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It is well known that the binomial coefficients increase up to halfway, and
then decrease. Indeed, the shape of the bar graph of binomial coefficients
is well approximated by a scaled version of the “bell curve” of the normal
distribution.
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This property of binomial coefficients is easily proved. Since(
n

k + 1

)
=

n− k

k + 1

(
n

k

)
,

the binomial coefficient increases from k to k + 1, remains constant, or de-
creases, according as n − k > k + 1, n − k = k + 1 or n − k < k + 1, that
is, as n is greater than, equal to, or less than 2k + 1. So, if n is even, the
binomial coefficients increase up to k = n/2 and then decrease; if n is odd,
the two middle values (k = (n− 1)/2 and k = (n + 1)/2) are equal, and they
increase before this point and decrease after.

Other combinatorial numbers also show this unimodality property, but
in cases where we don’t have a formula, we need general techniques.
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4.1 Unimodality and log-concavity

Given a sequence of positive numbers, say a0, a1, a2, . . . , an, we say that the
sequence is unimodal if there is an index m with 0 ≤ m ≤ n such that

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ · · · ≥ an.

The sequence a0, a1, a2, . . . , an of positive integers is said to be log-concave
if a2

k ≥ ak−1ak+1 for 1 ≤ k ≤ n − 1. The reason for the name is that
the logarithms of the as are concave: setting bk = log ak, we have 2bk ≤
bk−1 + bk+1, or in other words, bk+1− bk ≤ bk − bk−1. So if we plot the points
(k, bk) for 0 ≤ k ≤ n, then the slopes of the lines joining consecutive points
decrease as k increases, so that the figure they form is concave when viewed
from above.

Now it is clear that a log-concave sequence is unimodal.
A nice general result is:

Theorem 4.1 Let A(x) =
n∑

k=0

akx
k be the generating polynomial for the

numbers a0, . . . , an. Suppose that all the roots of the equation A(x) = 0 are
real and negative. Then the sequence a0, . . . an is log-concave.

Before we begin the proof, we note that a polynomial with all coefficients
positive cannot have a real non-negative root, and a polynomial all of whose
roots are negative has all its coefficients positive.

The proof is by induction: there is nothing to prove when n = 1, since
any sequence of two numbers is log-concave. For n = 2, the condition for
the polynomial a0 + a1x + a2x

2 to have real roots is a2
1 − 4a0a2 ≥ 0, which

is stronger than log-concavity; as remarked, if the roots are real, they are
negative.

Now we turn to the general case. Suppose that A(x) = (x+c)B(x), where
c > 0 and

B(x) = bn−1x
n−1 + · · ·+ b1x + b0.

Now the polynomial B(x) has all its roots real and negative, since they are
all the roots of A(x) except for −c. So the coefficients are all positive, and
by the inductive hypothesis, the sequence b0, . . . , bn−1 is log-concave; that is,

b2
k ≥ bk−1bk+1
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for k = 1, . . . , n − 2. Also, since A(x) = (x + c)B(x), we have a0 = cb0,
an = bn−1, and ak = bk−1 + cbk for 1 ≤ k ≤ n− 1.

We first show that bkbk−1 ≥ bk+1bk−2 for 2 ≤ k ≤ n− 2. For we have

b2
kbk−1 ≥ bk+1b

2
k−1 ≥ bk+1bkbk−2;

dividing by bk gives the result.
Now for 2 ≤ k ≤ n− 2, we have

a2
k − ak+1ak−1 = (bk−1 + cbk)2 − (bk + cbk+1)(bk−2 + cbk−1)

= (b2
k−1 − bkbk−2) + c(bk−1bk − bk+1bk−2) + c2(b2

k − bk+1bk−1);

and all three terms are non-negative since c > 0.
The cases k = 1 and k = n− 1 are left to the reader.

4.2 Binomial coefficients and Stirling numbers

For the binomial coefficients, we have

n∑
k=0

(
n

k

)
xk = (1 + x)n;

all its roots are −1, and so the theorem shows that the binomial coefficients
are log-concave, and hence unimodal.

For the unsigned Stirling numbers of the first kind, we have

n∑
k=1

u(n, k)xk = x(x + 1) · · · (x + n− 1),

and the polynomial on the right has roots 0, −1, −2, . . . , −(n− 1). We can
neglect the zero root: the Stirling numbers start at k = 1 rather than zero,
and dividing by x simply changes the indexing so that they start at 0. So
again the Stirling numbers are log-concave and hence unimodal.

The Stirling numbers of the second kind are more difficult, since there
is no convenient form for the generating polynomial. We start with the
recurrence relation

S(n, 1) = S(n, n) = 1, S(n, k) = S(n−1, k−1)+kS(n−1, k) for 1 < k < n.
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Let

An(x) =
n∑

k=0

S(n, k)xk.

We have A0(x) = 1. For n > 0, we have A(n, 0) = 0, so zero is a root of
An(x) = 0. We have to show that the other roots are real and negative.
We prove this by induction: P1(x) = x has a single root at x = 0, while
A2(x) = x + x2 has roots at x = 0 and x = −1; so the induction begins.

From the recurrence relation, we have

An(x) =
n∑

k=1

S(n, k)xk

=
n∑

k=1

S(n− 1, k − 1)xk +
n∑

k=1

kS(n− 1, k)xk

= x (dAn−1(x)/dx + An−1(x)) .

Putting Bn(x) = An(x)ex, we see that An(x) = 0 and Bn(x) = 0 have
the same roots. The identity above, multiplied by ex, gives

x dBn−1(x)/dx = Bn(x).

By Rolle’s Theorem, there is a root of Bn(x) between each pair of roots of
Bn−1(x), and one to the left of the smallest root of Bn−1(x) (since Bn−1(x)→
0 as x → −∞); and also a a root at 0. This accounts for (n − 2) + 1 + 1
roots, that is, all the roots of Bn(x). So the induction step is complete.

Exercises

1 Let S be a fixed set of positive integers, and let rn be the number of
partitions of n into distinct parts from the set S. What is the generating
polynomial

∑
rnx

n? Is the sequence (rn) unimodal?

2 Let (an) be an infinite sequence of positive numbers which is log-concave
(that is, an−1an+1 ≤ a2

n for all n ≥ 1). Show that the ratio an+1/an tends to
a limit as n→∞.
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