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In this lecture I will discuss a very nice unifying principle for a number
of topics in enumerative combinatorics, the theory of species, introduced by
André Joyal in 1981. Species have been used in areas ranging from infinite
permutation groups to statistical mechanics, and I can’t do more here than
barely scratch the surface.

Joyal gave a category-theoretic definition of species; I will take a more
informal approach.

There is a book on species, by Bergeron, Labelle and Leroux, entitled
Combinatorial Species and Tree-Like Structures ; but I think that Joyal’s
original paper in Advances in Mathematics is hard to beat.

7.1 What is a species?

As I said earlier, a typical combinatorial structure of the type we wish to
count is often built on a finite set; we are interested in counting labelled
structures (the different structures built on a fixed set) and also the unla-
belled structures (essentially the isomorphism types of structures).

A species is a functor F (this word is used by Joyal in its technical sense
from category theory; I will be less formal but will explain what is going on)
which takes an n-element set and produces the set of objects in which we
are interested; it should also have the property that the functor transforms
any bijection between n-element sets A and B to a bijection between the sets
F(A) and F(B) of objects built on these sets. Because of this condition, we
can use the standard n-element set {1, 2, . . . , n}, but don’t have to worry if
during the argument we have a non-standard set (such as a proper subset of
the standard set).
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Joyal’s intuition is that we think of a formal power series where the coef-
ficients are not numbers, but sets of combinatorial objects:

F =
∑
n≥0

F ({1, 2, . . . , n})xn.

Suitable specialisations will give us the generating functions for unlabelled
and unlabelled objects.

The first specialisation is to replace the set F(A) by the sum of the cycle
indices of the automorphism groups of the unlabelled structures in F(A):
let us call this Z(F). This will be a formal power series in infinitely many
variables s1, s2, . . .. Now it turns out that the specialisations

f(x) = Z(F; sn ← xn for all n),

F (x) = Z(F; s1 ← x, xn ← 0 for n > 1),

give us, respectively, the ordinary generating function for the unlabelled
structures in the species F, and the exponential generating function for the
labelled structures.

7.2 Examples

If this is a bit abstract, hopefully some examples will bring it back to earth.

Sets Let Set denote the “identity” species, where the structure on the finite
set A is simply a labelling of A. Thus, for each n, there is one unlabelled
srtucture, and one labelled structure. So the generating functions are

set(x) =
∑
n≥0

xn =
1

1− x
,

Set(x) =
∑
n≥0

xn

n!
= exp(x)

respectively.
The cycle index of the species Set can be computed as follows. First,

Z(Sn) =
1

n!

∑ n!

1a1 · · ·nana1! · · · an!
sa11 · · · sann ,
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where the sum is over all partitions of n having ai parts of size i for i =
1, 2, . . . , n (the coefficient is the number of permutations with this cycle struc-
ture). Summing this over all n seems a formidable task, but a remarkable
simplification occurs: since n! cancels we can sum over the variables a1, . . . , an
independently. We obtain

Z(Set) = exp

(∑
i≥1

(si
i

))
.

Now substituting X i for si for all i gives

set(x) = exp

(∑
i≥1

(
xi

i

))
= exp(− log(1− x))

=
1

1− x
,

Set(x) = exp(x),

as expected.
Note that the formula for the sum of the cycle indices of the symmetric

groups was known in the combinatorial enumeration community before Joyal
provided it with this nice interpretation.

Linear orders A much easier case is the species Lin of linear (or total)
orders. There are n! labelled linear orders on n points; all are isomorphic,
and there are no non-trivial automorphisms, so we have

Z(Lin) =
∑
n≥0

sn1 =
1

1− s1
,

from which the generating functions are lin(x) = Lin(x) = 1/(1− x).

7.3 Operations on species

There are three important ways that we can add two species F and G.
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Sum F + G is the species which constructs on the set A all the F-objects
and all the G-objects (we assume these two classes to be disjoint). Clearly the
cycle index and the generating functions for unlabelled and labelled objects
are simply obtained by adding those for F and G.

Product FG is the species whose objects on a set A are constructed in
the following way: partition A into two (possibly empty) parts B and C; put
an F -object on B, and a G-object on C. A slightly harder calculation shows
that the cycle index, and hence the generating functions for unlabelled and
labelled objects, are obtained by multiplying those for F and G.

Here is an example. What is Set2? Given a set A, we partition it into
a subset B and its complement A \ B. So we can regard this as the species
Subset. The numbers of unlabelled and labelled objects in this species on
n points are n+ 1 and 2n respectively, and their generating functions are (as
expected) 1/(1− x)2 and exp(2x).

Substitution As with power series in general, there is a formal restriction
on substitution: we can only substitute G into F provided that G(∅) = ∅. If
this condition holds, then we define F[G]-objects on A as follows: partition
A (into non-empty parts); put a G-structure on each part; and put a F-
structure on the set of parts.

The cycle index is given by substituting the cycle index of G into that of
F in the following way:

Z(F[G]) = Z(F : sn ← Z(G, sm ← snm)).

In other words, for the indeterminate sn in Z(F, we substitute the cycle
index of G but in the indeterminates sn, s2n, . . . in place of s1, s2, . . ..

The effect on the generating functions for labelled objects is simple sub-
stitution: F [G](x) = F (G(x)). For unlabelled objects it is a bit more com-
plicated, we need the cycle index for F:

fg(x) = Z(F; sn ← g(xn) for all n).

For example, let Set∗ be the species of non-empty sets. Then the e.g.f.
for labelled objects is Set∗(x) = exp(x)− 1. Now Set[Set∗] is the species of
set partitions, where the labelled objects are counted by the Bell numbers:
the exponential generaing function is thus exp(exp(x)−1), as we saw earlier.
As an exercise, obtain the ordinary generating function for partitions of the
integer n from this approach.
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Remark The fact that substituting a species into Set exponentiates the
generating function for labelled structures is sometimes called the exponential
principle in enumerative combinatorics. We see that substitution of species
is much more general.

Rooted structures This means structures where one point is distinguished.
It can be shown that the effect of rooting a species is to apply the operator

s1
∂

∂s1
to the cycle index, and hence to apply the operator x d/dx to the

generating function for labelled structures. I will denote the operation of
rooting a species by R, and the operation of rooting and then removing the
root (i.e., deleting a point) by D: this just corresponds to differentiation.

There are many other nice examples, some of which are described in the
exercises.

7.4 Exercises

1 Define the species Circ of circular orders and the species Perm of per-
mutations, and calculate the generating functions for unlabelled and labelled
objects in these species.

Show that

Z(Circ) = −
∑
m≥1

φ(m)

m
log(1− sm),

where φ is Euler’s totient function.
Use the decomposition of permutations into disjoint cycles to show that

Set[Circ] = Perm,

and verify the appropriate identities for the generating functions.

Remark It is not so easy to calculate the cycle index of Perm directly,
but using the above expression it is not too hard to show that

Z(Perm) =
∏
n≥1

(1− sn)−1.
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2 Use the fact that Catalan objects are rooted binary trees to show that
the species Cat of Catalan objects satisfies

Cat = E + Cat2,

where E denotes the species of singleton sets (that is, it returns its input if
this has cardinality 1, and the empty set otherwise).

Show similarly that the species W of rooted binary trees without the left-
right distinction (counted by Wedderburn–Etherington numbers) satisfies

W = E + Set2[W],

where Set2 is the species of 2-element sets.

3 Let F denote the species of “1-factors” or partitions of a set into subsets
of size 2. Show that

D(F) = EF,

F = Set[Set2].

Use each of these equations to show that the exponential generating function
for labelled 1-factors is exp(x2/2).

4 Let Graph and ConnGraph be the species of graphs and connected
graphs respectively. (Here, assume that a connected graph has at least one
vertex.) Show that

Graph = Set[ConnGraph].

(It follows from this that the e.g.f. for connected graphs is the logarithm of
the e.g.f. for graphs.)
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