nag

Numerical Algorithms Group Mathematics and technology for optimized performance

Using NAG Numerical Software via C, C++, Excel, Fortran, MATLAB & other environments LTCC John Holden, David Sayers, Louise Mitchell Results Matter. Trust NAG.

Agenda...

- Introduction to NAG
- Technical overview
 - A few examples..
 - NAG Fortran / C Library for Windows
 - NAG and Excel
 - NAG Toolbox for MATLAB
 - Fortran Builder (NAG's New Windows Fortran Compiler)

Numerical Algorithms Group - What We Do

- NAG provides mathematical and statistical algorithm libraries widely used in industry and academia
- Established in 1970 with offices in Oxford, Manchester, Chicago and Tokyo
- Not-for-profit organisation committed to research & development
- Library code written and contributed by some of the world's most renowned mathematicians and computer scientists
- NAG's numerical code is embedded within many vendor libraries such as AMD and Intel
- Many collaborative projects e.g. CSE Support to the UK's largest supercomputer, HECToR

London Universities - 1st December 2008

Partnerships with leading academics

- University of Aachen
 - Uwe Naumann
- K.U. Leuven
 - Wim Schoutens

University of Manchester
 Peter Duck, Nick Higham, Ser Huang Poon, ...

- University of Oxford
 - Mike Giles,
- University of Vienna
- Stanford University

Portfolio

Numerical Libraries

 Highly flexible for use in many computing languages, programming environments, hardware platforms and for high performance computing methods

Connector Products for MATLAB and Maple

- Giving users of the mathematical software packages MATLAB and Maple access to NAG's library of highly optimized and often superior numerical routines
- Visualization and graphics software
 - Build data visualization applications with NAG's IRIS Explorer
- NAG Fortran Compiler and GUI based Compiler: Fortran Builder
- Consultancy services

Why Use NAG Maths Libraries?

- Global reputation for quality accuracy, reliability and robustness...
- Extensively tested, supported and maintained code
- Reduce development time
- Concentrate on your key areas
- Components
 - Fit into your environment
 - Simple interfaces to your favourite packages
- Regular performance improvements!

What does the NAG / LTCC licence cover?

 See LTCC website for "up to date" information / product listing. [or contact NAG via operations@nag.co.uk quoting ref: NAG/LTCC/JCH

Unlimited use for the licensed implementations

- As long as for academic or research purposes
- Installation may be on any university, staff or student machine as long as they are from the dept or site
- Full access to NAG Support support@nag.co.uk

Our software:

- Includes online documentation also www.nag.co.uk
- Supplied with extensive example programs
 - data and results

Technical Agenda

The NAG Engine
Algorithmic contents
Ease of Integration

NAG and Excel examples
Navigating around the NAG toolbox in MATLAB

NAG Optimisation Chapters
Next release

Option Pricing Functions

The NAG Engine NAG software is based on *NAG Engine* technology

ONZEKG

London Universities - 1st December 2008

www.nag.co.uk

NAG Library Contents

- Root Finding
- Summation of Series
- Quadrature
- Ordinary Differential Equations
- Partial Differential Equations
- Numerical Differentiation
- Integral Equations
- Mesh Generation
- Interpolation
- Curve and Surface Fitting
- Optimization
- Approximations of Special **Functions**

- Dense Linear Algebra
- Sparse Linear Algebra
- Correlation and Regression Analysis
- Multivariate Analysis of Variance
- Random Number Generators
- Univariate Estimation
- Nonparametric Statistics
- Smoothing in Statistics
- Contingency Table Analysis
- Survival Analysis
- Time Series Analysis
- Operations Research

NAG Data Mining Components

- Data Cleaning
 - Data Imputation
 - Outlier Detection
- Data Transformations
 - Scaling Data
 - Principal Component Analysis
- Cluster Analysis
 - k-means Clustering
 - Hierarchical Clustering
- Classification
 - Classification Trees
 - Generalised Linear Models
 - Nearest Neighbours

- Regression
 - Regression Trees
 - Linear Regression
 - Multi-layer Perceptron Neural Networks
 - Nearest Neighbours
 - Radial Basis Function Models
- Association Rules
- Utility Functions
 - To support the main functions and help with prototyping

NAG Libraries – a quick introduction

NAG Fortran Library
C:\Program Files\NAG\FL21

Manual – html – Mk21
Samples – surface fit
Optimisation E04 chapter introduction

NAG C Library
C:\Program Files\NAG\CL08\cldll084zl\projects

N.B. Manual needs to be installed separately

NAG Libraries Ease of Integration

- C++ (various)
- C# / .NET
- Visual Basic
- Java
- Borland Delphi
- F#
- Python
- . . .
- ••••
- and more

- Excel
- MATLAB
- Maple
- LabVIEW
- R and S-Plus
- SAS
- Simfit
- ...
- and more

13

<start C:\Program Files\NAG\FL21\fldll214ml\doc & user notes 🗧 🔁

London Universities - 1st December 2008

NAG and Excel..

www.nag.co.uk/numeric/callingDLLsfromotherlang.asp

London Universities - 1st December 2008

www.nag.co.uk

NAG and Excel..

Our libraries are easily accessible from Excel

- Calling DLLs using VBA
- NAG provide VB Declaration Statements and Examples

Excel Add-ins

- NAG's Statistical Add-in for Excel
 - Sophisticated Add-in offering 76 statistical functions
 - Function/ array "driven"
- NAG Schools Excel Add-in (N-SEA)
 - Basic statistical functions including graphs
 - Menu Drive

<start Excel here>

Maple-NAG Connector

Works with "latest" versions of:

- Maple 10, 11 & 12
- NAG C Library 7 & 8
- The connector supports Mark 7 functionality
- Runs under
 - Mac (PowerPC, Intel Mac 32-bit)
 - Linux (32-bit)
 - Windows (32-bit)

<start Maple here>

NAG Toolbox for MATLAB

http://www.nag.co.uk/numeric/MB/start.asp

<start MATLAB here> <doc, G01aa.., D01AJ>

London Universities - 1st December 2008

www.nag.co.uk

NAG Toolbox for MATLABBuilt as MATLAB mex files

- Auto-generated from XML documentation
- Contains essentially all NAG functionality
 - not a subset
- Currently runs under Windows (32/64bit) or Linux (32/64-bit).
- Installed under the usual MATLAB toolbox directory
- Makes use of a DLL or shared version of the NAG Library

Can be used with MATLAB compiler <start MATLAB here> <doc, G01aa.., D01AJ>

Chapter e04 – Minimization / Maximization minimize $F(x_1, x_2, \ldots, x_n)$ Problem: possibly subject to constraints The function F(x) is called the *objective function*. We wish to determine x, the n-vector of variables. May have: No constraints • Bound constraints: $I_i \le x_i \le u_i$ Linear or nonlinear constraints: I <= G(x) <= u</p>

nag

Unconstrained optimization

ONZEKGI

Linearly constrained optimization

115

ONZEKGI

11.3

Nonlinear constraints

115

Any Just test

ONZEKAN

Chapter e04

Problems categorized according to properties of objective function:

- nonlinear
- sum of squares of nonlinear functions
- quadratic
- Iinear

Example – nonlinear objective and constraints: Minimize $f(x,y) = (1 - x)^2 + 100(y - x^2)^2$ subject to $x^{2+}y^2 <= 2$ -2 <= x <= 2

E04WD

- Sequential quadratic programming (SQP) algorithm
 - obtains search directions from a sequence of QP subproblems.
 - designed for problems with many variables and constraints
 - P. Gill (San Diego), W. Murray (Stanford) and M. Saunders (Stanford)

Chapter e04

It is important to choose a method appropriate to your problem type, for efficiency and the best chance of success.

NAG documentation is comprehensive – for advice see the Chapter Introduction for e04:

www.nag.co.uk/numeric/FL/manual/pdf/E04/e04_intro.pdf www.nag.co.uk/numeric/CL/nagdoc_cl08/pdf/E04/e04_intro.pdf

<run rosenbrock_sd_demo, rosenbrock_sqp _demo, rosenbrock_lsq _demo here>

<run newNAGsolver.xls>

London Universities - 1st December 2008

25

Some routines available in Chapter e04

- e04ab: minimize a function of one variable
- e04dg: minimization using conjugate gradients
- e04mf: linear programming
- e04nc: linear least-squares
- e04nf: quadratic programming
- e04nq: LP or QP (for sparse problems)
- e04un: nonlinear least-squares
- e04vh: general sparse constrained nonlinear
- e04wd: general nonlinear all-purpose
- etc.

New optimization coming at next Mark

Currently many optimization routines in NAG, but these have all been for *local optimization*. No guarantee about which minimum (or maximum) is returned.

Local optimization

ONZEKGI

Global requirements Users often ask for *global optimization* methods.

In next releases of NAG Libraries we will have software based on 'multilevel coordinate search' (MCS) method - Huyer and Neumaier:

http://www.mat.univie.ac.at/~neum/ms/mcs.pdf

Search space is recursively split into sub-boxes, looking for child boxes where gain in objective is expected. Boxes swept through in turn, perhaps being split, until a box with maximum level exists. Then a local search is performed.

Already in NAG Engine - new Chapter e05 Beta available now on request

New NAG Chapter – E05

Main routine named E05JB
Plus initialization and option setting routines
Currently handles only bound constraints:

Minimize $f(x_1, x_2 \dots x_n)$ Subject to $I_i \le x_i \le u_i$

<run e05jb_demo here>

London Universities - 1st December 2008

Next release of the library imminent

- New global optimization chapter
- Nearest Correlation Matrix
- Partial Least Squares Regression Analysis
- Option Pricing
- Prediction intervals for fitted models
 - Allow for uncertainty in forecasts

- Fast quantile selection routine
- Wavelets
 - Data compression, edge detection
- Adoption of LAPACK 3.1
- New Random Number Generators
 - Including Mersenne Twister
 - Sobol Sequence generator (50,000 dimensions)

Use of NAG Software in Finance

- Portfolio analysis / Index tracking / Risk management
 - Optimisation, linear algebra, copulas...
- Derivative pricing
 - PDEs, RNGs, multivariate normal, ...
- Fixed Income/ Asset management / Portfolio Immunization
 - Operations research
- Data analysis
 - Time series, GARCH, principal component analysis, data smoothing, ...
- Monte Carlo simulation
 - RNGs

• • • • • •

NAG's New Option Pricing Functions

 Closed form solutions with Greeks which provide a reference framework for approximate numerical methods: Monte Carlo, PDE, Trees

- Written specifically for teaching* in collaboration with
 - Mike Giles
 - Ser-Huang Poon
 - William Shaw
 - Nick Webber

 Available in C and Fortran with C++, Fortran and MATLAB interfaces

*there will be circumstances where the functions are useful for the real practitioner

Functions – set 1

European options:

- Black-Scholes-Merton
- Lookback Floating-Strike
- Binary Cash-or-Nothing Asset-or-Nothing
- Barrier Standard
- Jump-diffusion Merton Model
- Heston's Stochastic Volatility Model
- American options:
 - Bjerksund & Stensland (2002) approximation

Asian options:

• Geometric Continuous Average-Rate

Functions – set 2

- European:
 - Jump-Diffusion
 - Bates
 - Lookback
 - Fixed-strike
 - Partial Time floating/fixedstrike
 - Barrier
 - Double
 - Stochastic Volatility
 - SABR

- European continued..:
 - Piecewise-Linear
 - Butterfly
 - Straddle
 - Condor
- Asian
 - Arithmetic
- American Options:
 - Barone-Adesi & Whaley

The Greeks – sensitivities to parameters

Delta

option price to underlying price

Gamma

delta to underlying

- Vega option price to volatility
- Theta option price to time to expiry
- Rho

option price to risk-free interest rate

 Rhoq option price to dividend

- Vanna Delta to volatility
- Charm
 Delta to expiry
- Speed third derivative of option price to underlying
- Colour
 Gamma to time to expiry
- Zomma Gamma to volatility
- Vomma
 Vega to volatility

Option pricing – accessibility

- C
- C++
- C#
- Excel
 - Via Function Wizard
 - Via Menu
- FORTRAN
- MATLAB (via NAG Toolbox)

London Universities - 1st December 2008

www.nag.co.uk

A C++ example interface

europeanAnalytic BSEuro(PutCall, m, n, strike, spot, expiry, volatility, rate, dividend);

BlackScholesFormula calculateBSEuro(BSEuro);

calculateBSEuro.getPrice() calculateBSEuro.getDelta()

Other NAG software
Fortran Builder (NAG's Windows Fortran compiler)
Interference of the second second

NAG Fortran Builder

http://www.nag.co.uk/nagware/np/fortranbuilder.asp

ANY AGARAGE

London Universities - 1st December 2008

www.nag.co.uk

Fortran Builder

Integrated Development Environment for NAG compiler on PC
Extra facilities: tools etc
Excellent compiler for checking program validity.
Implements many Fortran 2003 features
Used extensively by NAG to test our library code

Summary

Libraries of mathematical / statistical components for all you favourite environments:
FORTRAN, C, C++, C#, VB, Java, Python...
MATLAB, Maple, R,...
runs under all popular Operating Systems
Windows, Linux, Mac, Solaris,
Other Environments:
Excel, Java, Python, R & C

CONTACT DETAILS

Technical Support support@nag.co.uk

General: operations@nag.co.uk

Presenter Contact Details:

john.holden@nag.co.uk david.sayers@nag.co.uk louise.mitchell@nag.co.uk

Copies of example programs used available on request

www.nag.co.uk

NAG Products http://www.nag.co.uk/products_and_services.asp Downloads & evaluations/trials http://www.nag.co.uk/downloads/downloads_entry.asp

NAG C Library <u>http://www.nag.co.uk/numeric/CL/CLdescription.asp</u> NAG Fortran Library <u>http://www.nag.co.uk/numeric/fl/FLdescription.asp</u> NAG Toolbox for MATLAB <u>http://www.nag.co.uk/numeric/MB/start.asp</u> Maple-NAG Connector <u>http://www.nag.co.uk/numeric/MC/MCdescription.asp</u>

NAG Fortran Builder http://www.nag.co.uk/nagware/np/fortranbuilder.asp

NAG and Excel <u>http://www.nag.co.uk/numeric/callingDLLsfromotherlang.asp</u> NAG and Java <u>http://www.nag.co.uk/doc/TechRep/html/Tr1_04/Tr1_04.asp</u> NAG and R http://www.nag.co.uk/numeric/RunderWindows.asp

NAGNews http://www.nag.co.uk/NAGNews/index.asp

