn and
T̂ . On these sequences we define τn = σ.

I Sequences (a0, a1, . . . , aj), j = k + 2m − 1, m > n are the

same in Tm as in T̂ . Therefore we can choose a strategy in

Tm, denoted by σ
(m)
m , that coincides with σ on sequences of

this length. Then the construction of T̂ gives strategies σ
(m)
m−1

in Tm−1, σ
(m)
m−2 in Tm−2, etc, σ

(m)
n in Tn. We define

τn = σ
(m)
n on sequences of length j , j = k + 2m − 1. Since

σ
(m)
m−1 restricted to sequences of length at most ` depends only

on σ
(m)
m restricted to sequences of length at most `, it does

not matter which σ
(m)
m we start with, we always obtain the

same σ
(m)
m−1, σ

(m)
m−2, . . . , σ

(m)
n on sequences of this length.

If σ is a strategy of Player (II), τn is defined analogously. Finally,
we define τ = τ0.
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Goodbye

The proof is finished if we can show that indeed if x ∈ F(T ) is a
play consistent with τ , then there is a y ∈ F(T̂ ) so that π̂(y) = x ,
and y is consistent with σ.

It follows from the definition of τn that, for each n and for each
play xn−1 ∈ F(Tn−1) that is consistent with τn−1, there is a play
xn ∈ F(Tn) that is consistent with τn so that πn(xn) = xn−1. So if
x ⊂ F(T ) is consistent with τ , then there is a play x1 ∈ F(T1)
that is consistent with τ1 and for which π1(x1) = x0. Similarly,
there is a play x2 ∈ F(T2) that is consistent with τ2 and for which
π2(x2) = x1. Etc.

Since the initial segments of xn and xn+1 of length k + 2n are the
same, the sequence x , x1, x2, . . . converges to a sequence y in
F(T̂ ). Also, since the strategy σ agrees with the strategy τn on
positions of fixed length, for all large n, y is consistent with σ.
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