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Degree of freedom
Linear terms have 1 degree of freedom for each predictor variable, whereas
nonlinear terms have some number greater than 1, depending on the curviness of
the function.
Since for additive model yi = β0 +

∑d
j=1 fj(xji) + εi we have

ŷ = Xβ̂ + Zû = C(CTC + Λ)−1CTy,

hence the smoother matrix is L = C(CTC + Λ)−1CT , where

C = [X Z], and Λ =
(

0 0
0 σ2cov(u)−1

)
.

Here cov(u) = diag(σ2
u1 , . . . ,σ

2
ud

).
The total degree of freedom is

dffit = tr{(CTC + Λ)−1CTC}.

To define degree of freedom for each component, we can let P denotes the
number of columns of C, and let

{I0, I1, . . . , Id}

be a partition of the column indices {1, . . . ,P} such that I0 corresponds to the
intercept β0 and Ij corresponds to fj(·) for each 1≤ j ≤ d.
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Degree of freedom
In the temperature data example, Ks =Kt = 20, hence we have P = 43 and we
would have

I0 = {1}, I1 = {2,4,5, . . . ,23}, I2 = {3,24,25, . . . ,43}.

Let AI denotes the submatrix of A consisting of columns with indices in I. Then
{CI0 ,CI1 , . . . ,CId

}
represents a partition of the columns of C corresponding to the terms of the spline
formulation of the additive model yi = β0 +

∑d
j=1 fj(xji) + εi.

We define Ei ti be the P ×P diagonal matrix with ones in the diagonal positions
with indices in Ii and zero elsewhere. Then the fitted values for the jth term are f̂j(xj1)

...
f̂j(xjn)

= {CEj(CTC + Λ)−1CT }y.

The corresponding degree of freedom may be computed as
dfj = tr{CEj(CTC + Λ)−1CT }= tr{Ej(CTC + Λ)−1CTC},

which is the sum over the indices of Ij of the diagonal elements of the matrix
(CTC + Λ)−1CTC. Hence

dffit = df0 + · · ·+dfd. 3 / 17
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Smoothing parameter selection

The REML approach to finding variance components in a mixed model framework
is attractive, since it is easy and automatic. Then λ̂j = σ̂2/σ̂2

uj
.

Yet this automatic selection can be somehow erratic. In particular it can be very
sensitive to the number of knots chosen for one component. Sometimes it even
grossly oversmooth the component.
Hence it is important to try other degree of smoothness for a component and
inspect the resulting fits.
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Smoothing parameter selection

Figure: Additive model of Milan mortality data with smoothing parameters
chosen by REML. TSP is a parametric component. Upper row: 35 knots for two
other additive components and 60 knots for day number. Lower: 30 knots instead
of 35 knots for the two other components. Still 60 knots for day number.
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Hypothesis testing for additive model

The linearity of the effect of a general predictor s can be assessed through a test
of the hypotheses

H0 : σ2
s = 0←→H1 : σ2

s > 0,
where σ2

s is the variance for the spline basis function coefficients for estimating the
effect of s.
Likelihood ratio test can be used, but finding p-value is not an easy task. One can
use the chi-square approximation, where degree of freedom under the null is the
change in the degree of freedom between the models.
This is well a crude approximation in penalized spline regression. But it is a good
approximation if it is not penalized, since effectively unpenalized spline regression
is just GLM, and the generalized likelihood ratio test (GLRT) applies.
Hence if hypothesis testing is a key aim, it is sometimes preferable to carefully
construct basis and knots so that unpenalized spline regressions are compared.
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Hypothesis testing for additive model

In general for semiparametric regression, if we are testing two nested models, we
can construct the usual F-ratio

F =
(RSS0−RSS1)/(dfres,1−dfres,0)

RSS1/(n−dfres,1) =
(R2

1−R2
0)/(dfres,1−dfres,0)

(1−R2
1)/(n−dfres,1)

,

where RSS0 is the residual sum of squares for the smaller model, and RSS0 is that
for the larger model.
Also dfres,0 is the degree of freedom of the RSS for the smaller model, and
similarly for dfres,1.

We also have R2
i = 1− RSSi

TSS , where TSS is the total corrected sum of squares.
Under the null hypothesis, the F ratio will have an approximate F-distribution with
degree of freedom

dfres,0−dfres,1 and dfres,1

These degrees of freedom will not be integer in general.
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Exponential family and GLM
The 1-parameter exponential family of distribution for the response y has density
of the form

f(y;θ) = exp
(
yθ− c(θ)

φ
+d(y,φ)

)
,

where θ is called the canonical parameter and φ the dispersion parameter. Many
well known distributions belong to this family.
Can prove easily that E(y) = c′(θ), var(y) = φc′′(θ).
We usually model the parameter of interest with a linear predictor η = xTβ, where
x is a vector of predictors. The canonical link function is the function that links
the canonical parameter to the linear predictor η.
E.g. for y ∼ Binomial(n,π), the canonical parameter is θ = log(π/(1−π)). Setting
θ = η, we immediately know that the canonical link function is the logit function.
We fit the model by numerical methods of finding solutions of the score equation
U(β) := ∂`

∂β = 0, like the Newton’s method. Updating equation is

βk+1 = βk−H(βk)−1U(βk),

where H(β) = ∂U
∂βT is called the Hessian matrix. The Fisher scoring method

replaces −H(β) by I(β), the information matrix. The iterative reweighted least
square (IRLS) algorithm is based on this.
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Generalized linear mixed model (GLMM)
An extension of GLM to GLMM involves replacing Xβ by Xβ + Zu as in the
introduction to mixed model.
If u∼N(0,Gθ), where θ is a vector of (unknown) parameters, then for a random
sample of size n from the exponential family with φ= 1 using the canonical link
function, we have

f(y|u) = exp{yT (Xβ + Zu)−1T c(Xβ + Zu) + 1T c(y)},

f(u) = (2π)−q/2|Gθ|−1/2 exp
(
−1

2uTG−1
θ u

)
.

This gives the likelihood

L(β,θ) =
∫
Rq

f(y|u)f(u) du

= (2π)−q/2|Gθ|−1/2 exp{1T c(y)}J(β,θ),

where

J(β,θ) =
∫
Rq

exp{yT (Xβ + Zu)−1T c(Xβ + Zu)− 1
2uTG−1

θ u} du.
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Penalized Quasilikelihood (PQL)

The above likelihood is not easy to deal with because of the integral J(β,θ). The
easier way is to treat θ as known first, then treating u as fixed parameters, (β,u)
is obtained by maximizing the penalized log-likelihood

log{f(y|u)}− 1
2uTG−1

θ u.

We still assume that φ= 1 for our exponential family and canonical link is used.
Differentiating w.r.t. (βT ,uT )T and set to 0, we get(

XT (y−µ)
ZT (y−µ)−G−1

θ u

)
= 0.

Differentiating LHS further w.r.t. (βT ,uT ), we obtain the Hessian

−
(

XTWX XTWZ
ZTWX ZTWZ + G−1

θ

)
,

where W = diag(c′′(Xβ +Zu)). This is independent of the data y, and hence the
Fisher’s scoring and the Newton’s method are identical.

10 / 17



Princetonshield

Penalized Quasilikelihood (PQL)

To estimate θ or Gθ, one can use cross-validation (not covered).
Or define the pseudodata

ypseudo = Xβ + Zu + W−1(y−µ),

where εpseudo = W−1(y−µ) and var(ypseudo) = R = W−1.
One can then use profile likelihood or the REML to find Gθ using current
estimates of (β,u), where the profile log-likelihood is the one used in mixed model
formulation for estimating V = ZGZT + R when y|u∼N(Xβ + Zu,R),
u∼N(0,G). In our case, the data is replaced by the pseudo data, with
R = W−1, and G = Gθ.,
We can then iterate between estimating (β,u) and Gθ until convergence.
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Generalized Additive Model
GLM is nonlinear, but still a parametric model. It can be extended to
nonparametric functions for each independent variable, resulting in the generalized
additive model (GAM).
Again assume that we have φ= 1 and we are using the canonical link function.
Hence if we have two independent variables s and t, say, we have

η(s, t) = β0 +f(s) +g(t).

A linear spline formulation is then

η(s, t) = Xxβ + Zxu,

where Xx = (1, s, t), β = (β0,β1,β2)T , u = (us1, . . . ,usKs
,ut1, . . . ,u

t
Kt

)T ,

Zx = ((s−κs1)+ . . . (s−κsKs
)+ (t−κt1)+ . . . (t−κtKt

)+).

Suppose we have sample of size n, then the log-likelihood of the data is

yT (Xβ + Zu)−1T c(Xβ + Zu) + 1T d(y),

where X = [Xxi ]1≤i≤n, Z = [Zxi ]1≤i≤n, with xi = (si, ti).
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Generalized Additive Model

A penalty on the roughness can be thought of as penalizing on the second
derivative of the η w.r.t. s and t, hence in the end the penalized log-likelihood is
to be maximized w.r.t. (β,u) is

yT (Xβ + Zu)−1T c(Xβ + Zu)−λs
∫
R

(f ′′(s))2ds−λt
∫
R

(g′′(t))2dt.

Since f ′′(s) = ηss(s, t) = Xx,ssβ + Zx,ssu and similarly g′′(t) = Xx,ttβ + Zx,ttu,
the above penalized log-likelihood can be written as

yT (Xβ + Zu)−1T c(Xβ + Zu)−
(

β
u

)T
B
(

β
u

)
,

where B = λs
∫
R CT

x,ssCx,ss ds+λt
∫
R CT

x,ttCx,tt dt, and Cx = (Xx,Zx).
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Generalized Additive Mixed Model

If we assume a mixed model formulation with log{f(y|u)} given as in page 12 and

u∼N
(

0,
[
σ2
sI 0
0 σ2

t I

])
,

then (to be shown in exercise 2) if given σ2
s and σ2

t , we are in effect maximising

yT (Xβ + Zu)−1T c(Xβ + Zu)− 1
2uT cov(u)−1u.

This is the PQL like before, and hence fitting can be done by maximising this PQL
through the IRLS on a properly defined pseudo data, or directly evaluate a Fisher
scoring updating equation for the iterations. Note that the expression immediately
after (11.6) in the book is WRONG.
Under normality, we can obtain the profile log-likelihood for the variance
components in closed form as before.
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Degree of freedom approximations

Let µ(η) and V (η) be the conditional mean and variance of y given
η = xTβ + zTu. Define W = diag(µ′(xTi β̂ + zTi û)).
A generalize hat matrix can be defined as

H = WX(XTWX + Λ/2)−1XT ,

where Λ = diag(0,cov(u)−1).
Degree of freedom of the fit is

tr(H) = tr((XTWX + Λ/2)−1XTWX).

We also have

cov
(

β̂
û

)∣∣∣∣u≈ (XTWX + Λ/2)−1(XTWX)(XTWX + Λ/2)−1.
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Varying Coefficient Models
It is a special class of interaction models, where interaction between two
continuous variables is considered.
For two variables x1 and x2, in classical linear regression an interaction between
x1 and x2 is usually captured by adding a term γx1x2, so that the model becomes
E(y) = α+β1x1 +β2x2 +γx1x2 = α+ (β1 +γx2)x1 +β2x2. That is, the effect
of changing x1 on the average response y is not constant, and depends on the
value of x2 linearly.
The linearity of the effect on x2 is not always true. It is sometimes better to
consider a more general model. If (xi,si,yi), 1≤ i≤ n, a varying coefficient
model for the data is

yi = α(si) +β(si)xi+ εi.

The penalized linear spline version of this model is

yi = α0 +α1si+
K1∑
k=1

uαk (si−κ1
k)+

+

(
β0 +β1si+

K2∑
k=1

uβk (si−κ2
k)+

)
xi+ εi.

The book set K1 =K2 with same set of κk’s for both α(s) and β(s). There is
NO reason and certainly wrong in some cases to use the same set of knots.
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Varying Coefficient Models
We can obtain a mix model representation y = Xβ + Zu + ε by setting

Z =
[
(si−κ1

1)+, . . . ,(si−κ1
K1 )+,xi(si−κ2

1)+, . . . ,xi(si−κ2
K2 )+

]
,

X = [1,si,xi,sixi]1≤i≤n, u = [uα1 , . . . ,uαK1 ,u
β
1 , . . . ,u

β
K2

]T ,

cov(u) = diag(σ2
α, . . . ,σ

2
α,σ

2
β , . . . ,σ

2
β).

Figure: Fit of varying coefficient model to ethanol data
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