London Taught Course on Spectral Theory

E. B. Davies

Week 3 28 January 2013

This lecture is based on Chapters 2 and 3 of STDO, which is 'Spectral Theory and Differential Operators', available in paperback from Amazon (for example) for about 28 pounds. A list of misprints, including the correction of a serious error in the proof of Theorem 1.2.10, may be downloaded from http://www.mth.kcl.ac.uk/staff/eb_davies/STDO.html

The notions of self-adjointness and spectrum are defined for unbounded operators. Theorem 1.2.10 establishes that the spectrum of an unbounded SA operators is non-empty and real. Lemma 1.1.2 states that the spectrum is always closed. Four different forms of the spectral theorem are stated.

Theorem 2.3.1 is in terms of the existence of a suitable algebra homomorphism $T: C_0(\mathbf{R}) \to \mathcal{L}(\mathcal{H})$. This can be refined to the existence of such a map from $C_0(S)$ to $\mathcal{L}(\mathcal{H})$ where S = Spec(H). This leads to the notation f(H) = T(f) where $H = H^*$ and $f \in C_0(S)$, called a functional calculus.

Theorem 2.5.3 requires an understanding of weak and strong convergence of operators. It asserts that Theorem 2.5.1 can be extended by replacing $C_0(\mathbf{R})$ by $B(\mathbf{R})$, the space of all bounded Borel measurable functions. $B(\mathbf{R})$ contains all constructively definable bounded functions on \mathbf{R} . This leads naturally to defining the orthogonal projections P_s for all $s \in \mathbf{R}$ as $T(\chi_{(-\infty,s]})$. It may be shown that \mathcal{H} is the orthogonal direct sum of $\mathcal{L} = \operatorname{Ker}(P_s)$ and $\mathcal{M} = \operatorname{Ran}(P_s)$. Each of these subspaces is invariant under H and

$$Spec(H|_{\mathcal{M}}) = Spec(H) \cap (-\infty, s],$$

$$Spec(H|_{\mathcal{L}}) = Spec(H) \cap [s, \infty),$$

except possibly at the point s.