1. Introduction

1.1 Why empirical likelihood

e nonparametric method: without having to assume the form of
the underlying distribution

e likelihood based inference: taking the advantages of likelihood
methods

e alternative method when other (more conventional) methods
are not applicable

Remark. (i) For N(x,02), v =0 and x = 0.
(ii) For symmetric distributions, v = 0.

(iii) When & > 0, heavier tails than those of N(u,o2).

Example 1. Somites of earthworms.

Earthworms have segmented bodies. The segments are known as
somites. As a worm grows, both the number and the length of its
somites increases.

The dataset contains the No. of somites on each of 487 worms
gathered near Ann Arbor in 1902.

The histogram shows that the distribution is skewed to the left,
and has a heavier tail to the left.

. _ E{(X-EX)%}
Skewness: v = VarOpR a measure for symmetry
i B{(X-EX)*%} - .
Kurtosis: x = Var(niz 3, — a measure for tail-heaviness

Estimation for v and &
Let X =n"1%1<,X;, and and 62 = (n— 1)1 Ty 5, (X; — X)2.

5=— L= R% R= S S Dt

53
no i=
How to find the confidence sets for (v,kx)?

Answer: Empirical likelihood contours.

Let I(vy, k) be the (log-) empirical likelihood function of (y,x). The
confidence region for (v, k) is defined as
{(y,8) ¢ U(y,8) > C,

where C' > 0 is a constant determined by the confidence level, i.e.
P{l(yv,k) >C}t=1-a.



Raw data E.L. Confidence Regions
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In the second panel, the empirical likelihood confidence regions
(i.e. contours) correspond to confidence levels of 50%, 90%,
95%, 99%, 99.9% and 99.99%.

Note. (v,x) = (0,0) is not contained in the confidence regions

1.2 Introducing empirical likelihood

Let X = (Xq,---,Xn)” be a random sample from an unknown
distribution F(-). We know nothing about F(-).

In practice we observe X; = z; (i = 1,---,n), z1, - ,Tn are n
known numbers.

Basic idea. Assume F is a discrete distribution on {z1,---,zn}
with
pi=F(mi)7 i=17"'7n7
where
n
pi >0, > pi=1
i=1

What is the likelihood function of {p;}? What is the MLE?

Why do conventional methods not apply?

Parametric likelihood. Not normal distribution! Likelihood infer-
ence for high moments is typically not robust wrt a misspeci-
fied distribution.

Bootstrap. Difficult in picking out the confidence region from
a point cloud consisting of a large number of bootstrap esti-
mates for (v,k).

For example, given 1000 bootstrap estimates for (v, k), ideally
95% confidence region should contain 950 central points.

In practice, we restrict to rectangle or ellipse regions in order
to facilitate the estimation.

Since
P{X1 =1, ,Xn=2n} =p1-Pn,
the likelihood is

n
L(pla' e apn) = L(pla' e 7pn1X) = H Dis
=1

which is called an empirical likelihood.

Remark. The number of parameters is the same as the number
of observations.

Note
7 1/n 12 1
( H pZ) S - Z pq, = e
=1 nz:l n
the equality holds iff py =---=pp=1/n



Put p; = 1/n, we have

L(p1,-++ ,pni X) < L(P1, -+, Pns X)

for any p; > 0 and > ;p; = 1.

Hence the MLE based on the empirical likelihood, which is called
maximum empirical likelihood estimator (MELE), puts the
equal probability mass 1/n on the n observed values z1,--- ,xn.

Namely the MELE for F is the uniform distribution on observed
data points. The corresponding distribution function

Fa(@) = 3 1(X; < 2)
i=1

is called the empirical distribution of the sample X = (X1, -, Xn)".

Remarks. (i) MELEs, without further constraints, are simply the
method of moments estimators, which is not new.

(ii) Empirical likelihood is a powerful tool in dealing with testing
hypotheses and interval estimation in a nonparametric manner
based on the likelihood tradition, which also involves evaluating
MELEs under some further constraints.

Example 2. Find the MELE for u = EX7.

Corresponding to the EL,

n
p=> piz;=pn(p1, - ,pn)-
=1

Therefore, the MELE for p is

1 —
ﬂ:p’(ﬁlaaﬁn)_ le gZXl:X

Similarly, the MELE for p;, = E(Xf) is the simply the sample k-th
moment:

n
-~ k
e=—> Xj.
=1

2. Empirical likelihood for means
Let X1, -+, X, be a random sample from an unknown distribution.

Goal: test hypotheses on u = EX;, or find confidence intervals
for p.

Tool: empirical likelihood ratios (ELR)

2.1 Tests Consider the hypotheses

Ho: p=po vs Hy: p# po.
Let L(p1,---,pn) = [I;pi- We reject Hg for large values of the
ELR
_ maxL(p1, - ,pn) L(n~1,-.. n 1
© maxgy L(p1,--- o) L(P1,-o . Pn)
where {p;} are the constrained MELEs for {p;} under Hy.

’




Two problems:

() pi =7
(ii) What is the distribution of T under Hp?

(i) The constrained MELEs p; = p;(ug), where {p;(n)} are the
solution of the maximisation problem:

n
max > logp;
Piy ;=1

subject to the conditions
n n
pi>0, Y pi=1, > pzi=p.
i=1 i=1

The solution for the above problem is given in the theorem below. Note
n
T(1) = ml_in x; < Zp;l’i < mlax Ti = T(n)-
i=1
It is natural we require z(1) < p < x(y,).

have
il v+ =0 (3)
Zpi =1 (4)
Zpiwi =pu (5)
By (3),
pi = —1/( + Axy). (6)

Hence , 1 4+ ¥p; + A\z;p; = 0, which implies v = —(n 4+ Au). This
together with (6) imply (1). By (1) and (5),
zj
— < =/ (7)
2 =)
It follows (4) that
u
L=R) Pi=) —F -
(R
This together with (7) imply (2).

Theorem 1. For p € (z(1), z(y)),

! >
n— Az — p)
where X is the unique solution of the equation

0, 1<i<m, (1)

pi(p) =

n

Tj— _
jgl n-— )\(xj — ) 0 2

in the interval (96(17)1*#’ 7 7)’,”).
n

Proof. We use the Lagrange multiplier technique to solve this
optimisation problem. Put

Q=3 logp; + (X pi — 1) + A piw; — ).

Letting the partial derivatives of Q w.r.t. p;, ¥ and X equal 0, we

Now let g(\) be the function on the LHS of (2). Then

. (z; — p)?
i =Y G

Hence g()\) is a strictly increasing function. Note

> 0.

lim  g(A) = oo, \ lim  g(A\) = —oo,
Fmy™H ™k
Hence g(\) = 0 has a unique solution between in the interval
(- —)
T(1) K Ty K
Note for any X in this interval,
1 0 1
n— Xy — ) - Mz () — 1) ”
and 1/{n — X(z — p)} is a monotonic function of z. It holds that
pi(pn) >0 for all 1 <i < n.

0,



Remarks. (a) When p=z =X, A=0, and

It may be shown for u close to E(X;), and n large
1 1
pi(p) =~ —————,
LT (.
n 1+ S(u)(wl 1)

where S(p) = 25 (z; — p)2.

(b) We may view

L(p) = L{p1(p), -+ ,pn(p)}.
as a profile empirical likelihood for p.

Hypothetically consider an 1-1 parameter transformation from
{p17 e 7pn} to {1“’7917 e 7971—1}' Then

L(N/) = r?ea]?(L(“701’ e 7677,71) = L{/'Lv él(/‘)a e ,én—l(li)}

the ELR statistic is

_— max L(pa,---,pn) _ (1/n)"
maXHO L(plv"' 7pn) L(MO)
- I {1- X - o)}

mnpi(po) oy
where X is the unique solution of

Z": Xj—ro  _
j=1m"" A(Xj — Ho)

Theorem 2. Let E(X?) < co. Then under Hg,

n
A
210gT =2 log {1~ =(X; — o)} — 17
i=1
in distribution as n — oo.

A sketch proof. Under Hg, EX; = pg. Therefore pg is close to
X for large n. Hence the ), or more precisely, \n = A/n is small,

(c) The likelihood function L(x) may be calculated using R-code
and Splus-code, downloaded at

http://www-stat.stanford.edu/~owen/empirical/

(ii) The asymptotic theorem for the classic likelihood ratio tests
(i.e. Wilks’" Theorem) still holds for the ELR tests.

Let Xq,---,Xp i.i.d., and p = E(Xq). To test

Ho: p=wpo Vvs Hi:! p#F po,

which is the solution of f(\n) = 0, where
1& X — po
fO)==3% —L———
" n]—; 1= M(Xj — po)

By a simple Taylor expansion 0 = f(\n) =~ f(0) 4+ f(0)An,
M =1(0)/£0) = ~(K — o) / = (X, = o).
J
Now
A2 2
2logT =~ QZ{*)\n(Xi — po) — E(Xi — po)*}

> n(X — po)?
= —2xn(X — o) — A2 Y (X; — po)? ~ :
" nZZ: ’ n= (X — po)?
By the LLN, n~1Y;(X; — ug)2 — Var(X1). By the CLT, /n(X —
1o) — N(0,Var(Xy)) in distribution. Hence 2logT — X% in distri-
bution.




2.2 Confidence intervals for u.

For a given a € (0, 1), since we will not reject the null hypothesis

Ho:p=po
iff 2109 T < X% 1_,, Where P{x? <x%,_,} =1-a. For a =0.05,
X311 o = 3-84.

Hence a 100(1 — a)% confidence interval for p is
{#] =2109{LG)IN"} < xF 1_0}

= {M ‘ i log p; (p) > _O~5X%,1—a —nlog n}
i=1

= (1] X 100tni) > 053310}
i=1

Let p = EXj;.
Hp: p=0 VS Hy:p>0

(i) Standard approach: Assume {Xj,---,X15} is @a random sample
from N(u,o2)

MLE: o= X =2.61

The t-test statistic:
T=+nX/s=214
Since T ~ t(14) under Hg, the p-value is 0.06 — significant but

not overwhelming.

Is N(,u,az) an appropriate assumption? as the data do not
appear to be normal (with a heavy left tail); see Fig(a).

Example 3. Darwin’s data: gains in height of plants from cross-
fertilisation

X = height(Cross-F) - height(Self-F)

15 observations:

6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0,
9.3,7.5, -6.0

The sample mean X = 2.61, the standard error s = 4.71.

Is the gain significant?

Intuitively: YES, if no two negative observations -8.4 and -6.0.

(a) Normal plot
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(ii) Consider a generalised normal family
2—1—1/k llz—p k
e S T p{ 2' - ‘ }
which has the mean p. When k= 2, it is N(u,c2).

To find the profile likelihood of u, the ‘MLE’ for o is

]f n
~k _ ~ k k
2ot = S I
Hence
N 1 1 mn
lk(#)=lk(ﬂa‘7):*n|09r(1+E)*n(1+g)|092*n|090fg-

Fig.(b) shows the MLE f = ji(k) varies with respect to k. In fact
ii(k) increases as k decreases.

log-likelihood
-4

-6
1

Parametric log-likelihood (solid curve) based on the DE distribu-
tion, and the empirical log-likelihood (dashed curve). (Both curves
were shifted vertically by their own maximum values.)

If we use the distribution functions with £ = 1 to fit the data,
the p-value for the test is 0.03 — much more significant than that
under the assumption of normal distribution.

(iii) The empirical likelihood ratio test statistic 2logT = 3.56,
which rejects Hg with the p-value 0.04.

The 95% confidence interval is

15
{ \ 3" logpi(p) > —1.92 — 1510g(15)} = [0.17,4.27].
=1

The DE density is of the form %e—W—NV". With p fixed, the
MLE for o is n=1Y;|X; — u|. Hence the parametric log (profile)
likelihood is

—nlog ) |X; — pl.
i

3. Empirical likelihood for random vectors
Let X4, -+ ,Xy bei.i.d. random vectors from distribution F.

Similar to the univariate case, we assume
pZ:F(X’L)> i:l7"'7n7

where p; > 0 and Y, p; = 1. The empirical likelihood is

n
L(p1, -+ ,pn) = [] pi

i=1

Without any further constraints, the MELEs are

jg\’t:l/ny ’L=1,,TL



3.1 EL for multivariate means

The profile empirical likelihood for p = EX; is
n n n n
L(p) = max{ IIpi|pi>0 Y =1 > pX;, = u} = ] (),
i=1 i=1 i=1 i=1
where p;(u) is the MELE of p; with the additional constraint EX; =
p. Define the ELR

T=T(p) = W = 1/ ﬁ {np;i(n)}.
i=1

Theorem 3. Let X1, -+, Xy bedx1i.i.d. with mean p and finite
covariance matrix ¥ and |X| # 0. Then as n — oo,

n
210g{T (1)} = -2 3 log{np;(1)} — X3
i=1
in distribution.

(iv) Bootstrap calibration. Since (ii) and (iii) are based on an
asymptotic result. When n is small and d is large, Xﬁ,lfa may be
replaced by the [Ba]-th largest value among 2log Ty, - - -,

2log Tg which are computed as follows.

(a) Draw i.i.d. sample X7,---,X;, from the uniform distri-
bution on {Xi,---,Xy}. Let

=1/ TR},
i=1

where X = 15m X, and pf(p) is obtained in the same
manner as p;(p) with {Xy,--- , Xy} replaced by {X3,.-- ,X}}.

(b) Repeat (a) B times, denote the B values of T* as
Ty, -, T

We may draw an X* from the uniform distribution on {Xy,--- ,Xn}
as follows: draw Z ~ U(0,1), define X* =X, if Z € [%, )

Remarks. (i) In the case that |[£| = 0, there exists an integer ¢ < d
for which, X; = AY,; where Y, is a ¢ x 1 r.v. with |Var(Y;)| # 0,
and A is a d x g constant matrix. The above theorem still holds
with the limit distribution replaced by Xg-

(i) The null hypothesis Hg : p = pg will be rejected at the signif-
icance level « iff

n
Y- log{npi(no)} < —0.5x7 1 4
i=1

where P{x7 <x3; o} =1-a.

(iii) A 100(1 — a)% confidence region for u is

{u

n
> log{npi(p)} > —0.5x3 1, }
i=1

Since the limiting distribution is free from the original distribution
of {X;}, we may draw X} from any distribution {my,--- , 7} instead
of the uniform distribution used above. Of course now pz‘()_()
should be replaced by p*(i), where o = Y; m;X;.

(v) Computing p;(p).

Assumptions: |Var(X;)| # 0, and p is an inner point of the convex
hull spanned by the observations, i.e.

n

Né{zn:pixi‘m>07
1

1=

D; = 1}
i=1

This ensures the solutions p;(i) > 0 exist.



We solve the problem in 3 steps:

1. Transform the constrained n-dim problem to a con-
strained d-dim problem.

2. Transform the constrained problem to an unconstrained
problem.

3. Apply a Newton-Raphson algorithm.

Put

() =100 L(k) = 3" 109 ps(1)
=1

n n
pi>0, Y p=1, ZPin‘=H}~

n
= max{ > logp;
i=1 i=1

i=1

Thus M(-) is a convex function on any connected sets satisfying
n—AN(X;—p)>0, i=1,---,n (10)

Note. (10) and (8) together imply > ; p;(n) = 1.

The original n-dimensional optimisation problem is equivalent to

a d-dimensional problem of minimising M(X) subject to the con-
straints (10).

Let H, be the set consisting all the values of A satisfying
n—AN(X;—p)>1, :=1,--- n
Then H, a convex set in R%, which contains the minimiser of the
convex function M(A). (See ‘Note’ above)
Unfortunately M () is not defined on the sets
{Aln—-A"(X;—pn)=0}, i=1,---,n.

Step 1:

Similar to Theorem 1, the LM method entails
1

) - - =1
pl(u/) n— AT(Xl . u)v ? I ,’l"l,,
where A\ is the solution of
n
X. _
> s =0 ()
j=1 n — ( j Il’)
Hence
n
I(p) == log{n — AT(X; — u)} = M(X). (9)
i=1

Note %M(A) = 0 leads to (8), and

PMN) Z": (X — ) (X — )"
ONOXT T i {n = AT(X; — w))2

> 0.

Step 2: We extend M () outside of the set H, such that it is still
a convex function on the whole R

Define

log, (2) = log z z>1,
9:02) =1\ _1542:-0522 2< 1.

It is easy to see that log,(z) has two continuous derivatives on R.

Put  AL(A) = 7 109, {n—A(X,~ )}  Then
o Mi(A) = M(X) on H,y.
e M,()) is a convex function on whole R<.

Hence, Myx(A) and M(A) share the same minimiser which is the
solution of (8).



Step 3: We apply a Newton-Raphson algorithm to compute A
iteratively:

Apt1 = A — {M*()‘k)}ilM*()‘k)'

A convenient initial value would Ag = 0, corresponding to p; = 1/n.

Remarks. (i) S-code “el.S", available from
www-stat.stanford.edu/~owen/empirical

calculates the empirical likelihood ratio

Zn: log{np;(p)}
=1

and other related quantities.

Theorem 4. Let Xy,---,X, be d x 1 i.i.d. r.v.s with mean pug
and |[Var(X;)| # 0. Let 8 = h(u) be a smooth function from R?
to R7 (¢ <d), and 6g = h(pg). We assume

00
o™’

|IGGT|#£0, G=

For any » > 0O, let

C1p={u| 3 log{np(w)} = —0.5r },
=1
and

C3p = {90 + G(1 — po) ‘ e (31,7«}-

Then as n — oo,

P{6 €C3,} — P(xg <7).

3.2 EL for smooth functions of means

Basic idea. Let Y7, ---,Y, bei.i.d. random variables with variance
2. Note

02 = EY? — (BY;)? = h(p),

where p = EX;, and X; = (Yi,Yf). We may deduce a confidence
interval for o2 from that of pu.

Remarks. (i) The idea of bootstrap calibration may be applied
here too.

(i) Under more conditions, P{6 € Co,} — P(x2 <), where

Cor = {h(w) | € C1y}.
Cp, is a practical feasible confidence set, while C3, is not since
po and 6g are unknown in practice. Note for p close to pg,

0o + G(p — o) = h(p).

(iii) In general, P{u € C1 ,} < P{O € Co,}.

(By Theorem 3, P{u € C1,} — P(x3 <))



Example 4. S&P500 stock index in 17.8.1999 — 17.8.2000 (256
trading days)

(iv) The profile empirical likelihood function of @ is
Let Y; be the price on the i-th day,

1®) = max{ I »tuy | 1) =6} X, = 10g(Yy/Y;-1) & (Y — ;1) /Yi1,

n n . . . .
max{ H y23 ‘ h( Z piX‘) =60, p; >0, \(;Vah;Ch is the return, i.e. the percentage of the change on the i-th
=1 =1 .

=
> pi= 1},
i=1

which may be calculated directly using the Lagrange multiplier annual volatility
method. The computation is more involved for nonlinear h(-). o= {255Var(Xi)}1/2.

By treating X; i.i.d., we construct confidence intervals for the

The simple point-estimator is

255 255 oo 1/2
o= — X, —X } = 0.2116.
7 {25521( i)

S&P500 index
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4. Estimating equations
4.1 Estimation via estimating equations

Let X4, ---,Xy bei.i.d. from a distribution F. We are interested
in some characteristic & = (F), which is determined by equation

E{m(X1,0)} =0,

where 0 is ¢ x 1 vector, m is a s x 1 vector-valued function.

For example,

0= EX; if m(xz,0) =z -0,
0 = E(X¥) if m(z,0) =a* -0,
0= P(X1€A) ifm(z,0) =I(xec A) -9,

0 is the a-quantile if m(z,0) = I(x < 0) — a.

Example 5. Let {(X;,Y;), i=1,---,n} be arandom sample. Find
a set of estimating equations for estimating v = Var(X7)/Var(Y7).

In order to estimate v, we need to estimate p; = E(X71), py =
E(Y1) and o7 = Var(Y1). Put 67 = (ua, py, 03, 7), and

ml(X7K0):X_MI7 mQ(X7Y70)=Y_My>
"ITL3(X, Y7 9) == (Y - ,U“:l/)2 - 057

77’7,4(X, Y, 0) = (X - M$)2 - 0577

and m = (mqy,mp,m3,mq)”. Then E{m(X;,Y;,0)} =0, leading to
the estimating equation

1 n
- Z m(XZ71/;70) =0,
ni=1
the solution of the above equation is an estimator 0 for 0.

Remark. Estimating equation method does not facilitate hypoth-
esis tests and interval estimation for 6.

A natural estimator for @ is determined by the estimating equation
12 ~
=Y m(X;,6) =0. (11)
=1

Obviously, in case F is in a parametric family and m is the score
function, @ is the ordinary MLE.

Determined case ¢ = s: 8 may be uniquely determined by (11)

Underdetermined case g > s: the solutions of (11) may form a
(g — s)-dimensional set

Overdetermined case ¢ < s: (11) may not have an exact solution,
approximating solutions are sought. One such an example is so-
called the generalised method of moments estimation which is
very popular in Econometrics.

4.2 EL for estimating equations

Aim: construct statistical tests and confidence intervals for 6

The profile empirical likelihood function of 0:

L(6) = max { ﬁpi
i=1

Zpim(xho) =0,p 20, ZP; =1}
i=1 i=1
The following theorem follows from Theorem 2 immediately.
Theorem 5. Let X4, -, X, be i.i.d., m(x,0) be an s x 1 vector-
valued function. Suppose

E{m(X1,00)} =0, |Var{m(X1,00)}| # 0.
Then as n — oo,

—210g{L(0p)} — 2nlogn — x2

in distribution.

The theorem above applies in all determined, underdetermined
and overdetermined cases.



Remarks (i) In general L(0) can be calculated using the method Example 6. (Confidence intervals for quantiles)
for EL for multivariate means in §3.1, treating m(X;,0) as a ran-
dom vector. Let Xq,---,Xy bei.i.d. For a given a € (0,1), let

m(z,0q) = I[(z < 0,) — a.

1n R Then E{m(X;,0a)} = 0 implies 0, is the a quantile of the distri-
— Z m(X,;,0) =0, bution of X;. We assume the true value of 6, is between X(l) and
"i=1 X

(n)-

(ii) For 8 = @ which is the solution of

L(B) = (1/n)".
The estimating equation

(iii) For 6 determined by E{m(Xq,0)} = 0, we will reject the null n R n
hypothesis Hg : 8 = 0 iff > m(X;,00) = > I(X;<0a) —na=0
log{L(#0)} + nlogn < —0.5x51_4- entails

(iii) An (1—«a) confidence set for 8 determined by E{m(X,0)} =0 b0 = X(na),

is where X(i) denotes the i-th smallest value among Xq,---, Xn. We
i integer to avoid insignificant (for large n, e.g.
0] 10g{L(6)} +nlogn > —0.5x2 assume na is an in
16 ] 109{L(6)} Xs1-ak n = 100) technical details.

In fact L(6,) can be computed explicitly as follows.

Let
L(6s) = max{ ﬁ o i DI (X; < 00) = a, Let r» = r(fa) be the integer for which
i=1 i=1
n
PiZO,Zpi=1}~ Xy < 0a fori=1,---,r, and
i=1
An (1 — ) confidence interval for the o quantile is Xy >ba fori=r+1,---,n.
©a = {0a | 109{L(0a)} > —nlogn — 0.5x7 1 _g5}.
Thus
N n T n
Elote L(6a) = (1/n)™ > L(0y) for any 6,. It is always true that L(0,) = max{ H pi | p; >0, Z P = q, Z p=1 —a}
On € Oq. i=1 i=1 i=r+41

= (/) {1 —a)/(n—r)}""".



Hence
©a = {fa | 109{L(0a)} > —nlogn —0.5x7 1 _,}
1-—
= {ea r10g "% + (n = r) log n(1=a) > —0-5X%,17a},
T n-—r
which can also be derived directly based on a likelihood ratio test
for a binomial distribution.

5.1 From global fitting to local fitting

Consider linear regression model

Y =X1814+ -+ X484+, (12)
where € ~ (0,02).
This model is linear wrt unknown coefficients (31,---,84 as the
variable Xy1,---, Xz may be

e quantitative inputs

e transformations of quantitative inputs, such as log, square-
root etc

e interactions between variables, e.g. X3 = X1X»

e basis expansions, such as Xy = X7, X3 = X3,

e numeric or “dummy” coding of the levels if qualitative
inputs

5. Empirical likelihood for estimating conditional distributions

References on kernel regression:

e Simonoff, J. S. (1996). Smoothing Methods in Statistics.
Springer, New York.

e Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing.
Chapman and Hall, London.

References on nonparametric estimation for distribution functions:

e Hall, P., Wolff, R.C.L. and Yao, Q. (1999). Methods for
estimating a conditional distribution function. Journal of the
American Statistical Association, 94, 154-163.

e Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonpara-
metric and Parametric Methods. Springer, New York. Sec-
tions 10.3 (also Section 6.5).

Put ﬂ = (B]J'" aﬁd)T

With observations {(Y;,X;), 1 <i < n}, where X; = (X;1, -, X;0)7,
the LSE minimises
n 2
> (vi-Xi8)7, (13)
i=1
resulting to
B=(X"X)"IX"Y,

where Y = (Y1,---,Yn)7, and X = (X4, ,Xp)7 is an nxd matrix.

The fitted model is
Y = X3.
This is a global fitting, since the model is assumed to be true

everywhere in the sample space and the estimator ﬁ is obtained
using all the available data.



Such a global fitting is efficient if the assumed form of the regres-
sion function (12) is correct.

In general (12) may be incorrect globally. But it may provide a
reasonable approximation at any small area in the sample space.
We fit for each given small area a different linear model — This
is the basic idea of local fitting.

Technically, a local fitting may be achieved by adding a weight
function in (13) as follows.

Suppose we fit a local linear model in a small neighbourhood of the
observation X, with the coefficient 3 = B;.. the LSE minimises

2": (Yi - XZﬂk)zw(Xi, Xk) (14)
i=1

Example. (Linear model for classification)

We have two sets of pair observation (X7, X5), each of size 100.
The two sets were generated from two different distributions; Red
and . Define

y = 1 (Xl,XQ) ~ Red,
(X1, X2) ~

Putting the two sets of data together, we fit a linear model

Y = 8o+ B1X1+ B2X2 + ¢,
the LSE leads to the predictor

Y = B + f1X1 + BoXo.
We may classify a new observation (X1, X5) into the class Red if
Y > 0.5, into if . This effectively divides the whole

(z1,z2)-plane into two half-planes by the straight line By + B1z1 +
[§2w2 = 0.5.

where the weight function may be taken as

1 if X; is among the p nearest neighbours of X,
w(X;, Xp) = ' '
( v k) { 0  otherwise,

where p > 1 is a prescribed small integer.

Although the sum in (14) only has p non-zero terms, the local
LSE can be expressed formally as

Br = (XTWX) 1X"WY,
where W = diag{w(Xq,Xy), -, w(Xp, X;)}

Remark. (i) The local estimator ﬁk only makes use of the p (out
of n) observations around X, may depend on the choice of p
sensitively.

(ii) Intuitively the local estimator Bk may catch some local struc-
ture better than the global estimator 3. But the variance of 3;, is
larger than that of 3.
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Figure 2.1: A classification example in two dimen-
sions. The classes are coded as a binary variable
= 0, RED = 1—and then fit by linear regression.
The line is the decision boundary defined by ITB =0.5.
The red shaded region denotes that part of input space

classified as RED, while the green region is classified as



There are couple of misspecifications on both sides of the linear
boundary; indicating that the linear model is too rigid. We employ
a local fitting as follows.

For given x = (z1,x5), we fit a local model

7= 5(x) = Bo(x) + f1(x)z1 + B2 (x)z2,

where (Bo(x), £1(x), B2(x)) minimises
SAY; — Bo — P1Xi1 — B2Xi2}wi(a),

and w;(z) = 1 if (X;1,X;2) is among the d nearest neighbours of
(z1,%2), and 0 otherwise.

Remark. The estimation depends on the choice of d sensitively.

Elements of Statistical Learning ©Hastie, Tibshirani & Friedman 2001 Chapter 2

1-Nearest Neighbor Classifier

Figure 2.3: The same classification example in two
dimensions as in Figure 2.1. The classes are coded
as a binary variable (GREEN = 0,RED = 1), and then

predicted by 1-nearest-neighbor classification.
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15-Nearest Neighbor Classifier

Figure 2.2: The same classification example in two
dimensions as in Figure 2.1. The classes are coded as a
binary variable (GREEN = 0,RED = 1) and then fit by 15-
nearest-neighbor averaging as in (2.8). The predicted
class is hence chosen by magority vote amongst the 15-
nearest neighbors.

5.2 Kernel Methods
5.2.1 Introduction

We observe {(V;, X;),i=1,---,100} from
Y;=f(X) +ei, &~ (0,07
where f(-) is a unknown and smooth function.
We may use the idea of local smoothing to estimate f:

f(z) = the average of those Y; for which X; is
among the k nearest neighbours of x

1 n n n
= Y Yiw@, X) = 3 Yiwl, Xp)/ 3wl X,
i=1 i=1 1=1

where w(z, X;) = 1 if X; is among the k nearest neighbours of z,
and O otherwise.

We may give more weights to X; closer to z, i.e. let w(z, X;) =
w(]z — X;|) be a monotonically decreasing function.
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Nearest-Neighbor Kemel Epanechnikov Kernel
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Figure 6.1: In each panel 100 pairs x;, y; are gener-
ated at random from the blue curve with Gaussian er-
rors: Y = sin(4X) + e, X ~ U[0,1], e ~ N(0,1/3).
In the left panel the green curve is the result of a
30-nearest-neighbor running-mean smoother. The red
point is the fitted constant f(:r,n), and the orange shaded
circles indicate those observations contributing to the
fit at zo. The solid orange region indicates the weights
assigned to observations. In the right panel, the green
curve is the kernel-weighted average, using an Epanech-
nikov kernel with (half) window width X\ = 0.2.

In fact, f(.) is a local LSE, since
7 & X, —«x
f(z) = argmin ‘Zl{Yi - a}QK(ZT>.
1=
Therefore, f(-) is also called local constant regression estimator.

Remarks. (i) Commonly used kernel functions:
e Gaussian kernel K(z) = (2r)~1/2exp(—z2/2)
e Epanechnikov kernel K (z) = 3(1 — 2?)I(|z| < 1)
e Tri-cube kernel K(z) = (1 — |z|3)3I(|z| < 1)

Both Epanechnikov and tri-cube kernels have compact support
[—1,1] while Gaussian kernel has infinite support.

5.2.2 Nadaraya-Watson estimator.

Y; = f(X;) + &5
Instead of specifying £ — the number of neighbours used in esti-
mation, we may determine the number by choosing

wia, X) = K(S0),

where K(-) > 0 is a kernel function, and h > 0 is a bandwidth.
Conventionally, we use K such that [ K(u)du = 1.

When, for example, K(z) = %I(|x| < 1), only those X; within h
distance from z are used in estimating f(xz). The number of those
points may vary wrt z.

The resulting estimator

o = $ow(N ) S (M)

is called a Nadaraya—Watson est/mator.
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Figure 6.2: A comparison of three popular kernels for
local smoothing. FEach has been calibrated to integrate to
1. The tri-cube kernel is compact and has two continu-
ous derivatives at the boundary of its support, while the
Epanechnikov kernel has none. The Gaussian kernel is

continuously differentiable, but has infinite support.



(if) The bandwidth h controls the amount of data used in local
estimation, determines the smoothness of the estimated curve
f(). For example, with K(z) = 0.5I(|z| < 1), f(z) — ¥ as h — oo
— global constant fitting; f(X;) — Y; as h — 0 — interpolating
the observations.

h is also called a smooth parameter.

(i) The goodness of the estimator f(-) depends on the bandwidth
h sensitively, while the difference from using different kernel func-
tions may be absorbed to a large extent by adjusting the value of
h accordingly.

Theorem. Under conditions (i) and (ii) above, it holds that for z
with p(z) >0

252 ) p(
B{f@) - @IX) ~ "7 f) + 2Ry,
y o(z)?
Var{f(z)|X} ~ %p((m)) | / K (u)2du.

Proof. We only give a sketchy proof for the bias.
Put K; = A" 1K(¥%). Then
f@) = Viki/ 3 Ki.
Note (i) implies E{g;|X} = E{;\Xi} = (Z). Hence
E{f(x) — f@)IX} = 3 B{Y; - f@)IX}K;/ Y K;
i{f(xi) - f@)} K/ Z K;.

Bias and variance of f(z)

Regularity conditions: (i) {(Y;, X;)} are i.i.d, and

fx) =EY)|X; =), & =Y;— f(X;).

Further both f(-) and p(-) have two continuous derivatives, where
p(-) denotes the pdf of X;.

(ii) K(-) is a symmetric density function with a bounded support,
and n — oo, h — 0 and nh — oo.

Put 03 = [u?K(u)du, X = (X1,--+,Xn)T and
o(x)? = Var(Yj|X; = z) = E(VA|X; = 2) — f(2)°.
We write &, ~ np iff €,/nn — 1 in probability.

It follows the LLN that

rlzézl K;~ E(Ky) = /%K<X — w)p(X)dX
= /K(u)p(m-l—hu)du — p(x), (15)

and

YA — F@)E
i=1

~ (O - F@ R () px0ax
/ h h

= /{f(m + hu) — f(z)} K (u)p(x + hu)du

2,2 .
= [(hui@) + 5@ p@) + hup@)} K (wdu + 00)

= WoB{f@@) + 3 [ @)} + 00, (16)

Combining (15) and (16), we obtain the required asymptotic for-
mula for the bias.




Remarks. (i) An approximate MSE:
E[{f(z) — f(#)}?|X] = Bias? + Variance

h408
4

Q

2f'(m)p(x)}2 1 o(x)?

2
(@) oGy | K

{F@)+

Increasing h, Variance decreases and Bias increases. A good
choice of h is a trade-off between the variance and the bias. Min-
imising the RHS of the above over h, we obtain

hop = n_1/50($)7

where C(z) is a function of x, depending on p, f and K. Note that
C(z) is unknown in practice.

5.2.3 Kernel density estimation
From (5), a natural estimator for the density function of X; is
1 X2 X, —x
N _1 K2 )7
P = El ( h

which is called a kernel density estimator.

(5) implies p(x) is a consistent estimator. Further,

E{p(z)} = p(z) + O(h?).
5.2.4 Local linear regression estimation

The Nadaraya-Watson estimation is a local constant estimation,
i.e. for y in a small neighbourhood of x, we approximate

f) = f(=),

(i) It can be shown that

2 2 ; .

ViR[ 7@ @) = 20 jay 4 2K
p(z)

converges in distribution to

N(O, U(m)2/K(u)2du>.

p(z)

Note that the convergence rate is v/nh (instead of the standard
v/n). This reflects the nature of local estimation; effectively only
the date lying within h-distance from given z are used in estima-
tion, and the number of those data is of the size nh.

and minimise

Sy — a}2K<M>.

i=1 h

Intuitively, the estimation may be improved by using a local linear
approximation:

) = f(@) + f(@)(y — ),
this leads to the local linear regression estimator: f(z) = a,
where (@,b) minimises

Obviously a natural estimator for f is };(:L’) =b.



Let Y = (Y1,---,Yn)", 8 = (a,b)”, X be an n x 2 matrix with
(1,(X; — z)) as its i-row, and K is an n x n diagonal matrix with
K(%) as its (4,i)-th element. Then (17) can be written as

Y —-x0)"K(Y - x0).
Therefore, the LSE method leads to

(f.("”)> =0 = (XTKX)LATKY. (18)
f(z)

Hence like the Nadaraya-Watson estimator, the local linear esti-
mator for f(x) is a linear combination of Y1, ---,Y, (given X =
(X1, -+ ,Xn)7). Such an estimator is called a linear estimator.

Note. Both Nadaraya-Watson estimator and local linear estimator
with prescribed bandwidth h can be computed using S-function
‘lIs.s’.  Splus and R function ‘loess’ offers more flexibilities for
local regression fitting.

Why is a local linear estimator better?
e Simpler (and often smaller) bias formula
e Automatic boundary carpentry

The table below lists the (first order) biases and variances of the
Nadaraya-Watson estimator (N-W) and the local linear estimator
(LL).

‘ Bias Variance
268 ( & F(z)p(x o(z)?
N-W S0 + 2ERERY s | K ()
2,2 ()2
LL Mo f(a) 5ﬁ;§x3 [ K (u)2du

The asymptotic MSE of the local linear estimator:

ig(x)z u)?du
nh p(x) /K( ) du.

~ hiod .
El{f(2) = f@)}2X] » = 2{f(2)}* +

Local linear fit for S&P 500 Index
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Local linear fit for the S&P 500 Index from January 4, 1999 to
December 31, 1999, using the Epanechnikov kernel and bandwidth
h = 20. The dashed parabola in each window indicates the weight
that each local data point receives.
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Effective weights assigned to local data points at an interior point
zg = 0.5 (weights denoted by «) and a boundary point zg = 0.05
(weights denoted by o) for the local constant fit (Nadaraya-Watson
method) and the local linear fit, with K being the Epanechnikov
kernel. The horizontal solid and dashed lines are the heights of
true and estimated functions at xg = 0.05 and zqg = 0.5, respec-
tively. Their differences are biases at these two points. (a) The
Nadaraya—Watson estimator; (b) the local linear fit. For clarity,
the data () contain no noise.

A local linear estimator is automatically adaptive at the boundary
in the sense that the biases at the boundary points are smaller
than those of a Nadaraya-Watson estimator.

Nadaraya-Watson estimator:

~ " X;—=x 7 X, —=x n

Fuu(yle) = Y. 10 <K (550 [ S K(FL) = Y. Zu(),
where Z; = I(Y; <), and

wi@) = K(X=T) | ;K(th‘ 921 Yu@=1

In the above expression, K(-) is a pdf and h > 0 is a bandwidth.
ﬁnw(y\x) itself is a proper distribution function!

In fact, Fnw(y|z) is a local constant estimator in the sense that it
minimizes
n

L(a) = Y wi(2)(Z; — a)*.

i=1
If we replace w;(x) by 1/n, we obtain the global estimator Z.

5.3 Estimation for conditional distributions

Observations: {(X1,Y1), - ,(Xn, Yn)} i.i.d.

Let F'(-]z) denote the conditional distribution of Y; given X; = z.
Goal: estimate F(y|x) nonparametrically.

Motivation: quantile regression, prediction and etc.

5.3.1 Nadaraya-Watson and local linear estimators

Note: E{I(Y; <y)|X; =z} = F(y|z)

Hence G/ (y|z) is a regression of Z; = I(Y; < y) on X; as E(Z;|X;) =
F(y|X;).

Local linear estimator: Fj(y|z) = a, where (@,b) minimizes

n

3 wi(x){Z; — a—b(X; — 2)}>.

i=1

Note. If we replace w;(z) by 1/n, this is the standard linear
regression estimation: Z; = a + b(X; — z).

ﬁ”(y|x) has superior bias properties (and other types of efficiency)
But Fj(y|z) is not necessarily a distribution function, as it may
take value outside the interval [0, 1], and is not necessarily mono-

tonically increasing in y.

An ideal estimator: combine the advantages of both Fj,(y|z)
and Fj(y|z) together.



Write Z; = Ity.<yy = F(y|Xi) + €, and Kj(z) = h=1(xz/h).

Let g(:) be the pdf of X;. Then as n — oo, %Z?zl Kn(X; —x) —

g(z). Hence

n

ﬁ’nw(ykc) ~ %() Z GiKh(Xi — )

ZF(yIX VER(X; — ),
Z)i=1 ( ) (=

o S PG ) =

:M—‘

X FOle)Kn(X; —2)

+F(y|x)z (X — ) Kp(X; — )+ -
i=1"

The extra bias term is due to the fact that
)y w—wmu—@¢o
’L_l

Idea: change the weights % to force the sum equal to O!

The empirical likelihood estimator F,;(:|x)
(a) is a distribution function, and

(b) shares the same (the first order) asymptotic bias and variance
as the local linear estimator Ej;(-|x).

5.3.2 Empirical likelihood estimator:
n n
Fa(ule) = 3 pi@) ZEn(X; = 2) | 3 pi(@)Kn(X; - o),
i=1 j=1

where p;(x) are the maximum empirical likelihood estimators de-
fined as

n
11 pi(z) = Max!
i=1
subject to

pi(z) >0, Y pix)=1 and > pi(x)Ui(z) =0,

i=1 i=1
where Uz(m) = (Xi — .Z‘)Kh(XZ' — w)

By Theorem 1 in §2.1, p;(z) = ﬁ and A = \(z) is the unique
solution of o

& U;,(z
Z ( 7)

—in— Al () -

6. Tests for Lyapunov exponents in deterministic systems

Reference:

Wolff, R.C., Yao, Q. and Tong H. (2004). Statistical tests

for Lyapunov exponents of deterministic systems. Studies

in Nonlinear Dynamics and Econometrics, 8.

Available at
http://stats.Ise.ac.uk/qg.yao/qyao.links/paper/wyt.pdf

6.1 Chaos

What is chaos?

e Nonlinear and deterministic system such as Logistic map:

Yig1 = 4%(1 - Y)



Scatter plot

e Random-like features

Time series generated by Logistic map
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6.2 Lyapunov exponents

For model Y41 = f(Y), Y1 = f(Yp) and
Yo = f(1) = f(f(Y0)) = fP(vp).

In general,
Yo = f(Yin-1) = £ (o).

Suppose two trajectories start at Yg = =z and Yy = = 4+ §. After
time m, they differ by distance

d
P @+ 8) = f @)~ @) 6.
By the chain rule,

@) = @@ D @)

m—1
=exp{ 3_ log [f[fF(@)][} ~ ™,

k=0

Logistic map: two divergent trajectories

10 i G ; Five iterations of map
| Yip1 = 4vi(1 - Yp) from ini-
0.8 } ' | tial values Yy = 0.123 (dot-
| ted lines) and Yy = 0.132
06 (dashed line):
O S 1 | AYp=10.009,
0.41 b AY7 = 0.027,
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L | | AYs=0.410
0.0+ !
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Y(t)

provided the limit
A= lim imil log |fIf %) (2)]] exists.
el m k=0
A is called the Lyapunov exponent, is a measure for the sensi-
tivity to the initial conditions.

For chaotic systems, )\ exists and is positive. Therefore,

[Yin(z + 6) — Ym(z)| ~ 6e™,

which diverges exponentially fast.
For Logistic model, A\ = log 2.

Remark. The existence of a positive Lyapunov exponent is often
taken as a working definition of chaos.




Sensitivity to initial condition could be an issue wherever nonlin-
earity occurs.

Qluestion: For elmy1 positive definite matrix A, find its square root
A2 for which A2A2 = A.

Theorem. For any positive definite matrix Bg for which ABg =
BpA, define
1 -1
B, = 5(Bn,l + ABn—l)'

1
Then B, — A2 as n — oo.

The above algorithm seldom works in practice!

6.3 Ergodic measures

If the percentage of the points in the orbit

(Yo, F(Y0), FP (¥0), -+, FP)(X0)}
falling into an arbitrary set B stabilises as n — oo, we may define
a probability measure

. 1 n
P(B) = Jim = 3 HfW00) € B}, as P
t=0

P is an ergodic measure.

It is easy to see that P is invariant in the sense that
P(A) = P{f 1 (A)}.
A dynamic system may admit many mutually singular ergodic mea-

sures, and those sit on sets with positive Lebesgue measures are
of interest.

Example:
_ 9 0.5 (10
A_<0.5 4 ) BO_(O 1)’

1 —
Bup1=(Bn+ AB; 1), MSE=||A-Bj|?/4.

n MSE n MSE n MSE
1 66.78 | 2 233 | 3 0.91
4 1.77 5 3.10 6 4.90
7 7.28 | 8 10.35 9 12.35

10 19.14 |11 25.25|12 3281
13 4214 |14 5359|15 67.60
16 84.66 |17 105.41 |18 130.55
19 160.96 | 20 197.66

In numerical calculation, rounding errors keep changing ‘initial’
values in each iterations!

For logistic may Y41 = 4Y;(1 -Y;), the distribution Beta(0.5,0.5)
is an interesting ergodic measure with (0,1) as its support; the
degenerate distribution at 0 is an uninteresting ergodic measure.

From now on, we assume P is an ergodic measure with the support
of positive Lebesgue measures. Let g(-) be its density function.

Then the Lyapunov exponent can be expressed as
X = [log|f@)|P(dz) = [log|f(@)lg(x)d
E{log|f(v)|} = E{log |f{f " (¥o)}}

n—1
= 71|Lm002|og|f'{f(t)(Yo)}| a.s. P.
t=0

Furthermore, {Y;} can be treated as a strictly stationary stochastic
process with the marginal density g.



6.4 Tests for Lyapunov exponents

Goal: detect if a Lyapunov exponent is positive; indicative for
Chaos.

Let Xy = log |f(1/'t)|. Under an appropriate ergodic measure, the
Lyapunov exponent is simply A = E(Xy).

A natural estimator: A =n"1Y"_, X;

A test for the mean:

Hp: A=0 Vs Hi:X>0.

The standard statistical tests (such as the t-test) do not apply to
deterministic system.

Note. For one-dimensional deterministic process, the estimation

for f(-) (therefore also for f(-)) is a trivial matter: plot Y4
against Y;.

Construction of g(-) — Empirical kernel density estimator:

12 X, —x
IS SUNSNG ¢ )
g(z) hi;p,, ( ;

where K(-) is a density function, h > 0 is a bandwidth, and

n
(P1,--.,Pn) = argmax [] p;
i=1
subject to p; > 0, Y1<i<np; =1 and

Xi—x

1 n
pri/xK<7>dz=O.
h = h

Remark. (i) For K(z) = (2r)"1/2e7%°/2, [k (¥i7%) dz = X;.
Hence p; are the solution of “empirical likelihood for mean”:

n n n
max [] p; subjectto p; >0, > p;=1 and > p;X;=0.

i=1 i=1 i=1

Bootstrap test

1. Construct a distribution g(.) satisfying the following two con-
ditions

(@) null hypothesis Hg: A =0, i.e. [zg(z)de =0

(b) the distribution is the closest to the observed ‘sample’ {Xy, -, Xn}

2. Draw independent sample X7,..., X from distribution g(.),
and compute \* =n~1 Yy, X7

3. Repeat Step 2 B times, and the P-value of the test is ZAAT)

Hence
1 L X
D: — E—— E _ = 0
pi n—wX; —in—wX;
J_

(i) Arandom sample {X7,--- , X} from g(z) = %E?:lﬁiK (Xg:

may be drawn as follows:

X} = Z; + he,

1=1,---,n,
where ¢; are independent N(0,1), and Z; are independently
drawn from the discrete distribution

(X1 Xo ... Xa
probability | p1 P2 ... Pn

(iii) For deterministic data, we use very small h or even h = 0.
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