
Princetonshield

LTCC Advanced Course: Introduction to
Semiparametric Modelling Lecture 2

Clifford Lam

Department of Statistics
London School of Economics and Political Science

1 / 38

Princetonshield

Regression with nonlinear function
We have seen the LIDAR example where linear regression clearly cannot capture
the salient features of the data.

Generalize to the model
yi = f(zi;β) + εi, i= 1, · · · ,n,

where zi is a vector of predictors, β is a vector of unknown coefficients, and
f(z;β) is a known function.

Polynomial regression and linear spline regression with fixed number of knots and
fixed locations of knots are examples. They are still linear regression, since β is
linear in the function f(z;β).

What if the form of f(z;β) is not known? In polynomial regression, it boils down
to the choice of p - the degree of polynomial to be fitted. In linear spline
regression, it is reduced to finding the location of knots and the number of them.

Or nonparametric regression, with unknown function f(z) and model
yi = f(zi) + εi, i= 1, · · · ,n.

Usually it is too general, and need some assumptions on the form of f(zi).
2 / 38

Princetonshield

Basis functions

If the functional form f(z;β) is not known, we assume that such a function is a
linear combination of more “basic” functions - called basis functions.
With one variable x, polynomial regression used

1,x,x2, . . . ,xp,

with p to be determined.
A p-th degree polynomial spline, or truncated polynomial spline use

1,x, . . . ,xp,(x−κ1)p+, . . . ,(x−κK)p,

with p and K needed to be determined.
There are other common basis functions. B-spline basis and the natural spline
basis are the most commonly used, along with radial basis functions. Spline basis
regression will be treated under a unified framework to be introduced later.

3 / 38

Princetonshield

B-spline basis

One commonly used basis is called the B-spline basis. One advantage of such basis is
the numerical stability compared to e.g. polynomial spline. However, a p-th degree
B-spline is actually equivalent to a p-th degree polynomial spline if they have the same
knot locations. For instance, if

X =

 1 x1 · · · xp1 (x1−κ1)p+ · · · (x1−κK)p+
...

...
...

...
...

. . .
...

1 xn · · · xpn (xn−κ1)p+ · · · (xn−κK)p+

 ,

representing the design matrix of a p-th degree polynomial spline fit with predictor
variable x, then there exists an invertible matrix L such that the design matrix XB for
the B-spline fit can be written as

XB = XL.

4 / 38

Princetonshield

B-spline basis : example
library(splines)
plot(bs(1:400, df=5)[,1], type="l", ylab="", xlab="", col=1)
lines(bs(1:400, df=5)[,2], type="l", ylab="", xlab="", col=2)
lines(bs(1:400, df=5)[,3], type="l", ylab="", xlab="", col=3)
lines(bs(1:400, df=5)[,4], type="l", ylab="", xlab="", col=4)
lines(bs(1:400, df=5)[,5], type="l", ylab="", xlab="", col=5)

Figure: Fifth degree B-spline basis functions

5 / 38

Princetonshield

Linear spline basis
In the LIDAR data example from previous lecture, we used the following linear
spline basis functions:

1,x,(x−κ1)+,(x−κ2)+, . . . ,(x−κK).

Essentially, we use piecewise linear functions to build the function f(z;β), with
the knots κ1, · · · ,κK representing potential discontinuity in the first derivative of
the curve.
With K too large, we are overfitting the data. E.g. interpolation, setting all data
xi as knots for i= 1, · · · ,n.
With K too small, salient features may not be captured. E.g. linear regression on
the LIDAR data.

LIDAR data fitted with linear
spline regression. Knots at
400,412.5, · · · ,700.
Too many knots essentially
overfitted the model.

6 / 38

Princetonshield

Penalized spline regression

Too many knots makes the resulting curve looks more wiggly. On the other hand,
since

E(y|x) = β0 +β1x+ · · ·+βpx
p+

K∑
k=1

bk(x−κk)p+,

if bk = 0 for all k then the fit becomes a p-th degree polynomial fit, which will not
be wiggly provided p is of a suitable order.
The magnitude of the bk’s control the roughness of the curve. If we want a
smoother fit, then we want the bk’s to be small.
One way to achieve this is to set the constraint

∑
b2
k ≤ C where C is a constant.

Hence we need to solve

min
β
‖y−Xβ‖22 subject to

K∑
k=1

b2
k ≤ C,

where β = (β0,β1, · · · ,βp, b1, · · · , bK)T , and X is the design matrix defined on
page 4.

7 / 38

Princetonshield

Penalized spline regression

By Langrange multiplier argument, the problem can be written as

min
β
‖y−Xβ‖22 +λβTDβ,

where λ is called a smoothing parameter, and

D =
(

0p+1 0
0 IK

)
is a diagonal matrix with 0 on the first p+1 diagonal elements, and 1 on the rest.
This is a ridge regression type problem, with solution

β̂ = (XTX +λD)−1XTy.

When λ= 0, it is a p-th degree polynomial spline using all K knots. When
λ→∞, it is a p-th degree polynomial regression fit.

8 / 38

Princetonshield

Penalized spline regression : LIDAR example

Figure: Linear penalized spline regression for the LIDAR data. 24 knots are used.

9 / 38

Princetonshield

Penalized spline regression - the general form
Suppose B(x) = (B1(x), · · · ,BN (x))T is a vector of spline basis functions. E.g. in
a p-th degree polynomial spline, B1(x)≡ 1, B2(x) = x, and BN (x) = (x−κK)p+,
with N = p+ 1 +K. The design matrix can then be written as

X =

 B(x1)T
...

B(xn)T

 ,

and E(y|x) = f(x) = B(x)Tβ.
A p-th degree polynomial spline is shrunk towards a p-th degree polynomial as
λ→∞. A more flexible approach is to use a penalty of the form

λ

∫ b

a

[f (q+1)(x)]2 dx.

As λ→∞, we need f (q+1)(x) = 0 essentially, so that the resulting fit is a q-th
degree polynomial. Since f(x) = B(x)Tβ, the penalty can be written as βTDβ,
where

D =
∫ b

a

B(q+1)(x)[B(q+1)(x)]T dx.

Solution has the same form as before, with the only change being the definition of
D. 10 / 38

Princetonshield

Penalized spline regression - the big picture

There are several choices to be made when applying penalized splines:
1. The spline model - the degree p, knot locations κk and total number of knots K.
2. The penalty function.
3. The basis functions. Interpretability and computability are both issues. B-spline

basis has more numerical stability, but interpretability is very much hindered, while
polynomial spline basis has more interpretability but not computability. But, they
are equivalent to one another.

With 2 and 3, the penalty matrix D is fixed.
For the choice of the number of knots, there are actually automatic algorithm
(myopic algorithm) for this purpose. However, in practice the result is usually not
too sensitive to the choice of K, provided that K is reasonably large (20 to 40 for
large data set).
For knots location, it can be prefixed, or choose them by visual inspection.
Choice of λ is much more important, and we introduce the method of CV, GCV,
AIC or Mallow’s Cp soon.

11 / 38

Princetonshield

Linear Smoothers

In penalized spline regression, the solution for β is β̂ = (XTX +λD)−1XTy, so

ŷ = Xβ̂ = X(XTX +λD)−1XTy = Sλy,

where Sλ = X(XTX +λD)−1XT . This is analogous to the hat matrix
H = X(XTX)−1XT , and is called the smoother matrix.
For the class of models with ŷ = Ly where L is a matrix independent of the data
y, the matrix L is called a linear smoother. Linear regression and penalized spline
regression all have an associated smoother matrix. The latter is so assuming λ is a
fixed constant.

12 / 38

Princetonshield

Error of an estimator

The error of an estimator f̂(x) on f(x) can be assessed by the mean square error
(MSE), defined by MSE{f̂(x)}= E[{f̂(x)−f(x)}2]. The following can be
derived, where bias{f̂(x)}= E(f̂(x))−f(x):

MSE{f̂(x)}= var{f̂(x)}+bias2{f̂(x)}.

Yet MSE is only measuring on a point x. It is common to measure error globally
across x. One possibility is the mean integrated squared error (MISE):

MISE{f̂(·)}=
∫
χ

MSE{f̂(x)} dx.

13 / 38

Princetonshield

The mean summed squared error (MSSE)
Instead of MISE which depends on χ, a simpler alternative is to use MSSE:

MSSE{f̂(·)}= E

n∑
i=1
{f̂(xi)−f(xi)}2.

It has simple expression after simplification. Denote f̂ = (f̂(x1), . . . , f̂(xn))T .
Similarly for f . For linear smoothers with smoother matrix L, we have f̂ = Ly.
Then by noting that E(y) = f and assuming var(y) = σ2I,

MSSE(f̂(·)) = MSSE(f̂) = E‖f̂ − f‖22
= E‖f̂ −E(f̂) +E(f̂)− f‖22
= E‖f̂ −E(f̂)‖22 + 2E[{f̂ −E(f̂)}T {E(f̂)− f}] +E‖E(f̂)− f‖22
= E{f̂ −E(f̂)}T {f̂ −E(f̂)}+‖Lf − f‖22
= tr[E{(Ly−Lf)(Ly−Lf)T }] +‖(L− I)f‖22
= tr[Lvar(y)LT] +‖(L− I)f‖22
= σ2tr(LLT) +‖(L− I)f‖2.

14 / 38

Princetonshield

Rank of a linear smoother L
Classical smoothing spline uses n basis functions, whereas linear penalized splines
with K knots uses K+ 2 basis functions for estimating E(y|x).
Let L be a smoother matrix with eigenvalues λ1 ≥ ·· · ≥ λn, and corresponding
eigenvectors v1, · · · ,vn, which form a basis for Rn. Then there exists constants
α1, · · · ,αn such that

y =
n∑
j=1

αjvj .

Hence pre-multiplying L on both sides,

ŷ =
n∑
j=1

αjLvj =
n∑
j=1

αjλjvj .

For a low-rank smoother L which uses considerably less than n basis functions,
many eigenvalues of L are close to or exactly 0. The above expression means that
the main part of the smoothing spline fit comes from the eigenvectors which have
non-zero eigenvalues, and other parts contribute just little (small λj) or have no
contribution at all (λj = 0).
For n in thousands or higher, reduction in computational cost is huge using
low-rank smoother.

15 / 38

Princetonshield

Degree of freedom of a smoother L
We have seen that Sλ is a generalization of the hat matrix H in linear regression,
in the sense that

ŷ = Sλy.

Since tr(H) = total number of parameters fitted, and is called the degrees of
freedom, we define

t(λ) = tr(Sλ)
to be the degrees of freedom of the fit corresponding to the smoothing
parameter λ.
It has the rough interpretation as the equivalent number of parameters, and
roughly a scatterplot smooth with ν degrees of freedom summarizes the data to
about the same extent as a (ν−1)-degree polynomial.
We use the notation

dffit = tr(Sλ).
E.g. for a penalized spline,

dffit = tr{(XTX +λD)−1XTX}.

Can show easily that p+ 1< dffit < p+ 1 +K for a p-th degree polynomial spline.

16 / 38

Princetonshield

Residual degree of freedom

We define the residual degree of freedom of the fit to be

dfres = n−2tr(Sλ) + tr(SλSTλ).

E.g. for linear regression where Sλ is replaced by H, we have

dfres = n−2p+p= n−p,

where p is the degree of freedom for linear regression.
In exercise 2, you will show that

E(RSS) = E‖y− ŷ‖22 = ‖(Sλ− I)f‖22 +σ2dfres.

Hence if the bias term is negligible, RSS/dfres is indeed an unbiased estimator of
σ2, analogous to linear regression.

17 / 38

Princetonshield

Comparing dffit and n−dfres

Figure: Comparison of dffit and n−dfres for 24-knot linear spline fits to the
LIDAR data.

18 / 38

Princetonshield

Cross Validation (CV) for choosing λ
The residual sum of squares RSS is a measure of goodness of fit. However, it is
always the case that RSS is minimized when λ= 0. That is, when there is no
penalization. The resulting fit is unacceptable as explained earlier.
The cross validation criterion (CV) is defined as

CV(λ) =
n∑
i=1
{yi− f̂−i(xi;λ)}2,

where f̂−i denotes the estimator applied to the data but with (xi,yi) deleted.
This is a “leave-one-out” criterion which gets around the problem inherited in RSS.
It attains a minimum value for some λ > 0.
For large n, computational cost can be high if we directly compute CV(λ).
However, for many kinds of smoothers, it can be shown that approximately,

CV(λ) =
n∑
i=1

(
yi− ŷi

1− (Sλ)ii

)2
.

Hence ordinary residuals can be used to compute CV, reducing hugely the
computational cost.

19 / 38

Princetonshield

CV vs RSS

Figure: CV and RSS curves for the LIDAR data using 24-knot linear regression
splines.

20 / 38

Princetonshield

Generalized Cross Validation (GCV) for choosing λ

The GCV replaces (Sλ)ii in the CV formula by the average

1
n

n∑
i=1

(Sλ)ii = 1
n
tr(Sλ).

It is thus much quicker to calculate.
The GCV criterion is

GCV(λ) =
n∑
i=1

(
yi− ŷi

1−n−1tr(Sλ)

)2
= RSS(λ)

(1−n−1tr(Sλ))2 .

For the LIDAR data example, the CV and GCV curves are extremely close
together, and attains the same minimum at the same λ.
Other methods like Mallow’s Cp and AIC exist also. We will skip them in the
lecture, but they may appear in exercises.

21 / 38

Princetonshield

Local polynomial regression
At each point x ∈ χ, we fit a weighted least square regression line to the data.

Figure: Cubic fits of the data. Dotted curve are kernel weights for points u and v.

22 / 38

Princetonshield

Local polynomial regression
When using least squares on the model y = f(x) + ε, we minimize

n∑
i=1

(yi−f(xi))2.

At a point x ∈ χ, using Taylor’s expansion on f(xi) at the point x up to p+ 1
terms, if x is close to xi, we have

f(xi)≈ f(x) +f ′(x)(xi−x) + · · ·+f (p)(x)(xi−x)p.

The f (j)(x)’s should be approximately constants for a small range of values of x
close to xi, say βj ≈ f (j)(x).
Instead of using least squares, we use weighted least squares with weights provided
by the kernel function K(·), so that for those xi far away from x, their
contribution is weighted to be very small:

n∑
i=1

(yi−β0−β1(xi−x)−·· ·−βp(xi−x)p)K
(
xi−x
h

)
.

In essence we are fitting a polynomial regression at the point x with those xi’s
which are close to x; all other xi’s far from x are contributing small to nothing.

23 / 38

Princetonshield

Local polynomial regression

The problem becomes a standard weighted least square problem, with solution

β̂ = (XT
xWxX)−1XT

xWxy,

where Wx = diag
(
K
(
x1−x
h

)
, . . . ,K

(
xn−x
h

))
, and

Xx =

 1 x1−x · · · (x1−x)p
...

... . . .
...

1 xn−x · · · (xn−x)p

 .

The estimators β̂0, · · · , β̂p are estimating f(x), · · · ,f (p)(x) respectively.
We need to choose K(·), the kernel function. Usually results will not be too
sensitive to this choice for a wide variety of standard kernel functions.
The parameter h is called the bandwidth. The smaller it gets, the more local we
are looking at around x. It can be chosen by CV or GCV methods introduced
earlier.

24 / 38

Princetonshield

Local polynomial regression
The Nadaraya-Watson estimator takes p= 0, i.e. a local constant fit to the data.
In practice usually p≥ 1 performs much better. Theoretically, we should take p to
be odd in order that the bias in the boundary be reduced. In practice, p= 2 also
works well in many circumstances when we are concerned with prediction inside
the boundaries of χ.
However, if we want extrapolation for prediction outside the boundaries, we should
go back to odd p, like local linear or local cubic fits, since bias in the boundaries
play an important role now.
Advantages of local polynomial regression with p≥ 1 includes easy theoretical
analysis, automatically correct bias in the boundary as compared to local constant
fit (automatic kernel carpentry, you will see problems related to this point in
exercise 2). Also compared to splines methods, there are less parameters to
choose. Essentially only the bandwidth h needed to be chosen when we are doing
e.g. local linear regression with a certain type of kernel.
Disadvantages include difficult interpretation of the regression function, and no
explicit functional form for the final estimator of f(·). It also takes more time to
compute than splines. And it needs denser data than splines for accurate
estimation, as it looks at the data “locally”.

25 / 38

Princetonshield

Local polynomial regression - example

x=-100:150/50
y = 0.4*x^3 - 1.5*x^2 + 0.5 + rnorm(251)
plot(x,y)
lines(x, 0.4*x^3 - 1.5*x^2 + 0.5)

y.lo1 = loess(y ~ x, degree=1, span = 0.75)
lines(x, y.lo1$fit, col=2)
y.lo2 = loess(y ~ x, degree=2, span = 0.75)
lines(x, y.lo2$fit, col=3)

26 / 38

Princetonshield

Local polynomial regression - example

Figure: Local linear (red) and local quadratic (green) fits. Black line is the true
underlying function.

27 / 38

Princetonshield

Local polynomial regression - example

x=-100:150/50
y = 0.4*x^3 - 1.5*x^2 + 0.5 + rnorm(251)
plot(x,y)
lines(x, 0.4*x^3 - 1.5*x^2 + 0.5)

y.lo1 = loess(y ~ x, degree=1, span = 0.2)
lines(x, y.lo1$fit, col=2)
y.lo2 = loess(y ~ x, degree=2, span = 0.2)
lines(x, y.lo2$fit, col=3)

28 / 38

Princetonshield

Local polynomial regression - example

Figure: Local linear (red) and local quadratic (green) fits. Black line is the true
underlying function.

29 / 38

Princetonshield

Local polynomial regression - bias and variance

This is from Fan and Gijbels (1996), Local Polynomial Modelling and Its
Applications.
Define

µj =
∫
ujK(u) du νj =

∫
ujK2(u) du

Also define

S = (µj+`)0≤j,`≤p, cp = (µp+1, . . . ,µ2p+1)T

S∗ = (νj+`)0≤j,`≤p, c̃p = (µp+2, . . . ,µ2p+2)T .

Finally, let ek be the unit column vector with 1 at the k-th position.

30 / 38

Princetonshield

Local polynomial regression - bias and variance
Theorem
Let fx be the density function of x. Assume that fx(x0)> 0 and fx(·), f (p+1)(·) and
σ2(·) are continuous in a neighborhood of x0. Further, assume that h→ 0 and
nh→∞. Then the asymptotic conditional variance of f̂ (k)(x0) is given by

var(f̂ (k)(x0)|X) = eTk+1S
−1S∗S−1ek+1

k!2σ2(x0)
fx(x0)nh1+2k +oP

(1
nh1+2k

)
.

The asymptotic conditional bias for p−k odd is given by

Bias(f̂ (k)(x0)|X) = eTk+1S
−1cp

k!
(p+ 1)!f

(p+1)(x0)hp−k+1 +oP (hp−k+1).

For p−k even the asymptotic conditional bias is

Bias(f̂ (k)(x0)|X) = eTk+1S
−1c̃p

k!
(p+ 2)!

{
f (p+2)(x0) + (p+ 2)f (p+1)(x0)f

′
x(x0)
fx(x0)

}
hp−k+2

+oP (hp−k+2),

provided that f ′x(·) and f (p+2)(·) are continuous in a neighborhood of x0 and nh3→∞.

31 / 38

Princetonshield

Local polynomial regression - bias and variance

Theoretical differences for the bias term between p−k is odd and p−k is even.
It turns out that theoretically, polynomial fits with p−k is odd outperform those
with p−k even.
Suppose k = 0 - we are focusing on the regression function f(·). Then define
Vp = eT1 S−1S∗S−1e1, we can show

V0 = V1 = ν0, V2 = V3 = µ2
4ν0−2µ2µ4ν2 +µ2

2ν4
(µ4−µ2

2)2 .

Variance increases only from odd order to consecutive even order, but not from
even order to consecutive odd order.
Higher order fit reduces bias. Hence odd order fit is better than its consecutive
lower even order fit, because bias is reduced without variance changing
asymptotically. In particular, local linear fit is better than local constant fit for the
regression function.
For k > 0, similar arguments can apply.

32 / 38

Princetonshield

Local polynomial regression - Equivalent kernel
Since β̂ = (XxWxXx)−1XT

xWxy, we have for k = 0,1, . . .,

β̂k = eTk+1β̂ = eTk+1S
−1
n XT

xWxy

=
n∑
i=1

Wn
k

(
xi−x
h

)
yi,

where Sn = XT
xWxXx, and Wn

k (t) = eTk+1S
−1
n {1, th, . . . ,(th)p}TK(t)/h.

Like a kernel estimator, except now the kernel depends on design points and
locations.
Related to adaptive property to designs and boundary estimations.
In exercise 2 you will show that

Sn,j =
n∑
i=1

Kh(xi−x)(xi−x)j = nhjfx(x)µj{1 +oP (1)}.

This implies Sn = nfx(x)HSH{1 +oP (1)}, where H = diag(1,h, . . . ,hp).
Can then write

β̂k = 1
nhk+1f(x)

n∑
i=1

K∗k

(
xi−x
h

)
yi{1 +oP (1)},

where K∗k(t) = eTk+1S
−1(1, t, . . . , tp)K(t) is called the equivalent kernel.

33 / 38

Princetonshield

Local polynomial regression - Equivalent kernel

Figure: The Epanechnikov kernel and some corresponding equivalent kernels.
34 / 38

Princetonshield

Local polynomial regression - choice of bandwidth
Bandwidth can be constant or variable (locally or globally variable). We study
optimal constant bandwidth only and locally variable bandwidth.
A theoretical optimal bandwidth for estimating f (k)(x) is obtained by minimizing
the conditional Mean Square Error (MSE) given by

Bias{f̂ (k)(x)|X}2 + var{f̂ (k)(x)|X}.

This leads to

hopt(x) = Ck,p(K)
[

σ2(x)
{f (p+1)(x)}2fx(x)

]1/(2p+3)
n−1/(2p+3),

where

Ck,p(K) =
[

(p+ 1)!(2k+ 1)
∫
K∗k(t)dt

2(p−k+ 1){
∫
tp+1K∗k(t)dt}2

]1/(2p+3)

.

The order hopt(x) =O(n−1/(2p+3)) is not difficult to obtain, despite the
complicated expressions above.
For a constant bandwidth, we minimize the conditional weighted MISE (Mean
Integrated Squared Error)∫

([Bias{f̂ (k)(x)|X}]2 + var{f̂ (k)(x)|X})w(x)dx.

The result is still hopt =O(n−1/(2p+3)). 35 / 38

Princetonshield

Local polynomial regression - choice of bandwidth

Practically, there are a lot of ways and papers contributed to choosing bandwidth.
Cross-validation or GCV is one option. Construction of AIC or BIC criterion is
another.
Will not cover in this course.

36 / 38

Princetonshield

Local polynomial regression - automatic carpentry

A point x is a boundary point if x±h lies outside the design region (corr. to a
kernel K with bounded support [−1,1]).
It causes huge problems for most smoothing techniques, including large boundary
bias. Boundary correction is usually needed for smoothing techniques.
If x= 1− ch (assuming x ∈ (−∞,1]), then c≥ 1 corresponds to interior point,
while c < 1 corresponds to boundary point.
It turns out that the MSE is a continuous function of c when p−k is odd, so that
from boundary point to interior point, the risk changes continuously. Hence no
boundary modification is needed. When p−k is even, the risk is of higher order
when c changes continuously to an interior point, and boundary modification is
needed.

37 / 38

Princetonshield

Local polynomial regression - automatic carpentry

Figure: The Epanechnikov kernel and its equivalent kernels at the boundary
points c=0.3 (solid line) and c=0.7 (dotted line) and interior points c≥ 1
(dashed line) for various values of p and ν 38 / 38

