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Estimation of derivatives

In local polynomial regression, the first derivative is the second entry of the
estimated coefficients parameter β̂. Bias and variance of the estimator have been
presented in lecture 2. All advantages of local polynomial fitting retains for the
derivatives estimations.
For penalized polynomial splines, we use higher degree polynomial basis functions
to ensure smoothness. For first derivative estimation, quadratic splines are the
simplest basis leading to smooth fits.
Let f̂ be a quadratic penalized fit:

f̂(x) = β̂0 + β̂1x+ β̂2x
2 +

K∑
k=1

ûk(x−κk)2
+.

The derivative estimate is then

f̂ ′(x) = β̂1 + 2β̂2x+
K∑

k=1

2ûk(x−κk)+.
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Estimation of derivatives
If we let β̂ = (β̂0, β̂1, β̂2)T and û = (û1, . . . , ûK)T , with

Xx = (0,1,2x) and Zx = (2(x−κ1)+, . . . ,2(x−κK)+),

then
f̂ ′(x) = Xxβ̂ + Zxû.

The variance is

var{f̂ ′(x)−f ′(x)} ≈Cxcov
[

β̃
ũ−u

]
CT

x

= σ2Cx

(
CT C + σ2

σ2
U

D
)−1

CT
x ,

where Cx = (Xx,Zx) and D = diag(0,0,0,1, . . . ,1).
Inference can be made using asymptotic normality of the estimated parameters,(

β̂−β
û−u

)
approx∼ N

{
0, σ̂2

(
CT C + σ2

σ2
U

D
)−1

}
.
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Inference - example

For the LIDAR data example, −f ′(range) is proportional to the concentration of
mercury at a given value of range. We estimate the derivative using a 15-knot
penalized cubic spline.
The tuning parameter is chosen by GCV, which minimizes the bias around the
bump, where the estimate is significantly positive. This bump reveals a plume of
mercury.
Since GCV minimizes the bias around such bump, a global tuning parameter λ is
chosen to be quite small. This small λ then produces unnecessary wiggles on those
range values outside of the bump, which should remain zero.
An spatially adaptive λ is preferable in this case.
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Inference - example

Figure: LIDAR data: estimate of first
derivative with pointwise CIs, using
global penalty.

Figure: Same, but spatially adaptive
penalty is used.
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Semiparametric binary offset model

Figure: Scatterplot of the density and log.yield for the onions data. The plotting
symbols indicate the two locations where the onions were cultivated. The lines
correspond to the linear additive model fit to the data.
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Semiparametric binary offset model

The onions data is on yields (g/plant) of white Spanish onions in two locations:
Purnong Landing and Virginia, South Australia. The horizontal axis corresponds to
areal density of plants (plants/m2).
We model by

log(yieldi) = β0 +β1PLi +β2densityi + εi,

where
PLi =

{
0, if ith measurement is from Virginia;
1, if ith measurement is from Purnong Landing.

Since slight curvature is apparent in the scatterplots for each location, we can
generalize the model to

log(yieldi) = β1PLi +f(densityi) + εi.

The model is called a semiparametric binary offset model. It has both parametric
and nonparametric components. The variable PL vertically offsets the relationship
between E(log(yieldi)) and density according to location.
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Semiparametric binary offset model

The penalized linear spline formulation is

log(yieldi) = β0 +β1PLi +β2densityi +
K∑

k=1

uk(densityi−κk)+ + εi,

where uk ∼ i.i.d.N(0,σ2
U ), εi ∼ i.i.d.N(0,σ2).

The estimated location effect is

β̂1 = 0.3331, ŜD(β̂1) = 0.0239.

A 95% confidence interval for it is (0.286,0.380). It is 77% of the length of that
obtained from a model with density entering linearly.
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Semiparametric binary offset model

Figure: Onion data: fit to the additive model. The response is log.yield. The
effect of density is fit by a penalized quadratic spline using REML to select the
penalty parameter.
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Interactions

In reality, the effect of location may change according to the value of density.
Likewise, the effect of density may change also depending on location.
The additive model we considered has fixed difference between locations as
density changes. Likewise, at different locations, changes in log(yield) is the
same as density changes from a certain value to another. Hence it is not flexible
enough.
We consider interactions between the two factors. The most general interaction
can be

E{log(yield)i}=
{

fPL(densityi), if Purnong Landing;
fVA(densityi), if Virginia.

To fit the model we treat the locations separately. But in the end the fits look
similar to the additive model, suggesting additivity is a reasonable assumption.
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Semiparametric binary offset model

Figure: Additive and interaction fits to onion data. The solid curves are
REML-based fits of the general interaction model. The dashed curves are
REML-based fits of the additive model.
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Testing for additivity
Under general interactions between location and density, we are fitting

yi = fzi (xi) + εi,

where (xi,yi,zi) = (locationi, log(yieldi),densityi), and

zi =
{

1, if (xi,yi) is from Purnong Landing;
2, if (xi,yi) is from Virginia.

Using a K-knots p-th degree polynomial spline, the additive model can be written

yi = β0 +
p∑

j=1
βjx

j
i +

K∑
k=1

uk(xi−κk)p
+ +γ0zi + εi.

The model with interactions is

yi = β0 +
p∑

j=1
βjx

j
i +

K∑
k=1

uk(xi−κk)p
+

+
2∑

`=1

zi`

γ0` +
p∑

j=1
γj`x

j
i +

K∑
k=1

vk`(xi−κk)p
+

+ εi,

where zi` = 1 if zi = ` and 0 otherwise. We also constraint vk` = 0 for `= 1.
Assume uk ∼ i.i.d.N(0,σ2

u) and vk` ∼ i.i.d.N(0,σ2
v) (mixed model).

12 / 17



Princetonshield

Testing for additivity

With the two models in spline formulation, the simple additive model assumes that
all γj` = 0 for j = 1, . . . ,p and γ01 = 0, `= 1,2, and the vk`’s are all 0.
In mixed model formulation, it means that

H0 : γ01 = 0,γi` = 0, j = 1, . . . ,p, `= 1,2, σ2
v = 0.

Since we overparametrized the model with interaction, we need to count the
number of restrictions needed. In our example, we can constraint for example
γj` = 0 for `= 2. Hence there are p restrictions.
The number of restrictions we placed on the fixed component is then
2p+ 1− (p+ 1) = p.
We can use the likelihood ratio test to test this hypothesis. Null distribution of the
statistic can be simulated (preferred), or we can use the asymptotic approximation
which is an even mixture of chi-square distributions.
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Additive model
In almost all examples and theories developed so far, we have dealt with only one
predictor variable. Yet most of the times there will be more than one predictor
variables.
It is easy to generalise what we have learnt to multiple smooth functions, one for
each predictor variable. The effects are added together, and so it is called an
additive model.
Consider a data example where 56 US cities are observed with minimum
temperature y and geographical locations (degree latitude s, degree longitude t).
A nonparametric additive model to consider is then

yi = β0 +f(si) +g(ti) + εi,

where f and g are smooth functions.
We can easily extend our penalized linear spline formulation for additive model:

yi = β0 +βssi +
Ks∑

k=1

us
k(si−κs

k)+ +βtti +
Kt∑

k=1

ut
k(ti−κt

k)+ + εi,

where κs
k represents knots in the s direction, and similar definitions for κt

k.
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Additive model
The vector of fitted model is

ŷ = C(CT C + Λ)−1CT y,

where Λ = diag(0,0,0,λ2
s, . . . ,λ

2
s,λ

2
t , . . . ,λ

2
t ), and

C =
[
1,si, ti,(si−κs

1)+, . . . ,(si−κs
Ks

)+,(ti−κt
1)+, . . . ,(ti−κt

Kt
)+
]

1≤i≤n
.

This model can also be fitted using the mixed model formulation. Let
β = (β0,βs,βt)T , u = (us

1, . . . ,u
s
Ks
,ut

1, . . . ,u
t
Kt

)T , and

X = [1,si, ti]1≤i≤n,

Z =
[
(si−κs

1)+, . . . ,(si−κs
Ks

)+,(ti−κt
1)+, . . . ,(ti−κt

Kt
)+
]

1≤i≤n
,

then penalized least squares is equivalent to BLUP in the mixed model
y = Xβ + Zu + ε, with

E

(
u
ε

)
= 0, cov

(
u
ε

)
=

 σ2
sI 0 0
0 σ2

t I 0
0 0 σ2I

 ,

and λs = σ/σs and λt = σ/σt.
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Additive model
Hence effectively, using REML to fit the mixed model returns the two estimated
tuning parameters λ̂s = σ̂/σ̂s and λ̂t = σ̂/σ̂t. With more additive components, it
become very apparent the advantages of using mixed model for estimation of
parameters.
Instead of plotting the estimated functions f̂ and ĝ alone, we usually plot

β̂0 + f̂(s̄) + ĝ(t)
as a function of t, and

β̂0 + f̂(s) + ĝ(t̄)
as a function of s. This increases the usefulness of the plot as it shows the
absolute contribution to the response when s or t changes.
Pointwise variability bands are added as usual using

cov
(

β̂
û−u

)
= σ2(CT C + Λ)−1.

Partial residuals can be plotted. For the plot against s, the partial residuals are
yi− β̂0− ĝ(ti) +{β̂0 + ĝ(t̄)}= yi−{ĝ(ti)− ĝ(t̄)}.

For the plot against t, the partial residuals are
yi−{f̂(si)− f̂(s̄)}.
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Additive model - Temperature example

Figure: Upper row: Plot of component functions with the other variable fixed at
mean value; partial residuals and variability bands added. Lower row: Derivative
estimates with variability bands. 17 / 17


