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General overview

In these lectures, we aim to give an introduction to p-adic L-functions and the foun-
dations of Iwasawa theory. Iwasawa’s work found overarching structures that explained
previous results of Kummer linking special values of L-functions with the arithmetic of
cyclotomic fields. His methods have been applied with stunning success in other settings,
and much of what we know today about long-standing conjectures such as the Birch and
Swinnerton-Dyer conjecture has its roots in Iwasawa theory.

We will focus mainly on the construction and study of Kubota and Leopoldt’s p-adic
interpolation of the Riemann zeta function and on the ideas surrounding the Iwasawa
Main conjecture, now a theorem due to Mazur and Wiles (see [MW84]). We will describe
some classical results linking L-values and arithmetic data that led to the study of p-adic
L-functions, and give several constructions of the p-adic zeta function. In particular, a
construction due to Coleman using cyclotomic units will naturally lead to the statement of
the Main conjecture, which we will prove when p is a Vandiver prime (which conjecturally,
at least, covers every prime). We will finally see a theorem of Iwasawa describing the growth
of the p-part of the class group of cyclotomic fields.

Recommended reading: The material in Part I of these notes is largely contained
in Lang’s Cyclotomic fields I and II (see [Lan90]) and Colmez’s lecture notes [Col]. Part II
is based on the book Cyclotomic fields and zeta values by Coates and Sujatha (see [CS06]).
Part III is based on Washington’s book An introduction to cyclotomic fields (see [Was97],
especially §13). These lectures can be regarded as an introduction to the topics treated in
the references mentioned above, which the reader is urged to consult for further details, and
as a prelude to Rubin’s proof of the Main Conjecture using the theory of Euler systems, as
described in [CS06] and [Lan90, Appendix].

1. Introduction

1.1. Motivation. —

1.1.1. Classical L-functions. — The study of L-functions and their special values goes back
centuries, and they are central objects of modern number theory. Examples include:

– The famous Riemann zeta function, defined by

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1, s ∈ C,
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where the last product runs over all prime numbers p and the second equality follows is
a conseqence of the unique factorisation theorem. The sum converges absolutely for the
real part of s greater than 1, making ζ a holomorphic function in a right half-plane. The
expression as a product is called an Euler product.

– Let F be a number field. The zeta function of F is

ζF (s) ..=
∑

06=I⊂OF

N(I)−s =
∏
p

(1−N(p)−s)−1,

where the sum is over all non-zero ideals in the ring of integers (and which again converges
for Re(s) > 1), and the product is over all non-zero prime ideals of K. The existence of the
Euler product again follows from unique factorisation.

– Let χ : (Z/NZ)× → C× be a Dirichlet character, and extend it to a function χ : Z→ C

by setting it to be 0 at integers not coprime to N . The L-function of χ is

L(χ, s) ..=
∑
n≥1

χ(n)n−s =
∏
p

(1− χ(p)p−s)−1.

Yet again, this converges in a right half-plane.
– Let E/Q be an elliptic curve of conductor N . One can define an L-function

L(E, s) ..=
∑
n≥1

an(E)n−s =
∏
p-N

(1− ap(E)p−s + p1−2s)−1
∏
p|N

Lp(s),

where ap(E) = p+1−#E(Fp) and the factors Lp(s) at bad primes are defined as Lp(s) = 1

(resp. (1− p−s)−1, resp. (1 + p−s)−1) if E has bad additive (resp. split multiplicative, resp.
non-split multiplicative) reduction at p.

– Let f =
∑+∞
n=1 an(p)qn ∈ Sk(Γ0(N), ωf ) be a (normalised) newform of weight k, level

N and character ωf . The L-function associated to f is given by

L(f, s) ..=
∑
n≥1

an(f)n−s =
∏
p-N

(1− ap(f)p−s + ωf (p)pk−1−2s)−1
∏
p|N

(1− ap(f)p−s)−1.

Any reasonably behaved L-function should have the following basic properties (which
may be non-trivial to prove!) (1):

(1) A meromorphic continuation to the whole complex plane;
(2) A functional equation relating s and k − s for some k ∈ R;
(3) An Euler product.

Remark 1.1. — More generally, let GQ = Gal(Q/Q) denote the absolute Galois group of
Q and let V ∈ RepL GQ be a p-adic Galois representation (i.e. a finite dimensional vector
space over a finite extension L of Qp equipped with a continuous linear action of GQ). For
` 6= p a rational prime, one defines a local factor at ` as

L`(V, s) ..= det(Id− Frob−1
` `−s|V I`)−1,

where Frob` denotes the arithmetic Frobenius at `, and I` denotes the inertia group at `.
One defines a local factor at p as

Lp(V, s) ..= det(Id− ϕ−1p−s|Dcris(V ))−1,

where this time Dcris(V ) denotes the crystalline module of V |GQp
from p-adic Hodge theory

and ϕ denotes the crystalline Frobenius. One then defines the global L-function of V as the
formal product

L(V, s) =
∏
`

L`(V, s).

(1)We will treat the meromorphic continuation of the Riemann zeta function in the sequel.
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When V is the representation attached to am arithmetic object(2) the L-function of the
representation is typically equal to the L-function attached to that object; for example,
taking V = Qp(χ) (that is, V = Qp with GQ acting through the character χ via class
field theory), one recovers the Dirichlet L-functions described above. See [Bel09] for an
introduction to these topics.

1.1.2. Special values and arithmetic data. — Much of the interest of L-functions comes
through their special values. There are deep results and conjectures relating special values
of L-functions to important arithmetic information, of which a prototypical example is the
following:

Theorem 1.2 (Class number formula). — Let F be a number field with r1 real embed-
dings, r2 pairs of complex embeddings, w roots of unity, discriminant D, and regulator R.
The zeta function ζF has a simple pole at s = 1 with residue

ress=1ζF (s) =
2r1(2π)r2R

w
√
|D|

hF ,

where hF is the class number of F .

In theory, this gives a method for calculating the class number of a number field, although
in general computing the regulator is difficult. In special cases related to cyclotomic fields,
though, it can give an effective computation of the class number.

A second famous example of links between special values of L-functions and arithmetic
information comes in the form of the Birch and Swinnerton–Dyer conjecture. Let E/Q be
an elliptic curve. The set of rational points E(Q) forms a finitely generated abelian group,
and Birch and Swinnerton–Dyer predicted that

rankZE(Q) = ords=1L(E, s).

Let’s say we want to attack the conjecture. There are two natural subquestions:
(a) We could try to prove that rankZE(Q) ≥ ords=1L(E, s). A natural approach is to

try to construct rational points on the elliptic curve. The theory of Heegner points is based
on such an idea. More recently, the p-adic theory of Stark–Heegner points has been used
with some success (see [Dar01], where the theory was initiated). These constructions tend
to give points of infinite order on E(Q) if and only if the L-function vanishes to a certain
order (for example, a Heegner point has infinite order if and only if the order of vanishing
is precisely 1).

(b) Conversely, we could try and prove that rank E(Q) ≤ ords=1L(E, s). In this case we
want to bound the number of points. One method for trying to do this uses Euler systems
(see [Rub00] for a comprehensive introduction). The primary application of the theory of
Euler systems is in bounding certain Galois cohomology groups, known as Selmer groups,
which are defined using local behaviour and can be viewed as a cohomological interpretation
of the group of rational points on E. The difference between the Selmer group and E(Q)

is captured in the Tate–Shafarevich group X(E/Q), which is a torsion abelian group that
is conjecturally finite. If the p-part of X(E/Q) is finite, then the p-Selmer group and
the group E(Q) have the same rank (as abelian groups), so bounding the Selmer group is
equivalent to bounding E(Q).

The ideas above have led to the only known special cases of the conjecture; in particular,
we now know it to be true (under some assumptions) when ords=1L(E, s) ≤ 1 due to work
of Kolyvagin, Gross–Zagier and Murty–Murty (see [Kol88], [GZ86] and [MM91]).

(2)For example, a number field, an elliptic curve, a modular form, etc.
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Remark 1.3. — Something that both (a) and (b) have in common is their use of p-adic L-
functions. In fact, there is a p-adic version of Birch and Swinnerton-Dyer, due to Mazur, Tate
and Teitelbaum (see [MTT86]), which relates the rank of the p-Selmer group to the order of
vanishing of a p-adic L-function at s = 1. This formulation (which is conjecturally equivalent
to the standard formulation(3)) has recently been proved in many cases by Skinner–Urban
(see [SU14]), following work of Kato (see [Kat04]). Their proof uses a version of the
Iwasawa Main Conjecture for elliptic curves.

1.1.3. Iwasawa’s main conjecture: a general picture. — As it has been mentioned, many
arithmetic objects have associated Galois representations, and these Galois representations
come with L-functions. In general, one might expect that where there is an L-function,
there is a p-adic L-function, and that there is a version of the Main conjecture for this
p-adic L-function. The main conjecture essentially says that the p-adic L-function should
control the size of the Selmer groups of the Galois representation it is attached to (recalling
from above that the Selmer groups are subgroups of the Galois cohomology defined by local
conditions).

{Galois representations} - {L− functions}

{Galois cohomology}
?

� IMC
{p-adic L-functions}

?

In the case of elliptic curves, the application of this to Birch and Swinnerton–Dyer comes
through the links between the Selmer groups and E(Q).

In this lecture course, we will focus on the simplest example of the above picture, namely
the Main conjecture for the Riemann zeta function, as formulated by Iwasawa himself. In
the process, we will construct the p-adic analogue of the zeta function on the way to stating
the main conjecture, which we will prove for a special case. In doing so, we hope to give an
introduction to the rich area of p-adic L-functions and Iwasawa theory.

1.2. The Riemann zeta function. — Since the Riemann zeta function will be a central
player in the rest of these lectures, we take a brief detour to describe some of the classical
theory surrounding it. We start with the following general result.

Theorem 1.4. — Let f : R≥0 −→ R be a C∞-function that decays exponentially at
infinity, and let

Γ(s) =

∫ ∞
0

e−tts−1dt.

be the usual Gamma function. The function

L(f, s) ..=
1

Γ(s)

∫ ∞
0

f(t)ts−1dt, s ∈ C,

which converges to a holomorphic function for Re(s) > 0, has an analytic continuation to
the whole complex plane, and

L(f,−n) = (−1)n
dn

dtn
f(0).

We call L(f, s) the Mellin transform of f .

(3)To show that p-adic Birch and Swinnerton–Dyer implies classical Birch and Swinnerton–Dyer, one must
show finiteness of X and prove a precise relation between the order of vanishing of the classical and p-adic
L-functions. Both of these are, naturally, extremely difficult open problems.
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Proof. — To show analytic continuation, we claim that when Re(s) > 1, we have

L(f, s) = −L(f ′, s+ 1),

where f ′ = df/dt. This is an easy exercise in integration by parts, using the identity
Γ(s) = (s− 1)Γ(s− 1), and gives the analytic continuation to all of C by iteration. Finally,
iterating the same identity n+ 1 times shows that

L(f,−n) = (−1)n+1L(f (n+1), 1)

= (−1)n+1

∫ ∞
0

f (n+1)(t)dt

= (−1)nf (n)(0)

from the fundamental theorem of calculus, giving the result.

Now we pick a specific choice of f , namely, we let

f(t) =
t

et − 1
=
∑
n≥0

Bn
tn

n!
,

the generating function for the Bernoulli numbers Bn.

Remark 1.5. — The Bernoulli numbers satisfy a recurrence relation that ensures they are
rational numbers; for example, the first few are

B0 = 1, B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, ...

For k ≥ 3 odd, Bk = 0.

Lemma 1.6. — For the choice of f as above, we have

(s− 1)ζ(s) = L(f, s− 1).

Proof. — We use the classical formula for Γ(s) above. Substituting t for nt and rearranging,
we obtain

n−s =
1

Γ(s)

∫ ∞
0

e−ntts−1dt.

Now, when Re(s) is sufficiently large, we can write

ζ(s) =
∑
n≥1

n−s =
1

Γ(s)

∑
n≥1

∫ ∞
0

e−ntts−1dt =
1

Γ(s)

∫ ∞
0

Å∑
n≥1

e−nt
ã
t · ts−2dt,

and the result now follows from the identity
1

et − 1
=
∑
n≥1

e−nt.

From the theorem above, we immediately obtain:

Corollary 1.7. — For n ≥ 0, we have

ζ(−n) = −Bn+1

n+ 1
,

In particular, ζ(−n) ∈ Q for n ≥ 0, and ζ(−n) = 0 if n is even.

1.3. p-adic L-functions. — We have already seen two examples where special values of L-
functions should be able tell us information about arithmetic objects. In fact, there are very
general conjectures (for example, the Bloch–Kato and Beilinson conjectures) predicting that
these links exist on a much wider scale, and despite some partial results in special cases these
conjectures remain deep open problems. Much of what we do know about these conjectures
comes through the theory of p-adic L-functions. In this section, we explain what a p-adic
L-function is and the properties it should satisfy.
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1.3.1. p-adic L-functions, a first idea. — The complex ζ-function is a function

ζ : C −→ C

with complex analytic properties which is rational at negative integers. Since Z is a common
subset of both C and Zp ⊆ Cp, and since they are dense in Zp, it is natural to ask if there
exists a function

ζp : Zp −→ Cp

that is ‘p-adic analytic’ (in some sense to be defined) and which is uniquely characterized
by the property that it agrees with the complex L-function at negative integers in the sense
that

ζp(1− n) = (∗) · ζ(1− n),

for some explicit factor (∗). We would say that such a function ‘p-adically interpolates the
special values of ζ(s)’.

1.3.2. Ideles, measures and Tate’s thesis. — In practice, there is no single analytic func-
tion on Zp that interpolates all of the special values(4), as we will explain in Section 4.3.
Instead, a better way of thinking about L-functions is to use a viewpoint initiated by Tate
in his thesis [Tat50] (and later independently by Iwasawa; see [Iwa52]). This viewpoint
sees L-functions as measures on ideles, and allows one to package together all Dirichlet
L-functions, including the Riemann zeta function, into a single object. We will give a
brief account of the classical theory here, but for fuller accounts, one should consult the
references above.

We begin with the following observations.

Lemma 1.8. — (i) Let χ : (Z/NZ)× −→ C× be a Dirichlet character. Then χ can be
seen as a function

χ :
∏

`prime

Z×` −→ C×.

(ii) There exists an identification of C with Homcts(R>0,C
×) by sending s to the char-

acter x 7→ xs.

Proof. — To see part (i), suppose that N = `n is a power of some prime `; then we can see
χ as a function on Z×` via the identification

Z×`
∼= (Z/`nZ)× × (1 + `nZ`).

The general case follows from the Chinese remainder theorem.

We turn to part (ii). For s ∈ C, the function x 7→ xs is visibly a continuous character on
R>0. We want to show that all such characters are of this form. After taking a logarithm,
this is equivalent to showing that all continuous homomorphisms (of additive groups) g :

R→ C are of the form g(x) = xg(1), which is easily shown by directly computing the values
of g on Q and extending by continuity.

By the identification of C with Homcts(R>0,C
×) one can view ζ as a function

ζ : Homcts(R>0,C
×) −→ C[

x 7→ xs
]
7−→ ζ(s).

But we can add in Dirichlet characters using the following.

(4)Rather, there are p − 1 different analytic functions ζp,1, ..., ζp,p−1 on Zp, and ζp,i interpolates only the
values ζ(−k) for which k ≡ i (mod p− 1).
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Proposition 1.9. — Under the identifications above, each pair (χ, s), where χ is a Dirich-
let character and s ∈ C, corresponds to a (unique) continuous character

κχ,s : R>0 ×
∏

`prime

Z×` −→ C×

(x, y) 7−→ xsχ(y),

where we equip the source with the product topology. All continuous characters on this group
are of this form.

Proof. — The first assertion is immediate from above. To see the converse, let κ be such
a character. Then we already know that the restriction of κ to R>0 must be of the form
x 7→ xs. Furthermore, we have an isomorphism of topological groups∏

`prime

Z×`
∼= lim
←−

(Z/MZ)×,

where the right hand side is equipped with the profinite topology, and by taking a sufficiently
small open neighbourhood of 1 in C× we see that any continuous character κ′ from this to
C× must have open kernel. Hence the kernel has finite index, and κ descends to the (finite)
quotient, which one can check is of the form (Z/NZ)× for some N , giving rise to a Dirichlet
character χ of conductor N . Then κ = κχ,s.

The product space is more usually written as follows.

Definition 1.10. — Define the ideles A× of Q to be

A× = A×Q
..= R× ×

∏′

`prime

Q×`

=
{

(xR, x2, x3, x5, ...) : x` ∈ Z×` for all but finitely many `
}
.

(The prime on the product denotes restricted product, which indicates the almost everywhere
integral property in the definition). It’s a good exercise to check that:

Proposition 1.11 (Strong approximation). — There is a decomposition

A× ∼= Q× ×R>0 ×
∏

`prime

Z×` .

Hence all continuous characters
Q×\A× −→ C×

are of the form κχ,s as above, where χ is a Dirichlet character and s ∈ C.

Now we can consider all Dirichlet L-functions at once via the function

L : Homcts(Q
×\A×,C×) −→ C

κχ,s 7−→ L(χ, s).

In the framework of Tate, this function L can be viewed as integrating κχ,s against the
Haar measure on Q×\A×. In his thesis, Tate showed that properties such as the analytic
continuation and functional equations of Dirichlet L-functions by using harmonic analysis
on measures. Indeed, the idelic formulation gives a beautiful conceptual explanation for the
appearance of the Γ-functions and powers of 2πi in the functional equation of the zeta func-
tion; these factors are the ‘Euler factors at the archimedean place’. The measure-theoretic
perspective has proven to be a powerful method of defining and studying automorphic L-
functions in wide generality.

Remark 1.12. —
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– IfK is any number field, one can analogously define the ideles A×K ofK as the restricted
product

∏
vK
×
v over all places v of K. Continuous homomorphisms K×\A×K → C× are

called Hecke characters or Größencharacters. They are examples of automorphic forms for
GL1/K.

– By class field theory, the idele class group K×\A×K injects (with dense image)
into G ab

K
..= Gal(Kab/K), where Kab denotes the maximal abelian extension of K.

Since any character of GK must factor through G ab
K , under this identification we have

Homcts(K
×\A×K ,C×) = Homcts(GK ,C×) = Homcts(GK ,GL1(C)), where GK = Gal(K/K)

denotes the absolute Galois group of Q. We can then package Dirichlet L-functions over K
into a complex analytic function on the space of one dimensional complex representations
of the absolute Galois group GK .

1.3.3. p-adic L-functions via measures. — To obtain a p-adic version of this picture, a
natural thing to do is to look at continuous characters from Q×\A× into C×p (rather than
C×). Again, such a function corresponds to a function on R>0 ×

∏
Z×` . Since R>0 is

connected and Cp is totally disconnected, the restriction of any such character to R>0 is
trivial. Also using topological arguments we find that the restriction to

∏
6̀=p Z

×
` factors

through a finite quotient, so gives rise to some Dirichlet character of conductor prime to p.
This leaves the restriction to Z×p , which is by far the most interesting part.

In the measure-theoretic viewpoint of L-functions, it is then natural to look for an ana-
lytic(5) function

ζp : Homcts(Z
×
p ,C

×
p ) −→ Cp

in such a way that
ζp(x 7→ xk) = (∗) · ζ(−k), k ≥ 0

for an explicit factor (∗), that is, for a function on p-adic characters interpolating the values
ζ(−k) for k ≥ 0. We say such a function is a measure on Z×p . In equivalent and more
elementary terms, a measure on Z×p is an element of the continuous dual of the space of
continuous functions on Z×p . We will prove:

Theorem 1.13 (Kubota-Leopoldt, Iwasawa). — There exists a (pseudo-)measure(6)

ζp on Z×p such that, for all k ≥ 0,∫
Z×p

xk · ζp ..= ζp(x 7→ xk) =
(
1− pk

)
ζ(−k).

Remark 1.14. — Note that we removed the Euler factor at p. This is a general phe-
nomenon appearing in the theory of p-adic L-functions.

From such an object, we can build the (meromorphic) functions on Zp we were initially
looking for. But now, we have much more, and the power of the measure-theoretic approach
becomes obvious:

Theorem 1.15. — Let χ be a Dirichlet character of conductor pn, n ≥ 0, viewed as a
locally constant character on Z×p . Then, for all k ≥ 0,∫

Z×p

χ(x)xk · ζp =
(
1− χ(p)pk

)
L(χ,−k).

(5)Precisely, since Z×p = µp−1 × (1 + pZp), the space Homcts(Z
×
p ,C

×
p ) can be identified with p− 1 copies of

the open unit ball in Cp (see the exercises). It carries the structure of a rigid analytic p-adic space, and a
function on this space is rigid analytic if it can be written as a convergent power series on each ball. Such
an analytic function will be a measure if these coefficients are bounded.
(6)Pseudo-measures will be defined in Section 3. Roughly speaking, such an object is a measure that is
allowed to have simple poles.
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In other words, when viewed as a measure the Kubota–Leopoldt p-adic L-function is a
single p-adic gadget that encodes the special values not only of the Riemann zeta function,
but also of all of its twists by characters of p-power conductor. This is pretty magic!
Indeed, even though one only uses the values ζ(−k) to construct the measure ζp, Theorem
1.15 affirms that its values at infinitely many different points are still related to the complex
L-function. We will also see a formula of Leopoldt showing another striking resemblance
when evaluating at the character x 7→ χx−1.

To complete the image given in §1.3.2, one can take into account Dirichlet characters of
conductor prime to p. The ideas that go into the proof of Theorem 1.15 can also be used to
show:

Theorem 1.16. — Let D > 1 be any integer coprime to p, and let η denote a (primitive)
Dirichlet character of conductor D. There exists a unique measure µη on Z×p with the
following interpolation property: for all primitive Dirichlet characters χ with conductor pn

for some n ≥ 0, we have, for all k > 0,∫
Z×p

χ(x)xk · µη =
(
1− χη(p)pk

)
L(χη,−k).

Remark 1.17. — Let (Z/DZ)×∧ denote the space of characters on (Z/DZ)×. The mea-
sures given by Theorem 1.16 can be seen as functions on Homcts(Z

×
p ,C

×
p )× (Z/DZ)×∧ and

they are compatible with respect to the natural maps (Z/DZ)×∧ → (Z/EZ)×∧ for E|D.
This shows that they define a function on

Homcts(Z
×
p ,C

×
p )× lim←−

(D,p)=1

(
Z/DZ

)×∧
= Homcts(Z

×
p ,C

×
p )×

(∏
` 6=p

Z×`
)∧

= Homcts(Q
×\A×Q,C

×
p ).

In other words, they give a measure on the idele class group of Q.

Remark 1.18. — The measure-theoretic interpretation of p-adic L-functions also allows
us to generalise to number fields in a clean and conceptual way, as we elaborate in this
remark.

– Let F∞ = Q(µp∞) denote the field extension of Q obtained by adjoining all p-power
roots of unity. This is a Galois extension of Q with Gal(F∞/Q) ∼= Z×p via the cyclotomic
character (see, for example, the notation at the start of Part II). Under this isomorphism,
we can see ζp as a pseudo-measure on Gal(F∞/Q).

– Note that F∞ is the maximal abelian extension of Q that is unramified outside p.
Indeed, the Kronecker-Weber theorem states that if K/Q is abelian, then K ⊂ Q(µm) for
some minimal m. By the ramification properties of cyclotomic fields, if a prime ` ramifies
in K, then `|m, and hence if K is unramified outside p, there exists some n such that
K ⊂ Q(µpn) = Fn ⊂ F∞.

– Now let K/Q be a number field; then the p-adic analogue of the zeta function ζK(s)

should be a pseudo-measure on Gal(Kab,p/K), whereKab,p is the maximal abelian extension
of K unramified outside primes above p. This is also the natural setting for the construction
of p-adic L-functions of other arithmetic objects, such as elliptic curves or modular forms over
K. It is possible to translate measures on this Galois group into measures on (OK ⊗ Zp)

×

or analytic functions on OK ⊗ Zp, but this is not as clean; over Q, things work nicely
since the class number is 1 and the totally positive global units are trivial. For a general
number field K, the strong approximation theorem takes a more complicated form, and we
end up with a collection of measures/analytic functions indexed by a class group. For an
example of the theory for modular forms over imaginary quadratic fields, see [Loe14] (for
measures/distributions) or [BSW17, §3] (for analytic functions).
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1.4. Structure of the course. — The course will be split into three major parts. In Part
I, we construct the p-adic analogue of the Riemann zeta function, called the Kubota-Leopoldt
p-adic L-function, and prove that it interpolates special values of Dirichlet L-functions. In
Part II, we will look at the Main conjecture. In particular, we’ll explore some of the deeper
underlying structure discovered by Iwasawa, proving a connection between certain units in
cyclotomic fields and the p-adic L-function. This will naturally lead to the statement of the
Main conjecture, which we will prove in a special case. In Part III, we will look at further
topics in Iwasawa theory, including the λ- and µ-invariants of a Zp-extension. The latter
theory allows precise control of the p-part of the ideal class group in a tower of p-extensions
of number fields.



12 JOAQUÍN RODRIGUES JACINTO & CHRIS WILLIAMS

Part I: The Kubota–Leopoldt p-adic L-function

In this part, we give a construction of the Kubota–Leopoldt p-adic L-function and the p-
adic L-functions of Dirichlet characters. In Section 2, we introduce the necessary formalism
of p-adic measures and Iwasawa algebras, and show that there is an isomorphism from the
Iwasawa algebra of Zp to the space Zp[[T ]] of power series over Zp, given by the Mahler
transform. In Section 3, we construct a pseudo-measure on Z×p that interpolates the values
of the Riemann zeta function at negative integers. In Section 4, we show moreover that
this pseudo-measure interpolates the values L(χ,−k) for χ a Dirichlet character of p-power
conductor. Further, if η is a Dirichlet character of conductor prime to p, we construct a
measure on Zp that interpolates the values L(χη,−k) as χ runs over Dirichlet characters of
p-power conductor. Finally, in Section 4.3 we rephrase the construction in terms of analytic
functions on Zp via the Mellin transform.

2. Measures and Iwasawa algebras

In the introduction, we explained that a natural way to construct p-adic L-functions is
to construct suitable p-adic measures on Z×p . In this section, we introduce the formalism of
the theory of p-adic analysis that we will be using in the sequel. Whilst some of the results
of this section may appear a little dry in isolation, fluency in the measure-theoretic language
will greatly help us simplify calculations that would otherwise be very technical.

2.1. The Iwasawa algebra. — We fix a finite extension L of Qp, equipped with the
p-adic valuation normalized such that vp(p) = 1; this will serve as the coefficient field. We
write OL for its ring of integers. Let G be a profinite abelian group (e.g. G = Zp or G = Z×p ,
which are the examples of most interest to us).

We denote by C (G,L) the space of continuous functions φ : G → L, equipped with the
valuation vC (φ) = infx∈G vp(φ(x)) (giving rise to the sup norm). This valuation makes
C (G,L) into an L-Banach space, i.e. a complete topological L-vector space whose topology
is defined by a valuation vC satisfying

(i) vC (f) = +∞ if and only if f = 0;
(ii) vC (f + g) ≥ vC (f) + vC (g) for all f, g ∈ C (G,L);
(iii) and vC (λf) = vp(λ) + vC (f) for all λ ∈ L, f ∈ C (G,L).

Definition 2.1. — We define the space M (G,L) of L-valued measures on G as the dual
Homcts(C (G,L), L) equipped with the strong topology. If φ ∈ C (G,L) and µ ∈ M (G,L),
the evaluation of µ at φ will be denoted by∫

G

φ(x) · µ(x),

or by
∫
G
φ · µ if the variable of integration is clear from the context (in the literature, this

is sometimes written alternatively as
∫
G
φ · dµ). We say that an element µ ∈ M (G,L)

is an OL-valued measure, and write µ ∈ M (G,OL), if µ takes values in OL. Since G is
compact and measures are continuous (or, equivalently, bounded), we have that M (G,L) =

M (G,OL)⊗OL L. We will be mainly concerned with OL-valued functions and measures.

Remark 2.2. — We can think of measures as additive functions

µ : {compact open subsets of G} −→ OL.

Indeed, let µ be such a function and let φ ∈ C (G,OL). We will see how to integrate φ
against µ. Assume first that φ is locally constant. Then there is some open subgroup H of
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G such that φ can be viewed as a function on G/H. We define the integral of φ against µ
to be ∫

G

φ · µ ..=
∑

[a]∈G/H

φ(a)µ(aH).

In the general case, we can write φ = limn→∞ φn, where each φn is locally constant. Then
we can define ∫

G

φ · µ ..= lim
n→∞

∫
G

φn · µ,

which exists and is independent of the choice of φn we take. This defines an element in
M (G,OL).

Conversely, if µ ∈ M (G,OL) and U ⊂ G is an open compact set, one defines µ(U) ..=∫
G
1U (x) · µ(x), where 1U (x) denotes the characteristic function of U .

Proposition 2.3. — We have an isomorphism

M (G,OL) ∼= lim←−
H

OL[G/H],

where the limit is over all open subgroups of G.

Proof. — Let µ be a measure, and let H be an open subgroup of G. We define an element
λH of OL[G/H] by setting

λH ..=
∑

[a]∈G/H

µ(aH)[a].

By the additivity property of µ, we see that (λH)H ∈ lim←−OL[G/H], so we have a map from
measures to this inverse limit.

Conversely, given such an element λ of the inverse limit, write λH for its image in OL[G/H]

under the natural projection. Then

λH =
∑

[a]∈G/H

ca[a].

We define

µ(aH) = ca.

Since the λH are compatible under projection maps, this defines an additive function on the
open compact subgroups of G, i.e. an element µ ∈M (G,OL).

Definition 2.4. — We define the Iwasawa algebra of G to be

Λ(G) ..= lim←−
H

OL[G/H].

(Note that we suppress L from the notation).

Remark 2.5. — The Iwasawa algebra Λ(Zp) has a natural OL-algebra structure, and
hence by transport of structure we obtain such a structure on M (Zp,OL). It turns out that
the algebra structure can be described directly via convolution of measures. For general G,
given two measures µ, λ ∈M (G,OL), one defines their convolution µ ∗ λ to be∫

G

φ · (µ ∗ λ) =

∫
G

Å∫
G

φ(x+ y) · λ(y)

ã
· µ(x).

One checks that this does give an algebra structure and that the isomorphism above is an
isomorphism of OL-algebras.
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2.2. p-adic analysis and Mahler transforms. — In this section we establish a link
between p-adic measures on Zp and power series.

Definition 2.6. — For x ∈ Zp and n ≥ 1, letÇ
x

n

å
..=

x(x− 1) · · · (x− n+ 1)

n!
,

and let
Ç
x

0

å
= 1.

Remark 2.7. — One easily checks that x 7→
(
x
n

)
defines an element in C (Zp,Zp) of valu-

ation vC

((
x
n

))
= 0.

The following theorem says that the functions
(
x
n

)
form an orthonormal basis (7) for the

space C (Zp, L) and is fundamental in everything that follows.

Theorem 2.8 (Mahler). — Let φ : Zp → L be a continuous function. There exists a
unique expansion

φ(x) =
∑
n≥0

an(φ)

Ç
x

n

å
,

where an(φ) ∈ L and an → 0 as n→∞. Moreover, vC (φ) = infn∈N vp(an(φ)).

Proof. — See [Col10a, Théorème 1.2.3.].

Remark 2.9. — The coefficients an(φ) are called the Mahler coefficients of φ. One can
write down the Mahler coefficients of φ very simply; we define the discrete derivatives of φ
by

φ[0] = φ, φ[k+1](x) = φ[k](x+ 1)− φ[k](x),

and then an(φ) = φ[n](0).

Definition 2.10. — Let µ ∈ Λ(Zp) be a p-adic measure on Zp. Define the Mahler trans-
form (or Amice transform) of µ to be

Aµ(T ) ..=

∫
Zp

(1 + T )x · µ(x) =
∑
n≥0

ñ∫
Zp

Ç
x

n

å
· µ
ô
Tn ∈ OL[[T ]].

Theorem 2.11. — The Mahler transform gives an OL-algebra isomorphism

Λ(Zp) ∼−→ OL[[T ]].

Proof. — We can explicitly define an inverse to the transform. Let g(T ) =
∑
n≥0 cnT

n ∈
OL[[T ]]. Let H ⊂ Zp be an open subgroup, and for each [a] ∈ Zp/H let 1aH denote the
characteristic function of the coset aH ⊂ Zp. This is a continuous function on Zp, and hence
has a Mahler expansion

1aH(x) =
∑
n≥0

a[a]
n

Ç
x

n

å
,

with a[a]
n ∈ OL. Then define

µ[a]
..=
∑
n≥0

a[a]
n cn,

and
µH =

∑
[a]∈Zp/H

µ[a][a].

(7)If B is an L-Banach space, an orthonormal basis of B is a collection (ei)i∈I such that (ai)i∈I 7→
∑

i∈I aiei
defines an isometry between `0∞(I, L) and B, where `0∞(I, L) is the set of sequences in L indexed by I that
tend to 0 (in a sense that depends on I). One can show that every L-Banach space B with valuation vB
such that vB(B) = vp(L) admits an orthonormal basis.



AN INTRODUCTION TO p-ADIC L-FUNCTIONS 15

It is an easy check that (µH)H is an element of the Iwasawa algebra and the resulting
function OL[[T ]]→ Λ(Zp) is an inverse to the Mahler transform.

Definition 2.12. — If g ∈ OL[[T ]], we write µg ∈ Λ(Zp) for the corresponding (OL-valued)
measure on Zp (so that Aµg = g).

Remark 2.13. — Let g ∈ OL[[T ]] with associated measure µg. From the definitions, it is
evident that ∫

Zp

µg = g(0).

2.3. An example: Dirac measures. — In this section, we give an example of the above
theory in action via Dirac measures.

Definition 2.14. — Let a ∈ Zp. The Dirac measure δa ∈ M (Zp,OL) is the linear
functional ‘evaluation at a’, that is, the measure defined by

δa : C (Zp,OL) −→ OL

φ 7−→ φ(a).

Under the identification of measures with additive functions on open compact subsets of
Zp, we find that this corresponds to the function

δ̃a(X) =

®
1 if a ∈ X
0 if a /∈ X,

as can be seen directly from the proof of the identification.

As an element of the Iwasawa algebra, again from the proof we find that at finite level
δa corresponds to the basis element [a + pnZp] ∈ OL[Zp/p

nZp], which in the inverse limit
we denote by [a].

Finally, we compute the Mahler transform of δa. If a ∈ Z×p then, by definition, this is

Aδa(T ) =
∑
n≥0

Ç
a

n

å
Tn = (1 + T )a.

2.4. A measure-theoretic toolbox. — There are natural operations one might consider
on measures, and via the Mellin transform these give rise to operators on power series. As
such, the following operations can be considered as a ‘toolbox’ for working with measures
and power series, and as we shall see in the sequel, the ability to manipulate measures in
this way has important consequences. For further details (and even more operations), see
[Col10a].

2.4.1. Multiplication by x. — Given a measure µ on Zp, it’s natural to wish to evaluate it
at the function xk for a positive integer k. To allow us to do that, we define xµ to be the
measure defined by ∫

Zp

f(x) · xµ =

∫
Zp

xf(x) · µ.

We can ask what this operation does on Mahler transforms; we find:

Lemma 2.15. — We have

Axµ = ∂Aµ,

where ∂ denotes the differential operator (1 + T ) d
dT .
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Proof. — We have

x

Ç
x

n

å
= (x− n)

Ç
x

n

å
+ n

Ç
x

n

å
= (n+ 1)

Ç
x

n+ 1

å
+ n

Ç
x

n

å
.

The result follows directly.

From the above lemma and Remark 2.13, we immediately obtain:

Corollary 2.16. — For g ∈ Zp[[T ]], we have∫
Zp

xk · µ =
(
∂kAµ

)
(0).

2.4.2. Multiplication by zx. — Let z be such that |z − 1| < 1. Then the Mahler transform
of zxµ is

Azxµ(T ) = Aµ

(
(1 + T )z − 1

)
.

Indeed, from the definition of the Mahler transform, we see that

Aµ

(
(1 + T )z − 1

)
=

∫
Zp

(
(1 + T )z

)x · µ,
and this is precisely the Mahler transform of zxµ (one has to be slightly careful about
convergence issues).

2.4.3. Restriction to open compact subsets. — Consider an open compact subset X ⊂ Zp.
If we define 1X to be the characteristic function of this subset, we can consider the restriction
ResX(µ) of µ to X defined by∫

X

f · ResX(µ) ..=

∫
Zp

f1X · µ.

In the case X = b+ pnZp, we can write this characteristic function explicitly as

1b+pnZp(x) =
1

pn

∑
ζ∈µpn

ζx−b,

and then using the above, we calculate the Mahler transform of Resb+pnZp(µ) to be

AResb+pnZp (µ)(T ) =
1

pn

∑
ζ∈µpn

ζ−bAµ

(
(1 + T )ζ − 1

)
.

2.4.4. Restriction to Z×p . — From the above applied to b = 0 and n = 1, it is immediate
that

ARes
Z
×
p

(µ)(T ) = Aµ(T )− 1

p

∑
ζ∈µp

Aµ

(
(1 + T )ζ − 1

)
. (1)

2.4.5. The action of Z×p , ϕ and ψ. — We introduce an action of Z×p that serves as a
precursor to a Galois action later on. Let a ∈ Z×p . We can define a measure σa(µ) by∫

Zp

f(x) · σa(µ) =

∫
Zp

f(ax) · µ.

This has Mahler transform
Aσa(µ) = Aµ

(
(1 + T )a − 1

)
.

In a similar manner, we can define an operator ϕ acting as ‘σp’ by∫
Zp

f(x) · ϕ(µ) =

∫
Zp

f(px) · µ,
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and this corresponds to Aϕ(µ) = ϕ(Aµ) ..= Aµ

(
(1 + T )p − 1

)
. Finally, we also define the

analogous operator for p−1; we define a measure ψ(µ) on Zp by defining∫
Zp

f(x) · ψ(µ) =

∫
pZp

f(p−1x) · µ.

Note that ψ ◦ ϕ = id, whilst
ϕ ◦ ψ(µ) = RespZp(µ).

In particular, we have
ResZ×p (µ) = (1− ϕ ◦ ψ)(µ). (2)

The operator ψ also gives an operator on OL[[T ]] under the Amice transform, and using the
restriction formula above, we see that it is the unique operator satisfying

ϕ ◦ ψ(F )(T ) =
1

p

∑
ζ∈µp

F
(
(1 + T )ζ − 1

)
.

The following result will be useful in Part II.

Corollary 2.17. — Let µ ∈ Λ(Zp) be a measure. Then µ is supported on Z×p if and only
if ψ(Aµ) = 0.

Proof. — The operator ϕ is easily seen to be injective. We have an injection ι : Λ(Z×p ) ↪→
Λ(Zp) given by ∫

Zp

φ · ι(µ) =

∫
Z×p

φ
∣∣
Z×p
· µ,

and as ResZ×p ◦ ι is the identity on Λ(Z×p ), we can identify Λ(Z×p ) with its image as a subset
of Λ(Zp). If µ ∈ Λ(Zp), then µ ∈ Λ(Z×p ) if and only if ResZ×p (µ) = µ, or equivalently if and
only if Aµ = Aµ − ϕ ◦ ψ(Aµ), which happens if and only if ψ(Aµ) = 0.

Remark 2.18. — Whilst we identify Λ(Z×p ) with a subset of Λ(Zp), it is important to
remark that it is not a subalgebra. Indeed, convolution of measures on Z×p uses the mul-
tiplicative group structure whilst convolution of measures on Zp uses the additive group
structure, so if λ and µ are two measures on Z×p , we do not have µ ∗Z×p λ = µ ∗Zp λ.

Remark 2.19. — Power series rings have been generalized to what now are called Fontaine
rings. It turns out that Galois representations are connected to certain modules over these
rings called (ϕ,Γ)-modules. The operations described above are examples of the basic op-
erations we have on (ϕ,Γ)-modules and their interpretation with p-adic analysis inspired
the proof of the p-adic Langlands correspondence for GL2(Qp). For further details, see
[Col10b].

3. The Kubota-Leopoldt p-adic L-function

3.1. The measure µa. — Recall the results of the introduction: we can write the Riemann
zeta function in the form

(s− 1)ζ(s) =
1

Γ(s− 1)

∫ ∞
0

f(t)ts−2dt,

where f(t) = t/(et − 1), and that ζ(−k) = (dkf/dtk)(0) = (−1)kBk+1/(k + 1). We want
to remove the smoothing factor at s = 1. For this, let a be an integer coprime to p and
consider the related function

fa(t) =
1

et − 1
− a

eat − 1
.

This is also C∞ and has exponential decay at infinity, so we can consider the function
L(fa, s) as in the introduction. The presence of a removes the factor of s− 1, at the cost of
introducing a different smoothing factor:
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Lemma 3.1. — We have
L(fa, s) = (1− a1−s)ζ(s),

which has an analytic continuation to C, and

f (k)
a (0) = (−1)k(1− a1+k)ζ(−k).

We now introduce the p-adic theory from above. Note the following very simple observa-
tion.

Lemma 3.2. — (i) Under the substitution et = T + 1, the derivative d/dt becomes the
operator ∂ = (1 + T ) d

dT .
(ii) In particular, if we define

Fa(T ) ..=
1

T
− a

(1 + T )a − 1
,

we have
f (k)
a (0) =

(
∂kFa

)
(0).

The right hand side in (ii) should look familiar as the expression in Corollary 2.16, which
expressed the integral of the function xk over Zp in terms of its Mahler transform. So, if
Fa(T ) can be written as an element of Zp[[T ]], then we will get a measure on Zp that sees
values of the Riemann zeta function.

Proposition 3.3. — The function Fa(T ) is an element of Zp[[T ]].

Proof. — We can expand

(1 + T )a − 1 =
∑
n≥1

Ç
a

n

å
Tn = aT

[
1 + Tg(T )

]
,

where g(T ) =
∑
n≥2

1
a

(
a
n

)
Tn−2 has coefficients in Zp since we have chosen a coprime to p.

Hence, expanding the geometric series, we find

1

T
− a

(1 + T )a − 1
=

1

T

∑
n≥1

(−T )ng(T )n,

which is visibly an element of Zp[[T ]].

Definition 3.4. — Let µa denote the measure on Zp corresponding to Fa(T ) under the
Mahler transform.

We have proved:

Proposition 3.5. — For n ≥ 0, we have∫
Zp

xk · µa = (−1)k(1− ak+1)ζ(−k).

3.2. Restriction to Z×p . — Recall from the introduction that we want the p-adic analogue
of the Riemann zeta function to be a measure on Z×p , not all of Zp. We have already defined
a restriction operator in equation (2), which on Mahler transforms acts as 1− ϕ ◦ ψ.

Proposition 3.6. — We have∫
Z×p

xk · µa = (−1)k(1− pk)(1− ak+1)ζ(−k).

(In other words, restricting to Z×p removes the Euler factor at p).
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Proof. — We first show that ψ(µa) = µa by consider the action on power series. Indeed, we
have by definition

(ϕ ◦ ψ)

Å
1

T

ã
= p−1

∑
ζp=1

1

(1 + T )ζ − 1

=
1

(1 + T )p − 1
= ϕ

Å
1

T

ã
,

as can be seen by calculating the partial fraction expansion. By injectivity of ϕ, we deduce
that ψ( 1

T ) = 1
T and hence ψ(µa) = µa since ψ commutes with the action of Z×p .

Since ResZ×p = 1− ϕ ◦ ψ, we deduce that∫
Z×p

xk · µa =

∫
Zp

xk · (1− ϕ ◦ ψ)µa =

∫
Zp

xk · (1− ϕ)µa = (1− pk)

∫
Zp

xk · µa,

as required.

3.3. Pseudo-measures. — It remains to remove the dependence on a. To do so, we need
to introduce the notion of a pseudo-measure. The Riemann zeta function has a simple pole
at s = 1, and pseudo-measures let us take this into account on the p-adic side. (Thus far,
the presence of a has acted as a ‘smoothing factor’ which removes this pole).

Definition 3.7. — Let G be an abelian profinite group, and let Q(G) denote the fraction
field of the Iwasawa algebra Λ(G). A pseudo-measure on G is an element λ ∈ Q(G) such
that

(g − 1)λ ∈ Λ(G)

for all g ∈ G.

The following lemma shows that a pseudo-measure µ on Z×p is uniquely determined by
the values

∫
Z×p

xk · µ for k > 0.

Lemma 3.8. — (i) Let µ ∈ Λ(Z×p ) such that∫
Z×p

xk · µ = 0

for all k > 0. Then µ = 0.
(ii) Let µ ∈ Λ(Z×p ) such that ∫

Z×p

xk · µ 6= 0

for all k > 0. Then µ is not a zero divisor in Λ(Z×p ).

(iii) Part (i) holds if, more generally, µ is a pseudo-measure.

Proof. — To prove part (i), note that the vanishing condition forces the Mahler transform
of µ to be constant, since each non-trivial binomial polynomial is divisible by x. But as µ
is a measure on Z×p , it vanishes under ψ, so must be zero.

For part (ii), suppose there exists a measure λ such that µλ = 0. Then

0 =

∫
Z×p

xk · (µλ) =

Å∫
Z×p

xk · µ
ãÅ∫

Z×p

xk · λ
ã
,

which forces λ = 0 by part (i).

Finally, let µ be a pseudo-measure satisfying the vanishing condition. Let a 6= 1 be an
integer prime to p; then there is a natural measure

[a]− [1] ∈ Λ(Z×p ),
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with
∫
Z×p

f · ([a]− [1]) = f(a)− f(1). Consider the measure λ = ([a]− [1])µ ∈ Λ(Z×p ). Then
λ satisfies the condition of part (i), so λ = 0. But [a]− [1] satisfies the condition of part (ii),
so it is not a zero-divisor, and this forces µ = 0, as required.

Definition 3.9. — Let a be an integer that is prime to p, and let θ̃a denote the element
of Λ(Z×p ) corresponding to [a]− [1]. Note that∫

Z×p

xk · θ̃a = ak − 1

from the definitions. Then define θa ..= x‹θa, so that∫
Z×p

xk · θa = ak+1 − 1,

the term arising in our interpolation formula. Then define

ζp ..=
µa
θa
∈ Q(Z×p ).

Proposition 3.10. — The element ζp is a well-defined pseudo-measure that is independent
of the choice of a.

Proof. — The element θa is not a zero-divisor by Lemma 3.8, so ζp is well-defined. To prove
independence, if a and b are two integers coprime to p, then∫

Z×p

xk · (θaµb) =

∫
Z×p

xk · (θbµa) = (−1)k+1(1− ak+1)(1− bk+1)(1− pk)ζ(−k)

for all k ≥ 0, so that

θaµb = θbµa,

by Lemma 3.8, giving the required independence.

Finally, the proof that ζp is a pseudo-measure is contained in the exercises.

Remark 3.11. — One must take care in the above when discussing products of measures.
As remarked in Remark 2.18, whilst we identify Λ(Z×p ) as a subset of Λ(Zp), it is not a
subalgebra; the convolution of measures over Zp uses the additive group structure, and the
convolution of measures over Z×p the multiplicative group structure. Writing µ∗Z×p λ for the
convolution over Z×p , we have∫

Z×p

xk · (µ ∗Z×p λ) =

∫
Z×p

Å∫
Z×p

(xy)k · µ(x)

ã
· λ(y) =

Å∫
Z×p

xk · µ
ãÅ∫

Z×p

xk · λ
ã
,

justifying the calculations above.

We’ve removed the dependence on a. We summarise the main result:

Theorem 3.12. — There is a unique pseudo-measure ζp on Z×p such that∫
Z×p

xk · ζp = (1− pk)ζ(−k).

(Note that we can remove the (−1)k+1 from the interpolation formula as ζ(−k) 6= 0 if
and only if k is odd).

Definition 3.13. — We call ζp the Kubota–Leopoldt p-adic L-function (or the p-adic zeta
function).



AN INTRODUCTION TO p-ADIC L-FUNCTIONS 21

4. Interpolation at Dirichlet characters

4.1. Characters of p-power conductor. — Throughout the construction of the
Kubota–Leopoldt p-adic L-function, we’ve kept half an eye on the interpolation property
and links to the values of the Riemann zeta function, so the interpolation of these values
should not have come as a surprise. However, now some real magic happens. Since the
introduction, we’ve failed to mention Dirichlet L-functions once – but, miraculously, the
Kubota–Leopoldt p-adic L-function also interpolates Dirichlet L-values as well.

Theorem 4.1. — Let χ be a (primitive) Dirichlet character of conductor pn for some
integer n ≥ 1 (seen as a locally constant character of Z×p ). Then, for k > 0, we have∫

Z×p

χ(x)xk · ζp = L(χ,−k).

The rest of this subsection will contain the proof of this result. The proof is somewhat
technical and calculation-heavy, but – given familiarity with the dictionary between mea-
sures and power series – is not conceptually difficult.

Firstly, we introduce a twisting operation on measures. If µ is a measure on Zp, we define
a measure µχ on Zp by ∫

Zp

f(x) · µχ =

∫
Zp

χ(x)f(x) · µ.

We use our measure-theoretic toolkit to determine the Mahler transform of µχ in terms of
Aµ. First recall a classical definition

Definition 4.2. — Let χ be a primitive Dirichlet character of conductor pn, n ≥ 1. Define
the Gauss sum of χ as

G(χ) ..=
∑

c∈(Z/pnZ)×

χ(c)εcpn ,

where (εpn)n∈N denotes a system of primitive pnth roots of unity inQp such that εppn+1 = εpn

for all n ≥ 0 (if we fix an isomorphism Qp
∼= C, then one can take εpn ..= e2πi/pn).

Remark 4.3. — We will make constant use of the following basic properties of Gauss
sums, whose proofs are left as exercises:

– G(χ)G(χ−1) = χ(−1)pn.

– G(χ) = χ(a)
∑
c∈(Z/pnZ)× χ(c)εacpn for any a ∈ Zp. Note that, if a /∈ Z×p , both sides

vanish.

Lemma 4.4. — The Mahler transform of µχ is

Aµχ(T ) =
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1Aµ

(
(1 + T )εcpn − 1

)
.

Proof. — Since χ is constant (mod pn), the measure µχ is simply

µχ =
∑

c∈(Z/pnZ)×

χ(c)Resc+pnZp(µ).

Using this expression and the formula for the Mahler transform of the restriction of a
measure to c+ pnZp, we find that

Aµχ =
1

pn

∑
b∈(Z/pnZ)×

χ(b)
∑
ζ∈µpn

ζ−bAµ

(
(1 + T )ζ − 1

)
.
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Writing µpn = {εcpn : c = 0, ..., pn − 1}, and rearranging the sums, we have

Aµχ =
1

pn

∑
c (mod pn)

∑
b∈(Z/pnZ)×

χ(b)ε−bcpn Aµ

(
(1 + T )εcpn − 1

)
=

1

pn

∑
c∈(Z/pnZ)×

G(χ)χ(−c)−1Aµ

(
(1 + T )εcpn − 1

)
,

where the last equality follows from the standard identity∑
b∈(Z/pnZ)×

χ(b)ε−bcpn = χ(−c)−1G(χ)

of Gauss sums. We complete the proof by using the identity G(χ)G(χ−1) = χ(−1)pn.

Now consider the case where µ = µa, the measure from which we built the Kubota–
Leopoldt p-adic L-function, and which has Mahler transform

Aµa(T ) =
1

T
− a

(1 + T )a − 1
.

Applying the above transformation, we obtain a measure µχ,a with Mahler transform

Fχ,a(T ) =
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1

ñ
1

(1 + T )εcpn − 1
− a

(1 + T )aεacpn − 1

ô
.

Via the standard substitution et = T + 1, this motivates the study of the function

fχ,a(t) =
1

G(χ−1)

∑
c∈(Z/pnZ)×

χ(c)−1

ñ
1

etεcpn − 1
− a

eatεacpn − 1

ô
,

by way of analogy with the case of the Riemann zeta function.

Lemma 4.5. — We have

L(fχ,a, s) = χ(−1)
(
1− χ(a)a1−s)L(χ, s),

where L(fχ,a, s) is as defined in Theorem 1.4. Hence, for k ≥ 0, we have

f (k)
χ,a(0) = (−1)kχ(−1)

(
1− χ(a)ak+1

)
L(χ,−k)

= −
(
1− χ(a)ak+1

)
L(χ,−k).

Proof. — We follow a similar strategy as in the case of the Riemann zeta function. In
particular, we can expand as a geometric series, obtaining

1

etεcpn − 1
=
∑
k≥1

e−ktε−kcpn .

Then we have

L(fχ,a, s) =
1

Γ(s)G(χ−1)

∫ ∞
0

∑
c∈(Z/pnZ)×

χ(c)−1
∑
k≥1

Å
e−ktε−kcpn − e−aktε−akcpn

ã
ts−1dt.

Note that ∑
c∈(Z/pnZ)×

χ(c)−1ε−akcpn = χ(−ak)G(χ−1),

and similarly for the first term, so that the expression collapses to

L(fχ,a, s) =
1

Γ(s)

∫ ∞
0

∑
k≥1

χ(−k)
(
e−kt − χ(a)e−akt

)
ts−1dt.

For Re(s) >> 0, we can rearrange the sum and the integral, and then we can evaluate the
kth term of the sum easily to (1− χ(a)a1−s)k−s, giving

L(fχ,a, s) = χ(−1)
(
1− χ(a)a1−s)∑

k≥1

χ(−k)k−s,
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showing the equality of L-functions. To prove the final statement about special values,
observe that a simple computation shows that fχ,a(−t) = −χ(−1)fχ,a(t), which implies
(looking at the series expansions) that f (k)

χ,a(0) = 0 unless χ(−1)(−1)k = −1. This concludes
the proof.

Note that, in the proof of Lemma 4.5, we have also shown the following useful fact.

Lemma 4.6. — If χ is an even character, that is if χ(−1) = 1, then L(χ,−k) = 0 if k is
even. If χ is an odd character, then L(χ,−k) = 0 if k is odd.

We can now prove Theorem 4.1.

Proof. — (Theorem 4.1). Since χ is 0 on pZp, and by the above, we have∫
Z×p

χ(x)xk · µa =

∫
Zp

χ(x)xk · µa =

∫
Zp

xk · µχ,a,

where µχ,a is the twist of µa by χ. We know this integral to be(
∂kFχ,a

)
(0) = f (k)

χ,a(0),

under the standard transform et = T + 1. Hence, by Lemma 4.5, we find∫
Z×p

χ(x)xk · µa = −(1− χ(a)ak+1)L(χ,−k).

By definition, we have ∫
Z×p

χ(x)xk · θa = −(1− χ(a)ak+1),

and hence we find ∫
Z×p

χ(x)xk · ζp = L(χ,−k),

as was to be proved.

4.2. Non-trivial tame conductors. — We can go even further. The theorem above
deals with the case of ‘tame conductor 1’, in that we have constructed a p-adic measure that
interpolates all of the L-values L(χ, 1 − k) for k > 0 and cond(χ) = pn with n ≥ 0 (where
trivial conductor corresponds to the Riemann zeta function). More generally:

Theorem 4.7. — Let D > 1 be any integer coprime to p, and let η denote a (primitive)
Dirichlet character of conductor D. There exists a unique measure µη ∈ Λ(Z×p ) such that,
for all primitive Dirichlet characters χ with conductor pn, n ≥ 0, and for all k > 0, we have∫

Z×p

χ(x)xk · µη =
(
1− χη(p)pk−1

)
L(χη,−k).

Remark 4.8. — (i) In this case, we obtain a genuine measure rather than a pseudo-
measure. As L-functions of non-trivial Dirichlet characters are everywhere holomorphic,
there is no need for the smoothing factor involving a.

(ii) Implicit in this theorem is the fact that the relevant Iwasawa algebra is defined over
a (fixed) finite extension L/Qp containing the values of η.

Since many of the ideas involved in proving the above theorem are present in the case of
trivial tame conductor, the proof of Theorem 4.7 is a good exercise. As such, we give only the
main ideas involved in the proof. Note first that the calculation relating L(fχ,a, s) to L(χ, s)

above was entirely classical, in the sense that p did not appear anywhere; accordingly, we can
perform a similar calculation in the general case. Since there is no need for the smoothing
factor a, we can then consider the function

fη(t) =
−1

G(η−1)

∑
c∈(Z/D)×

η(c)−1

etεcD − 1
.
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(This scaling by −1 also appears in the trivial tame conductor situation, but it is incorpo-
rated into θa). Defining Fη(T ) by substituting T + 1 for et and expanding the geometric
series, we find

Fη(T ) =
−1

G(η−1)

∑
c∈(Z/D)×

η(c)−1
∑
k≥0

εkcD
(εcD − 1)k+1

T k.

This is an element of OL[[T ]] for some sufficiently large finite extension L of Qp, since the
Gauss sum is a p-adic unit (using G(η)G(η−1) = η(−1)D, and the fact that D is coprime
to p) and εcD − 1 ∈ O×L . There is therefore a measure µη ∈ Λ(Zp), the Iwasawa algebra over
OL, corresponding to Fη under the Mahler transform.

Lemma 4.9. — We have L(fη, s) = −η(−1)L(η, s). Hence∫
Zp

xk · µη = L(η,−k)

for k ≥ 0.

Proof. — This is proved in a similar manner to above, equating ∂ with d/dt and using the
general theory described in Theorem 1.4.

The measure we desire will be the restriction of µη to Z×p .

Lemma 4.10. — We have ψ(Fη) = η(p)Fη. Hence∫
Z×p

xk · µη =
(
1− η(p)pk

)
L(η,−k).

Proof. — We show first that

1

p

∑
ζ∈µp

1

(1 + T )ζεcD − 1
=

1

(1 + T )pεpcD − 1
. (3)

Expanding each summand as a geometric series, the left hand side is

−1

p

∑
ζ∈µp

∑
n≥0

(1 + T )nεncD ζ
n = −

∑
n≥0

(1 + T )pnεpcnD ,

and summing the geometric series now gives the right hand side of (3). It follows that

(ϕ ◦ ψ)(Fη) =
−1

pG(η)−1

∑
ζ∈µp

∑
c∈(Z/D)×

η(c)−1

(1 + T )ζεcD − 1

=
−1

G(η−1)

∑
c∈(Z/D)×

η(c)−1

(1 + T )pεpcD − 1

= η(p)ϕ(Fη).

The first claim now follows by the injectivity of ϕ. For the second, we note that

ResZ×p (µη) = (1− ϕ ◦ ψ)(µη)

= µη − η(p)ϕ(µη),

and ∫
Zp

xk · ϕ(µη) = pk
∫
Zp

xk · µη.

The result now follows simply from Lemma 4.9.

Now let χ be a Dirichlet character of conductor pn for some n ≥ 0, and let θ ..= χη the
product (a Dirichlet character of conductor Dpn). Using Lemma 4.4, we find easily that:
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Lemma 4.11. — The Mahler transform of µθ ..= (µη)χ is

Fθ(T ) ..= Aµθ (T ) =
−1

G(θ−1)

∑
c∈(Z/Dpn)×

θ(c)−1

(1 + T )εcDpn − 1
.

Via a calculation essentially identical to the cases already seen, we can prove∫
Zp

χ(x)xk · µη =

∫
Zp

xk · µθ

= L(θ,−k),

that
ResZ×p (µθ) =

(
1− θ(p)ϕ

)
(µθ),

and that accordingly ∫
Z×p

χ(x)xk · µη =
(
1− θ(p)pk

)
L(θ,−k),

which completes the proof.

4.3. Analytic functions on Zp via the Mellin transform. — The reader should
hopefully now be convinced that the language of measures is a natural one in which to
discuss p-adic L-functions. In this subsection, we use this (more powerful) language to
answer the question we originally posed in the introduction: namely, we define analytic
functions on Zp that interpolate the values ζ(−k) for k ≥ 0. In passing from measures
to analytic functions on Zp, we lose the clean interpolation statements. In particular,
there is no single analytic function on Zp interpolating the values ζ(−k) for all k; rather,
there are p − 1 different ‘branches’ of the Kubota–Leopoldt p-adic L-function on Zp, each
interpolating a different range.

The reason we cannot define a single p-adic L-function on Zp is down to the following
technicality. We’d like to be able to define “ζp(s) =

∫
Z×p

x−s · ζp” for s ∈ Zp. The natural
way to define the exponential x 7→ xs is as

xs = exp(s · log(x)),

but unfortunately in the p-adic world the exponential map does not converge on all of Zp,
so this is not well-defined for general x ∈ Z×p . Instead:

Lemma 4.12. — The p-adic exponential map converges on pZp. Hence, for any s ∈ Zp,
the function 1 + pZp → Zp given by x 7→ xs ..= exp(s · log(x)) is well-defined.

Proof. — This is a standard result in the theory of local fields. See, for example, [Cas86].

Definition 4.13. — Recall that we assume p to be odd and that we have a decomposition
Z×p
∼= µp−1 × (1 + pZp). Let

ω : Z×p −→ µp−1,

〈·〉 : Z×p −→ 1 + pZp,

where ω(x) = Teichmüller lift of the reduction modulo p of x and 〈x〉 = ω−1(x)x denote the
projections to the first and second factors respectively. Note that if x ∈ Z×p , then we can
write x = ω(x)〈x〉.

Hence the function 〈x〉s is well-defined. When p is odd, for each i = 1, .., p − 1 we can
define an injection

Zp ↪−→ Homcts(Z
×
p ,C

×
p )

s 7−→
[
x 7→ ω(x)i〈x〉s

]
,
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and hence we can define an analytic function

ζp,i : Zp −→ Cp

s 7−→
∫
Z×p

ω(x)−i〈x〉−s · ζp.

This function does not interpolate as wide a range of values as the measure ζp, since the
character xk can be written in the form ω(x)i〈x〉k if and only if k ≡ i (mod p− 1). We do,
however, have:

Theorem 4.14. — For all k ≥ 0 with k ≡ i (mod p− 1), we have

ζp,i(−k) = (1− pk)ζ(−k).

More generally:

Definition 4.15. — Let θ = χη be a Dirichlet character, where η has conductor D prime
to p and χ has conductor pn for n ≥ 0. Define

Lp(θ, s) ..=

∫
Z×p

χω−1(x)〈x〉−s · µη, s ∈ Zp.

Remark 4.16. —

– In the context of our previous work, the appearance of ω−1, which renormalises the
values by 1, seems unnatural. We have introduced it simply because this formulation is much
more common in the literature. For example, in [Was97], the analytic functions Lp(θ, s)
are constructed directly without using measures, and the more direct approach differs from
the one obtained using our measure-theoretic approach by precisely this factor of ω. This
twist by 1 will also appear when we study the Iwasawa main conjecture.

– Directly from the definitions, we have ζp,i(s) = Lp(ω
i+1, s). Hence for arbitrary k ≥ 0,

we have

ζp,i(−k) = (1− ωi−k(p)pk)L(ωi−k,−k).

Of course, ωi−k is just the trivial character when i ≡ k (mod p− 1), so we recover Theorem
4.14.

Theorem 4.17. — For all k ≥ 1, we have

Lp(θ, 1− k) =
(
1− θω−k(p)pk−1

)
L(θω−k, 1− k).

Proof. — From the definitions, we have χω−1(x)〈x〉k−1 = χω−k(x) · ωk−1(x)〈x〉k−1 =

χω−k(x)xk−1, so that∫
Z×p

χ(x)〈x〉k−1 · µη =

∫
Z×p

χω−k(x)xk−1 · µη

=
(
1− θω−k(p)pk−1

)
L(θω−k, 1− k),

as required.

More generally, for any measure µ on Z×p we define

Melµ,i(s) =

∫
Z×p

ω(x)i〈x〉s · µ,

the Mellin transform of µ at i. So ζp,i(s) = Melµ,−i(−s).
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4.4. The values at s = 1. — We end Part I with an example of further remarkable links
between the classical and p-adic zeta functions. Let θ be a non-trivial Dirichlet character,
which as usual we write in the form χη, where χ has conductor pn and η has conductor D
prime to p. As explained above, we have∫

Z×p

χ(x)xkµη = L(θ,−k)

for k ≥ 0; we say that the range of interpolation is {0,−1,−2,−3, ...}. It’s natural to ask
what happens outside this range of interpolation. In particular, what happens when we take
k = −1? Since this is outside the range of interpolation this value may have a priori nothing
to do with classical L-values. Indeed, the classical value L(θ, 1) is transcendental(8), and if
it is transcendental one cannot see it as a p-adic number in a natural way. However, just
because we cannot directly equate the two values does not mean there is no relationship
between them; there is a formula for the p-adic L-function at s = 1 which is strikingly
similar to its classical analogue.

Theorem 4.18. — Let θ be a non-trivial even Dirichlet character of conductor N , and let
ζ denote a primitive N th root of unity. Then:

(i) (Classical value at s = 1). We have

L(θ, 1) = − 1

G(θ−1)

∑
a∈(Z/NZ)×

θ−1(a) log
(
1− ζa

)
.

(ii) (p-adic value at s = 1). We have

Lp(θ, 1) = −
(
1− θ(p)p−1

) 1

G(θ−1)

∑
a∈(Z/NZ)×

θ−1(a) logp
(
1− ζa).

If θ is an odd character, both sides of the p-adic formula vanish. In any case, the formulae
are identical up to replacing log with its p-adic avatar and, as usual, deleting the Euler factor
at p. This result can be used to prove a p-adic analogue of the class number formula. For
completeness, we prove these results below.

4.4.1. The complex value at s = 1. —

Proof. — (Theorem 4.18, classical value). Write

L(θ, 1) =
∑

a∈(Z/NZ)×

θ(a)
∑

n≡a (mod D)

n−s.

Using the fact that

1

N

∑
c∈(Z/NZ)

ζ(a−n)c =

®
0 if n 6≡ a mod N
1 if n ≡ a mod N ,

we show that the above formula equals

∑
a∈(Z/NZ)×

θ(a)
1

N

∑
n≥1

∑
c∈(Z/NZ)

ζ(a−n)cn−s =
1

N

∑
c∈(Z/NZ)

Ñ ∑
a∈(Z/NZ)×

θ(a)ζac

é∑
n≥1

ζ−ncn−s

=
G(θ)

N

∑
c∈(Z/NZ)

θ−1(c)
∑
n≥1

ζ−ncn−s,

the last equality following from one of the standard identities for Gauss sums. Evaluating
this expression at s = 1 (checking that there is no convergence problem) and using the
Taylor series expansion of the logarithm, and applying the other standard identity of Gauss
sums, we obtain the result.

(8)This follows from Baker’s theorem and Theorem 4.18, part (i).
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Remark 4.19. — We see from the formula above that the parity of the character θ plays
an important role on the behaviour of the zeta function at s = 1. Making some elementary
calculations we can deduce that, if θ is even, then

L(θ, 1) = − 1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) log |1− ζc|.

If θ is odd, we can use the functional equation to obtain

L(θ) = iπ
1

G(θ−1)
B1,θ−1 ,

where Bk,θ denotes the kth twisted Bernoulli number (see [Was97, Chapter 4]).

4.4.2. The p-adic value at s = 1. — Recall the power series

Fθ(T ) =
−1

G(θ−1)

∑
c∈(Z/N)×

θ(c)−1

(1 + T )ζc − 1
,

which gives rise to a measure µθ on Zp that interpolates the special values of L(θ, s).
Accordingly, by the measure-theoretic arguments we’ve employed repeatedly above, we have

Lp(θ, 1) ..=

∫
Z×p

x−1 · µθ

= ARes
Z
×
p

(x−1µθ)(0).

We first compute Ax−1µθ .

Lemma 4.20. — There exists a constant C such that

Ax−1µθ (T ) = − 1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) log
(
(1 + T )ζc − 1

)
+ C.

Proof. — This follows immediately from the formula

∂ log
(
(1 + T )ζc − 1

)
=

(1 + T )ζc

(1 + T )ζc − 1
= 1 +

1

(1 + T )ζc − 1

and the fact that
∑
c∈(Z/NZ) θ

−1(c) = 0.

Lemma 4.21. — We have

ARes
Z
×
p

(µθ)(T ) = Ax−1µθ (T )− θ(p)p−1Ax−1µθ

(
(1 + T )p − 1

)
.

Proof. — This is immediate from the formula

ARes
Z
×
p

(µχ)(T ) = (1− ϕ ◦ ψ)Aµχ(T )

and the fact that

ψ(x−1µθ) = p−1x−1ψ(µθ)

= χ(p)p−1x−1µθ.

We can now complete the proof of Theorem 4.18.

Proof. — (Theorem 4.18, p-adic value). Evaluating at T = 0 the formula of Lemma 4.21
and using Lemma 4.20 we obtain

Lp(θ, 1) = −(1− θ(p)p−1)Ax−1µθ (0)

= −(1− θ(p)p−1)
1

G(θ−1)

∑
c∈(Z/NZ)×

θ−1(c) logp(ζ
c − 1),

as required.
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5. The p-adic family of Eisenstein series

We now take a brief detour to illustrate another example of p-adic variation in number
theory, namely the p-adic variation of modular forms. In constructing the Kubota–Leopoldt
p-adic L-function, we have seen many of the key ideas that go into the simplest example
of this, namely the p-adic family of Eisenstein series, which we will illustrate below. For
simplicity, in this section we’ll take p an odd prime.

Let k ≥ 4 be an even integer. The Eisenstein series of level k, defined as

Gk(z) ..=
∑
c,d∈Z

(c,d) 6=(0,0)

1

(cz + d)k
, z ∈ H ..= {z ∈ C : Im(z) > 0}

can be viewed as a two-dimensional analogue of the zeta value ζ(k). It is an example of
a modular form of weight k. In the classical theory of modular forms, one computes the
normalised Fourier expansion of such an object to be

Ek(z) ..=
Gk(z)(k − 1)!

2 · (2πi)k
=
ζ(1− k)

2
+
∑
n≥1

σk−1(n)qn,

where σk−1(n) =
∑

0<d|n d
k−1 and q = e2iπz. In particular, it is a power series with rational

coefficients. (This is a standard exercise; see [DS05, Chapter 1.1] for details).

From the definition, we see the Kubota–Leopoldt p-adic L-function as a pseudo-measure
that, when evaluated at xk with k ≥ 4 even, gives the constant coefficient of the Eisenstein
series of weight k. The idea now is to find measures giving similar interpolations of the other
coefficients. Fortunately, these are much easier to deal with. We want interpolations of the
functions d 7→ dk−1, where k is varying p-adically. When d is coprime to p, we can define this
measure simply to be δd, the Dirac measure at d (recalling this is defined by evaluation at d).

When d is divisible by p, however, we run into an immutable obstacle. There is no Dirac
measure on Z×p corresponding to evaluation at p, since p /∈ Z×p . Moreover, the function
p 7→ pk can never be interpolated continuously p-adically; it simply behaves too badly for
this to be possible. Suppose there was indeed a measure θp with∫

Z×p

xk · θp = pk,

and then suppose kn is a strictly increasing sequence of integers p-adically tending to k.
Then

pkn =

∫
Z×p

xkn · θp −→
∫
Z×p

xk · θp = pk,

which is clearly impossible since pkn tends to 0. We get around this issue by taking p-
stabilisations to kill the coefficients at p.

Definition 5.1. — We define the p-stabilisation of Ek to be

E
(p)
k (z) ..= Ek(z)− pk−1Ek(pz).

An easy check shows that

E
(p)
k =

(1− pk−1)ζ(1− k)

2
+
∑
n≥1

σpk−1(n)qn,

where
σpk−1(n) =

∑
0<d|n
p-d

dk−1.
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(The series E(p)
k defines a modular form of weight k and level Γ0(p)).

We’ve done all the work in proving:

Theorem 5.2. — There exists a power series

E(z) =
∑
n≥0

Anq
n ∈ Q(Z×p )[[q]]

such that:
(a) A0 is a pseudo-measure, and An ∈ Λ(Z×p ) for all n ≥ 1;
(b) For all even k ≥ 4, we have∫

Z×p

xk−1 ·E(z) ..=
∑
n≥0

Å ∫
Z×p

xk−1 ·An
ã
qn = E

(p)
k (z).

Proof. — Clearly, A0 is simply the pseudo-measure ζp/2. We then define

An =
∑

0<d|n
p-d

δd ∈ Λ(Z×p ).

By the interpolation property of the Kubota–Leopoldt p-adic L-function, A0 interpolates
the constant term of the Eisenstein series. We also have∫

Z×p

xk−1 ·An =
∑

0<d|n
p-d

∫
Z×p

xk−1 · δd

=
∑

0<d|n
p-d

dk−1 = σ
(p)
k−1(n),

so we get the required interpolation property.

Remark. —
– These results are often presented in a different (equivalent) way. One defines the weight

space
W(Cp) = Homcts(Z

×
p ,C

×
p )

and shows that, topologically, it is the union of p−1 open unit balls in Cp (centered around
the (p − 1)th roots of unity). The integers are naturally a subset of W(Cp) via the maps
x 7→ xk, and two integers k, k′ lie in the same unit ball if and only if k ≡ k′ (mod p−1). This
space can be given more structure; there is a rigid analytic spaceW such that the elements of
W(Cp) are the Cp-points of W. Giving a measure on Z×p is equivalent to giving a bounded
rigid analytic function on W. Defining O(W) to be the space of rigid analytic functions on
W, we can view E as a power series in O(W)[[q]]. We see it as a p-adic interpolation of the
Eisenstein series over the weight space.

– The power series E(z) is an example of a Λ-adic modular form. In particular, it can be
colloquially described as the statement:

“Eisenstein series vary p-adically continuously as you change the
weight; if k and k′ are close p-adically, then the Fourier expansions of
Ek and Ek′ are close p-adically.”

The theory of p-adic modular forms, and in particular the construction and study p-adic
families of Eisenstein series, was introduced by Serre to give a new construction of the p-
adic zeta function of a totally real number field. Pioneering work of Hida went much further
than this, showing that similar families (known as Hida families) exist for far more general
modular forms, and his work has been vastly generalised to the theory of Coleman families
and eigenvarieties. For a flavour of Hida’s work, see his book [Hid93].
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Part II: Iwasawa’s main conjecture

This Part is devoted to the formulation and study of Iwasawa’s Main Conjecture. We start
by studying cyclotomic units, which will play a central role in the sequel, and by showing
their relation to class numbers. We then state and prove the existence Coleman’s inter-
polating power series. These interpolating power series and the study of their logarithmic
derivatives will lead to al alternative construction of the p-adic zeta function. Although a
priori more obscure, this new construction will stablish a tangible connection between units
in the cyclotomic tower and the p-adic zeta function. Finally, using class field theory, we
will naturally arrive to the formulation and proof of (a special case of) the Main Conjecture.

Notation. — Our study of the Iwasawa main conjecture requires a lot of notation, which
we introduce straight away for convenience. The following should be used as an index of
the key notation, and the reader is urged to consult the definition of new objects as they
appear in the text.

Let p be an odd prime. For n ∈ N, write

Fn ..= Q(µpn), F+
n

..= Q(µpn)+;

Vn ..= O×Fn , V +
n

..= O×
F+
n

;

Kn
..= Qp(µpn), K+

n
..= Qp(µpn)+;

Un
..= O×Kn , U +

n
..= O×

K+
n
.

The extensions Fn/Q, Kn/Qp, F+
n /Q and K+

n /Qp are Galois and totally ramified (the first
two of degree (p− 1)pn−1 and the last two of degree p−1

2 pn−1) and we denote pn the unique
prime ideal above the rational prime p. We note

F∞ = Q(µp∞) =
⋃
n≥1

Fn, F+
∞

..= F+
∞,

and G ..= Gal(F∞/Q), G+ ..= Gal(F+
∞/Q) = G/〈c〉, where c denotes the complex conjugation.

Since Gal(Fn/Q) sends a primitive pnth root of unity to a primitive pnth root of unity, one
deduces an isomorphism

χn : Gal(Fn/Q) ∼−→ (Z/pnZ)×

given by
σ(ζ) = ζχn(σ),

for σ ∈ Gal(Fn/Q) and ζ ∈ µpn any primitive pnth root of unity. By infinite Galois theory,
we then see that

G = Gal(F∞/Q) ..= lim←−
n

Gal(Fn/Q) = lim←−
n

(Z/pnZ)× ∼= Z×p ,

via the cyclotomic character χ ..= lim←−χn. Observe that χ induces an isomorphism
G+ ∼= Z×p /{±1}.

We also define

Un,1
..= {u ∈ Un : u ≡ 1 (mod pn)}, U +

n,1
..= Un,1 ∩U +

n .

The subsets Un,1 and U +
n,1 are important as they have the structure of Zp-modules (indeed,

if u ∈ Un,1 or U +
n,1 and a ∈ Z×p , then ua =

∑
k≥0

(
a
k

)
(u − 1)k converges). By contrast, the

full local units Un and U +
n are only Z-modules.

In general, our notations satisfy the following logic: if Xn is any subgroup of Un, then
we let X+

n = Xn ∩ U +
n , Xn,1 = Xn ∩ Un,1 and X+

n,1 = X+
n ∩ U +

n,1. Observe that, since
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Vn ⊆ Un, the same applies for any subgroup Xn of Vn.

It will be essential for our constructions and methods to consider these modules at all
levels simultaneously. In that spirit, we define

U∞ ..= lim←−
n

Un, U∞,1 ..= lim←−
n

Un,1;

U +
∞

..= lim←−
n

U +
n , U +

∞,1
..= lim←−

n

U +
n,1;

where all limits are taken with respect to the norm maps. All of these infinite level
modules are compact Zp-modules (since they are inverse limits of compact Zp-modules)
and moreover they are all endowed with a natural continuous action of G = Gal(F∞/Q) or
G+ = Gal(F+

∞/Q) = G{±1}. Accordingly, they are endowed with continuous actions of the
Iwasawa algebras Λ(G) or Λ(G+) (which is the primary reason for passing to infinite level
objects).

We fix once for all a compatible system of roots of unity (ζpn)n∈N, that is, a sequence
where ζpn is a primitive pnth root of unity such that ζppn+1 = ζpn for all n ∈ N. We let
πn = ζpn − 1, which is a uniformiser of Kn.

6. The Coleman map

In §6.4 and §6.5, we use the identifications above to construct the Coleman map, which
can be seen as a machine for constructing p-adic L-functions from a compatible system
of units. We also explain (very!) briefly how this map can be generalised to a machine
conjecturally capable of constructing p-adic L-functions for a very large class of p-adic Galois
representations. Coleman’s work is important as it puts the construction of the p-adic zeta
function into a larger and more conceptual framework. Even more importantly, it provides
an important bridge between analytic objects (p-adic L-functions) and algebraic structures
(the arithmetic of cyclotomic fields), and will serve as the key step in our formulation of the
main conjecture in the next section.

6.1. Notation and Coleman’s theorem. — In the notational introduction to Part II,
we defined

Kn = Qp(µpn), K∞ = Qp(µp∞)

to be the local versions of Fn and F∞ from the previous section. We also defined

Un = O×Kn

to be the module of local units at level n, took a compatible system (ζpn) of primitive pnth
roots of unity, and defined πn ..= ζpn − 1, a uniformiser for Kn.

Proposition 6.1. — Let u ∈ Un be a local unit at level n. There exists a power series
f ∈ Zp[[T ]] such that f(πn) = u.

Proof. — This is essentially immediate from the fact that πn is a uniformiser. Indeed, Kn

is totally ramified, so one can choose some a0 ∈ Zp such that

a0 ≡ u (mod πn),

and then a1 ∈ Zp such that

a1 ≡
u− a0

πn
(mod πn),

and so on, and then define f(T ) =
∑
n anT

n. By construction, this satisfies the required
property.
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The problem with this proposition is that such a power series f is far from unique, since
we had an abundance of choice at each coefficient. In the usual spirit of Iwasawa theory,
Coleman realised it was possible to solve this problem by passing to the infinite tower K∞.
Recall that we defined

U∞ ..= lim←−
n

Un,

where the projective limit is taken with respect to the norm maps Kn → Kn−1. Coleman’s
theorem says that for each u ∈ U∞, there is a unique power series fu satisfying the condition
of the above proposition for all n. A more useful formulation of this statement is:

Theorem 6.2 (Coleman). — There exists a unique injective multiplicative map

U∞ → Zp[[T ]]

u 7→ fu

such that fu(πn) = un for all u ∈ U∞ and n ≥ 1.

6.2. Example: cyclotomic units. — This theorem allows an alternative construction of
the Kubota–Leopoldt p-adic L-function. In particular, let a ∈ Z prime to p, and define

cn(a) ..=
ζapn − 1

ζpn − 1
∈ Un.

Lemma 6.3. — We have c(a) ..= ((cn(a))n ∈ U∞.

Proof. — This is equivalent to proving that Nn,n−1(cn(a)) = cn−1(a). Since the minimal
polynomial of ζpn over Kn−1 is Xp − ζpn−1 , we see that

Nn,n−1(ζapn − 1) =
∏
η∈µp

(ζapnη − 1)

= ζappn − 1 = ζapn−1 − 1,

where in the penultimate equality we have used the identity Xp− 1 =
∏
η∈µp(Xη− 1). The

result now follows since the norm is multiplicative.

It is possible to write down fc(a) ∈ Zp[[T ]] directly by inspection; indeed, we see that

fc(a)(T ) =
(1 + T )a − 1

T

satisfies the required property. (Indeed, fc(a) is even a polynomial).

Proposition 6.4. — We have

∂ log fc(a) = a− 1− Fa(T ),

where Fa(T ) is the power series defined in Lemma 3.2.

Proof. — We compute directly that

∂ log fc(a) = ∂ log
(
(1 + T )a − 1

)
− ∂ log(T )

=
a(1 + T )a

(1 + T )a − 1
− T + 1

T

= a− 1 +
a

(1 + T )a − 1
− 1

T

= a− 1− Fa(T ),

as required.
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In particular, we find that

(1− ϕ)∂ log fc(a) = (1− ϕ)Fa,

since 1 − ϕ kills the constant term. In terms of measures, this means that the measure
ResZ×p (µfc(a)) is equal to the measure ResZ×p (µa) which we used in the construction of ζp.
Hence Coleman’s isomorphism allows us to study ζp, and in particular the structure of
Λ(G)/ζpI(G), using local units. We will see more about the units cn(a), and in particular
the module in Un generated by them, in the next section.

6.3. Proof of Coleman’s theorem. — The proof of Theorem 6.2 will occupy the rest
of this section. We begin by showing the injectivity of the map u 7→ fu.

Lemma 6.5. — Suppose u = (un) ∈ U∞ and f, g ∈ Zp[[T ]] both satisfy

f(πn) = g(πn) = un

for all n ≥ 1. Then f = g.

Proof. — The Weierstrass preparation theorem (Proposition 11.2 of the appendix) says that
we can write any non-zero power series h(T ) ∈ Zp[[T ]] in the form pmu(T )r(T ), where u(T )

is a unit and r(T ) is a distinguished polynomial. Any such h(T ) converges to a function on
the maximal ideal in the ring of integers of Qp, and since u(T ) cannot have zeros, we deduce
that h(T ) has a finite number of zeros in this maximal ideal. Now (πn)n≥1 is an infinite
sequence of elements in this maximal ideal, so the fact that (f − g)(πn) = 0 for all n ≥ 1

implies that f = g, as required.

We now move to showing the existence of such a series fu. Lemma 6.6 and Proposition
6.7 below will show the existence of a norm operator on power series, and then translate
the norm compatibility condition of units into norm invariance of power series; Lemma 6.8
will show certain continuity properties of this norm operator, which will allow us to prove
the theorem by a standard diagonal argument.

Recall that the action of ϕ on Zp[[T ]] is defined by ϕ(f)(T ) = f((1 + T )p − 1), f(T ) ∈
Zp[[T ]], and that this action is injective. Importantly, we also have

ϕ(f)(πn+1) = f((πn+1 + 1)p − 1) = f(ζppn+1 − 1) = f(πn).

From our work with measures, we have also seen the existence of an additive operator ψ
with the property that

(ϕ ◦ ψ)(f)(T ) =
1

p

∑
ζ∈µp

f(ζ(1 + T )− 1),

and that we henceforth call the trace operator (this terminology will become clear in the
proof of Lemma 6.6). We now define a multiplicative version of this operator.

Lemma 6.6. — There exists a unique multiplicative operator N , the norm operator, such
that

(ϕ ◦ N )(f)(T ) =
∏
ζ∈µp

f(ζ(1 + T )− 1).

Proof. — The ring B = Zp[[T ]] is an extension of A = Zp[[ϕ(T )]] = ϕ(Zp[[T ]]) of degree
p, the former being obtained by adjoining a pth root of (1 + T )p to the latter. Each au-
tomorphism of B over A is given by T 7→ (1 + T )ζ − 1 for some ζ ∈ µp. There is a norm
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map

NB/A : Zp[[T ]] −→ ϕ(Zp[[T ]])

f(T ) 7−→
∏
ζ∈µp

f((1 + T )ζ − 1).

The norm operator N is then defined to be ϕ−1 ◦ NB/A. (The trace operator is similarly
equal to p−1ϕ−1 ◦ TrB/A, where TrB/A is the trace operator for the same extension).

Let f ∈ Zp[[T ]]×; then f(πn) ∈ Un for all n. Suppose additionally that N (f) = f , that
is, f is invariant under the norm map. Then:

Proposition 6.7. — For f as above, we have

Nn+1,n

(
f(πn+1)

)
= f(πn),

so that (f(πn))n ∈ U∞ is a norm compatible system of local units.

Proof. — Since the minimal equation of ζn+1 over Kn is Xp − ζn = 0, we can write the
norm as

Nn+1,n

(
f(ζn+1 − 1)

)
=
∏
ν∈µp

f(νζn+1 − 1).

By the definition of N , since N (f) = f , we have ϕ(f)(T ) =
∏
ν∈µp f(ν(1 + T )− 1), so that

ϕ(f)(πn+1) =
∏
ν∈µp

f(νζn+1 − 1).

Since ϕ(f)(πn+1) = f(πn), we are done.

Let W denote the subspace of Zp[[T ]]× on whichN acts as the identity. Since the Coleman
power series attached to a system of units is unique, we have an injection W ↪→ U∞ given
by evaluation at (πn)n≥1. To prove Theorem 6.2 it suffices to prove that this map is also
surjective. We need the following lemma on the behaviour of N modulo powers of p.

Lemma 6.8. — Let f(T ) ∈ Zp[[T ]]. We have

(i) If ϕ(f)(T ) ≡ 1 (mod pk) for some k ≥ 0, then f(T ) ≡ 1 (mod pk).

(ii) For f ∈ Zp[[T ]]×, we have

N (f) ≡ f (mod p).

(iii) For f as above, if f ≡ 1 (mod pk) with k ≥ 1, then

N (f) ≡ 1 (mod pk+1).

(iv) If f ∈ Zp[[T ]]×, and k2 ≥ k1 ≥ 0, then

N k2(f) ≡ N k1(f) (mod pk1+1).

Proof. — We leave parts (i) and (ii) as an exercise. To see part (iii), suppose that f ≡
1 (mod pk) with k ≥ 1, and let p denote the maximal ideal of K1 = Qp(µp). For each ζ ∈ µp,
as (ζ − 1)(1 + T ) ∈ pZp[[T ]], we have

ζ(1 + T )− 1 ≡ T (mod pZp[[T ]]),

so that
f
(
ζ(1 + T )− 1

)
≡ f(T ) (mod ppkZp[[T ]])

by considering each term seperately. It follows that

ϕ ◦ N (f)(T ) =
∏
ζ∈µp

f
(
ζ(1 + T )− 1

)
≡ f(T )p (mod ppkZp[[T ]]),
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but since both ϕ ◦ N (f) and f(T )p are elements of Zp[[T ]], this is actually an equivalence
modulo ppk ∩ Zp = pk+1. If f(T ) ≡ 1 (mod pk), then f(T )p ≡ 1 (mod pk+1), and then the
proof follows from part (i).

To see part (iv), from part (ii) we see that

N k2−k1f

f
≡ 1 (mod p).

Then iterating N and using part (iii) k1 times, we obtain the result.

With this in hand, we can complete the proof.

Proof of Theorem 6.2. — Uniqueness and injectivity of the map was proved in Lemma 6.5.
We now prove that the map W ↪→ U∞ is surjective. Let u = (un)n≥1 ∈ U∞. For each n,
choose fn ∈ Zp[[T ]] such that

fn(πn) = un

and define gn = N 2nfn. One can use Lemma 6.8 to show that

gm(πn) ≡ un (mod pm+1),

so that limm→+∞ gm(πn) = un. So it suffices to find a convergent subsequence of (gm); but
such a subsequence exists, since Zp[[T ]] is compact. If we let fu denote the limit of this
subsequence, then we have fu(πn) = un for all n, proving the required existence.

In fact, since, by construction, N (fu) = fu in the above proof, we have proved:

Theorem 6.9. — The association u 7→ fu induces an isomorphism

U∞ ∼−→ (Zp[[T ]]×)N=1.

6.4. The logarithmic derivative. — Recall Proposition 6.4. This said that if we con-
sider the system c(a) ∈ U∞ of cyclotomic units, and apply Theorem 6.2, then we can recover
the power series Fa(T ) ∈ Zp[[T ]]ψ=1, and hence – using the results of §3.1 – we recover the
p-adic zeta function. More precisely, we showed that the logarithmic derivative ∂ log of the
Coleman power series fc(a) was, up to the addition of a constant, equal to −Fa. In this
section, we put this result into a larger framework by showing that any element fixed by ψ
is the logarithmic derivative of an element fixed by the norm operator.

Definition 6.10. — Define, for f(T ) ∈ Zp[[T ]]×, its logarithmic derivative as

∆(f) ..=
∂f(T )

f(T )
= (1 + T )

f ′(T )

f(T )
.

The main result of this section is the following.

Theorem 6.11. — The logarithmic derivative induces a surjection(
Zp[[T ]]×

)N=1 → Zp[[T ]]ψ=1

with kernel µp−1.

The difficulty of the proof of Theorem 6.11 lies in the fact that, in general, the module
Zp[[T ]]ψ=1 admits no simple description. We first prove (Lemma 6.12) that the image of
the logarithmic derivative is contained Zp[[T ]]ψ=1 and calculate its kernel. We then reduce
the proof, via Lemma 6.13, to the analogous result modulo p. Finally, in Lemma 6.14 and
Lemma 6.15 we calculate the reduction modulo p of both spaces. Recall that we defined
W =

(
Zp[[T ]]×

)N=1.

Lemma 6.12. — We have ∆(W ) ⊆ Zp[[T ]]ψ=1 and the kernel of ∆ on W is µp−1.
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Proof. — If f ∈ W , then

ϕ(f) = (ϕ ◦ N )(f) =
∏
ζ∈µp

f((1 + T )ζ − 1).

Applying ∆ to the above equality and using the fact(9) that ∆ ◦ ϕ = pϕ ◦∆, we obtain

(ϕ ◦∆)(f) = p−1
∑
ζ∈µp

∆(f)((1 + T )ζ − 1) = (ϕ ◦ ψ)(∆(f)),

which shows that ψ(∆(f)) = ∆(f) by injectivity of ϕ.

We move now to the proof of surjectivity. In the following, let

A = ∆(W ) ⊆ Fp[[T ]]; B = Zp[[T ]]ψ=1 ⊆ Fp[[T ]]

be the reduction modulo p of the modules we need to compare.

Lemma 6.13. — If A = B, then ∆(W ) = Zp[[T ]]ψ=1.

Proof. — Let f0 ∈ Zp[[T ]]ψ=1. By hypothesis, there exists a g1 ∈ W such that ∆(g1)−f0 =

pf1 for some f1 ∈ Zp[[T ]]. Since ∆(W ) ⊆ Zp[[T ]]ψ=1 by Lemma 6.12, we deduce that
ψ(f1) = f1 and hence there exists some g2 ∈ W such that ∆(g2) − f1 = pf2 for some
f2 ∈ Zp[[T ]]. We deduce by induction the existence of gi ∈ W and fi ∈ Zp[[T ]]ψ=1, i ≥ 1,
such that

∆(gi)− fi−1 = pfi.

Since ∆(a) = 0 for any a ∈ Z×p and since ψ is linear, we can assume that gi(0) ≡ 0 (mod p)
for all i ≥ 1. If we let

hn =
n∏
k=1

(−1)k−1(gk)p
k

∈ W ,

then one easily checks that ∆(hn) = f0 + (−1)n−1pn+1fn. By compactness, the sequence
(hn)n≥1 admits a convergent subsequence converging to an element h ∈ W satisfying ∆(h) =

f0, which shows the result.

The following lemma calculates the reduction modulo p of W .

Lemma 6.14. — We have W = Fp[[T ]]×.

Proof. — One inclusion is obvious. Conversely, for any element f ∈ Fp[[T ]]×, lift it to an
element f̃0 ∈ Zp[[T ]]× and, by points (ii) and (iv) of Lemma 6.8, the sequence N k(f̃0)

converges to an element f̃ that is invariant under N and whose reduction modulo p is f .

As we pointed out, the delicate and technical part of the proof of Theorem 6.11 is con-
tained in the following two lemmas describing the reduction of Zp[[T ]]ψ=1 modulo p.

Lemma 6.15. — We have B = ∆(Fp[[T ]]×).

Proof. — We have ∆(W ) ⊆ Zp[[T ]]ψ=1 by Lemma 6.12, so the inclusion ∆(Fp[[T ]]×) ⊂ B

is clear using Lemma 6.14. For the other inclusion, take any f ∈ B and use Lemma 6.16
below to write

f = ∆(a) + b

for some a ∈ Fp[[T ]]× and b =
∑+∞
m=1 dm

T+1
T T pm. Since ψ(f) = f and ψ(∆(a)) = ∆(a) (by

a slight abuse of notation, as f and ∆(a) are actually the reduction modulo p of elements
fixed by ψ), we deduce that ψ(b) = b. But we can explicitly calculate the action of ψ on

(9)It is easy to see on power series using the definitions.
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b. Using the identity(10) ψ(g · ϕ(f)) = ψ(g)f , the identity T pm = ϕ(Tm) in Fp[[T ]] and the
fact that ψ fixes T+1

T , we deduce that

ψ(b) =
+∞∑
m=1

dm
T + 1

T
Tm,

which immediately implies b = 0 and concludes the proof.

Lemma 6.16. — We have

Fp[[T ]] = ∆(Fp[[T ]]×) +
T + 1

T
C,

where C = {
∑+∞
n=1 anT

pn} ⊆ Fp[[T ]].

Proof. — One inclusion is clear. Take g ∈ Fp[[T ]] and write T
T+1g =

∑+∞
n=1 anT

n. Define

h =
+∞∑
m=1

(m,p)=1

am

+∞∑
k=0

Tmp
k

.

Clearly T
T+1g−h ∈ C, so it suffices to show that T+1

T h ∈ ∆(Fp[[T ]]×). Indeed, we will show
by induction that, for every m ≥ 1, there exists αi ∈ Fp for 1 ≤ i < m such that

hm ..=
T + 1

T
h−
Åm−1∑
i=1

∆(1− αiT i)
ã
∈ TmFp[[T ]].

The case m = 1 is empty. Suppose that the claim is true for m and that α1, . . . , αm−1 have
been chosen. Observe first that

∆(1− αiT i) = −T + 1

T

+∞∑
k=1

iαki T
ik,

so we can write

hm =
T + 1

T

+∞∑
k=m

dkT
k.

Observe that, by construction of h and hm, we have dn = dnp for all n. If dm = 0 then we
set αm = 0. If dm 6= 0 then, by what we have just remarked, m must be prime to p, hence
invertible in Fp, and we set αm = −dmm . One can then check that

g =
+∞∏
n=1

(1− αnTn) ∈ Fp[[T ]]

satisfies ∆(g) = T+1
T h, which concludes the proof.

Corollary 6.17. — The map ∆ : W → Zp[[T ]]ψ=1 is surjective.

Proof. — By Lemma 6.13, it suffices to prove that A = B, which follows directly from
Lemma 6.14 and Lemma 6.15.

The above corollary finishes the proof of Theorem 6.11.

(10)Again, this can be easily checked on measures.
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6.5. The Coleman map. — To continue developing Proposition 6.4, we study the re-
striction to Z×p of the logarithmic derivative of a Coleman interpolating power series.

Definition 6.18. — We define the Coleman map

Col : U∞ −→ Λ(G)

as the composition

U∞
u7→fu(T )−−−−−−→ (Zp[[T ]]×)N=1

∆
−−→ Zp[[T ]]ψ=1 ∂−1(1−ϕ)−−−−−−→ Zp[[T ]]ψ=0 A−1

−−−→ Λ(Z×p ) ∼= Λ(G),

where the last isomorphism follows by identifying Z×p with G via the cyclotomic character.

Remark 6.19. — Observe that Col can also be written as x−1ResZ×p (µ∆(fu)). The factor
x−1 is harmless since multiplication by x−1 is an isomorphism on Λ(Z×p ). This factor will
make the sequence in Theorem 6.20 below G-equivariant. On the other hand, it corresponds
precisely to the shift by 1 described in Remark 7.3 below, renormalising the p-adic zeta
function to be the p-adic L-function associated to the Galois representation Qp(1) so as
to give the main conjecture, which will be better suited for the formulation of the main
conjecture.

Here is the main theorem of this section.

Theorem 6.20. — The Coleman map induces an exact sequence of G-modules

0→ µp−1 × Zp(1) −→ U∞
Col−−→ Λ(G) −→ Zp(1)→ 0,

where the last map sends µ ∈ Λ(G) to
∫
G χ · µ.

Proof. — The first map in the composition defining Col is an isomorphism by Theorem 6.9.
The second map is surjective with kernel µp−1 by Theorem 6.11. By Lemma 6.22, the third
map has kernel Zp, which is the image of (1 + T )a for a ∈ Zp, under ∆. This is the power
series interpolating the sequence (ζapn)n≥1. Accordingly, when we pull this back to U∞, we
get the factor(11)

Zp(1) = {ζapn : a ∈ Zp} ⊂ U∞.

Finally, the first two maps are surjective and the third map has cokernel Zp by Lemma 6.22,
showing the exactness of the sequence.

In order to conclude the proof of the theorem, we need to show that the sequence is G-
equivariant. This is easy to check if we understand how G ∼= Z×p acts on each of the modules
involved. Let us recall these actions for the sake of clarity. Let a ∈ Z×p , and let σa ∈ G be
such that χ(σa) = a, where χ is the cyclotomic character. If u = (un)n≥1 ∈ U∞, then

σa(u) = (σa(un))n≥1 ∈ U∞,

and if f(T ) ∈ Zp[[T ]], then

σa(f)(T ) = f
(
(1 + T )a − 1

)
.

Then:
– We have

(σafu)(πn) = fu((1 + πn)a − 1)

= fu(ζapn − 1)

= fu(σa(ζpn − 1))

= σa(un),

so that u 7→ fu(T ) is G-equivariant.

(11)Zp(1) ..= lim←−µpn is a free Zp-module of rank 1 on which the absolute Galois group GQ acts by the
cyclotomic character. It is an integral version of Qp(1).
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– If f(T ) ∈ Zp[[T ]]×, then an easy calculation on power series shows that

∆(σa(f)) = aσa(∆(f)).

– The map (1− ϕ) is clearly G-equivariant since ϕ commutes with σa.
– We have ∂−1 ◦ σa = a−1σa ◦ ∂−1 as one can easily check on measures.

Putting all that together, the G-equivariance follows.

Remark 6.21. — Note, again, that this sequence would not be G-equivariant if we took
the definition of Col to omit the operator ∂−1, which might initially seem more natural.

Lemma 6.22. — There is an exact sequence

0→ Zp → Zp[[T ]]ψ=1 1−ϕ−−−→ Zp[[T ]]ψ=0 → Zp → 0,

where the first map is the natural inclusion and the last map is evaluation at T = 0.

Proof. — Injectivity of the first map is trivial. Surjectivity of the last map follows, for
example, from the fact that ψ(1 + T ) = 0, since

(ϕ ◦ ψ)(1 + T ) = p−1
∑
ζp

ζ(1 + T ) = 0.

Let f(T ) ∈ Zp[[T ]]ψ=0 be in the kernel of the last map, that is be such that f(0) = 0.
Then ϕn(f) goes to zero (in the weak topology(12)) and hence

∑
n≥0 ϕ

n(f) converges to an
element g(T ) whose image under (1− ϕ) is f(T ). Since ψ ◦ ϕ = id, we also have

ψ(g) =
∑
n≥0

ψ ◦ ϕn(f) = ψ(f) +
∑
n≥1

ϕn−1(f) = g,

as ψ(f) = 0, which shows that

f ∈ (1− ϕ)
(
Zp[[T ]]ψ=1

)
and hence that the sequence is exact at Zp[[T ]]ψ=0. Finally, if f(T ) ∈ Zp[[T ]] is not constant,
then f(T ) = a0 + arT

r + . . . for some ar 6= 0 and ϕ(f)(T ) = a0 + parT
r + . . . 6= f(T ), which

shows that ker(1− ϕ) = Zp and finishes the proof.

We conclude this section by the following digression on the generalisations of Coleman’s
map that lead to a conjectural construction (under the assumption of the existence of certain
global cohomological elements) of p-adic L-functions of more general motives.

6.6. The Kummer sequence, Euler systems and p-adic L-functions. — We end
this section with a disgression about how the picture described here generalizes to more
general contexts. Let GQ be the absolute Galois group of Q and consider, for m ≥ 1, the
Kummer exact sequence

0→ µpm → Gm
x7→xp

m

−−−−−→ Gm → 0. (4)

Evaluating at Q, this short exact sequence induces, for any number field F , a long exact
sequence on cohomology

0→ µpm(F )→ F×
x 7→xp

m

−−−−−→ F× → H1(F, µpm)→ H1(F,Q
×

).

Here, for any topological GF -module A, we write H1(F,A) ..= H1(GF , A) for the Galois
cohomology, that is the continuous group cohomology of GF . By Hilbert 90, we have
H1(F, F×) = 0. Taking inverse limits, which is exact, over m ≥ 1, we obtain

F× ⊗ Zp ∼= H1(F,Zp(1)).

(12)Recall: the weak topology corresponds to the (p, T )-adic topology on Zp[[T ]].
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Explicitly, at each finite level, the isomorphism

F× ⊗ Z/pnZ = F×/(F×)p
n ∼−→ H1(GF , µpn)

is given as follows. Take a ∈ F× and take any b ∈ Q
×
such that bp

n

= a. Then ca : σ 7→ σ(b)
b

defines a 1-coycle on GF and it is a coboundary if and only if a is a pn−th root of unity in
F×, which shows that the map sending the class of a to the class of ca is well defined.

Let m = Dpn, n ≥ 1, and define

cm ..=
ζ−1
m − 1

ζm − 1
∈ O×Q(µm),

which is a global analogue and a generalization of the cyclotomic units cn(−1) considered in
Example 6.2. One can show that these elements satisfy the following relations with respect
to the norm maps:

NQ(µm`)/Q(µm)(cm`) =

{
cm if ` | m
(1− `−1)cm if ` - m.

Using the Kummer map described below, we get elements zm ..= ∂(cm) ∈ H1(Q(µm),Zp(1))

satisfying

coresQ(µm`)/Q(µm)(zm`) =

{
zm if ` | m
(1− `−1)zm if ` - m,

where we have used that Frob` acts on Zp(1) simply by multiplication by `. Observe also
that (1− `−1) is the Euler factor at ` of the Riemann zeta function.

Definition 6.23. — Let V ∈ RepLGQ be a global p-adic Galois representation, which is
unramified outside a finite set Σ of primes and let T ⊆ V be an OL-lattice stable by GQ.
An Euler system for (V, T,Σ) is a collection of classes

zm ∈ H1(Q(µm), T ), (m,Σ) = {p}

satisfying

coresQ(µm`)/Q(µm)(zm`) =

{
zm if ` | m
P`(V

∗(1), σ−1
` )zm if ` - m,

where P`(V ∗(1), X) = det(1 − Frob−1
` X|V ∗(1)

I`) is the Euler factor at ` of the L-function
associated to V ∗(1) and σ` denotes the image of Frob` in Gal(Q(µm)/Q).

By what we have mentioned before, cyclotomic units form an Euler system for the
representation Zp(1). These elements are at the base of Rubin’s proof of the main conjec-
ture. In general, constructing Euler systems for a Galois representation is a very difficult
task, and very few examples exist at the moment. Moreover, there is no actual axiomatic
study of Euler systems allowing us to study the few examples known under the same setting.

In exactly the same way, replacing Q by Qp and F by a finite extension K of Qp, and
observing that K× ⊗ Zp = K× since K× is already p-adically complete, we obtain from
Kummer’s exact sequence (4) an isomorphism

K× ∼= H1(K,Zp(1)).

Taking K = Kn for n ≥ 1 in the last isomorphism of the above paragraph, and considering
the inverse limit over all n, we see that there is a map

U∞ −→ lim←−
n≥1

H1(Kn,Zp(1)),
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where the inverse limit is taken with respect to corestriction maps in Galois cohomology.
We define Iwasawa cohomology groups by

H1
Iw(Qp,Qp(1)) ..= lim←−

n≥1

H1(Kn,Zp(1))⊗Zp Qp.

The remarks made so far allow one to reinterpret the Coleman map as a map

Col : H1
Iw(Qp,Qp(1))→M (G,Qp),

where we recall that M (G,Qp) = Λ(G) ⊗Zp Qp is the space of Qp-valued measures on
G. The cyclotomic units cn(a) we saw earlier form what is known as an Euler system, a
system of (global) Galois cohomology classes that are compatible under corestriction maps.
By localising, the cyclotomic units give rise to an element of the Iwasawa cohomology.
By combining the above with Proposition 6.4, we see that the p-adic zeta function can
be obtained by evaluating Col at this Iwasawa cohomology class (and, as usual, dividing
through by the measure θa to account for the pole).

Let now V ∈ RepLGQp be any p-adic representation of GQp , i.e a finite dimensional L-
vector space V equipped with a continuous linear action of GQp

. As before, we define its
Iwasawa cohomology groups as

H1
Iw(Qp, V ) ..= lim←−

n≥1

H1(Kn, T )⊗OL L,

where T ⊆ V denotes any OL-lattice of V stable under the action of the Galois group GQp
,

and where as before the inverse limit is taken with respect to the corestriction maps in
cohomology. Morally, Iwasawa cohomology groups are the groups where the local parts at p
of Euler systems of a global p-adic representation live. Assuming that the representation is
crystalline(13), the Coleman map has been generalized by Perrin-Riou [PR95]. Under some
choices, she constructed big logarithm maps

LogV : H1
Iw(Qp, V )→ D(G, L),

where D(G, L) denotes the space of L-valued distributions on G (14). The map LogV satisfies
certain interpolation properties expressed in terms of Bloch-Kato’s exponential and dual
exponential maps and, for V = Qp(1), we reobtain the Coleman map.

The general idea is that, given an Euler system for a global p-adic Galois representation,
localizing it at the place p and applying Perrin-Riou’s machine, one can construct a p-adic
L-function for V . In a diagram:{

Euler systems
} locp−−→ H1

Iw(Qp, V )
LogV−−−→

{
p− adic L-functions

}
.

See [Col00] for further references on this subject.

7. The Main Conjecture

In this section we will continue moving from the analytic picture we developed in Part I to
a more arithmetic setting. We have already seen that cyclotomic units are intimately related
to the p-adic zeta function, and in this section we will study further properties of the module
generated by the cyclotomic units. In particular, we will consider the p-adic closure of the

(13)Loosely, a p-adic representation of GQp being crystalline is a condition from p-adic Hodge theory that
is equivalent to an `-adic representation of GQp (with ` 6= p) being unramified.
(14)Recall that measures were interpreted as bounded rigid analytic functions on the p-adic weight space.
The space D(G, L) is precisely defined as (not necessarily bounded) rigid analytic functions. Equivalently,
in terms of p-adic functional analysis, it is the continuous dual of the space of locally analytic functions (i.e
continuous functions that locally admit a power series expansion).
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cyclotomic units inside the local units, and show a theorem of Iwasawa calculating the exact
image of this closure under the Coleman map (in terms of the p-adic zeta function). This
endows the connection between cyclotomic units and the p-adic zeta function with a deeper
algebraic structure. We will next use class field theory to relate these modules to Galois
groups, and hence state Iwasawa’s Main Conjecture. Under certain assumptions that will
be proved later and, most importantly, under a crucial assumption on the prime p (which
conjecturally always holds), we will provide a proof of the main conjecture.

7.1. The Λ-modules arising from Galois theory. — As in the last section, we intro-
duce the Λ-modules that will be the protagonists of the Galois side of the main conjecture,
and we urge the reader to refer back to this as these objects appear in the text. Define

Mn
..= maximal abelian p-extension of Fn unramified outside the unique prime of Fn over p,

M +
n

..= maximal abelian p-extension of F+
n unramified outside the unique prime of F+

n over p,

Ln
..= maximal unramified abelian p-extension of Fn,

L +
n

..= maximal unramified abelian p-extension of F+
n ,

and set

M∞ ..= ∪n≥1Mn = maximal abelian p-extension of F∞ unramified outside p

M +
∞

..= ∪n≥1M
+
n = maximal abelian p-extension of F+

∞ unramified outside p

L∞ ..= ∪n≥1Ln = maximal unramified abelian p-extension of F∞.

L +
∞

..= ∪n≥1L
(+)
n = maximal unramified abelian p-extension of F+

∞.

Finally, define

X∞ ..= Gal(M∞/F∞), X +
∞ = Gal(M +

∞/F
+
∞);

Y∞ ..= Gal(L∞/F∞), Y +
∞ = Gal(L +

∞/F
+
∞).

These modules fit into the following diagram of field extensions:

M∞

L∞

F∞ Mn

Ln

Fn

Q

Y∞

X∞

Gn

G

(There is an identical diagram for the totally real objects, with everything adorned by a
superscript +).

We defer to the appendix an interpretation of these modules in terms of ideles and ideal
class groups, as given by class field theory.



44 JOAQUÍN RODRIGUES JACINTO & CHRIS WILLIAMS

Remark 7.1. — Recall that G = Gal(F∞/Q) was defined at the start of the previous
section. The advantage of considering the whole cyclotomic tower instead of considering
each level individually is that we get in this fashion modules over the Iwasawa algebras
Λ(G) = OL[[G]] and Λ(G+) = OL[[G+]], whose structure is simpler than that of modules
over OL[Gn] (resp. OL[G+

n ]). Let’s describe this action: take elements σ ∈ X∞, γ ∈ G and
choose any lifting γ̃ ∈ Gal(M∞/Q) of γ, then

γ · x ..= γ̃xγ̃−1

gives a well defined action of G on X∞ which extends by linearity and continuity to an
action of Λ(G) on X∞ (exercise: check these claims). In exactly the same way we define
actions of Λ(G) on Y∞ and of Λ(G+) on X +

∞ and Y +
∞ . For further details on the structure

of Λ-modules, where Λ is one of the Iwasawa algebras above, see the appendix.

7.2. Measures on Galois groups. — In the previous section, the fact that we can use
the cyclotomic character to see the p-adic zeta function in terms of measures on G was
heavily trailed, and we even took the Coleman map to have values in Λ(G). In the process,
we introduced a twist by 1, which ensured that the Coleman map was G-equivariant. We
now elaborate on this identification and conceptually explain why this twist is introduced in
the context of the main conjecture. In the process, we pin down the normalisations around
ζp that we will be using for the remainder of these notes.

Recall that F∞ = ∪n≥1Q(µpn), that G = Gal(F∞/Qp) ∼= Z×p via the cyclotomic charac-
ter, and that this isomorphism induces an identification of measures on Z×p and measures on
the Galois group G, as has already been used in the definition of the Coleman map. Also,
G+ = Gal(F+

∞/Q) = G/〈c〉 is identified through the cyclotomic character with Z×p /{±1}.

Using this, we have the following reformulation of Theorem 3.12. The twist by 1 manifests
itself in the fact that we now interpolate the values ζ(1− k) rather than ζ(−k).

Theorem 7.2. — There exists a unique pseudo-measure ζp on G such that, for every integer
k ≥ 2, we have ∫

G
χk · ζp = (1− pk−1)ζ(1− k).

Remark 7.3. —
– From now on, when we write ζp, we mean the pseudo-measure on G satisfying this inter-

polation property (with the twist by 1), not the measure on Z×p we constructed previously.
We retain the notation ζp for ease of notation.

– Let GQ = Gal(Q/Q) denote the absolute Galois group of Q. There is a natural projec-
tion GQ → G given by restriction to F∞, and if we compose χ with this projection, we get
a map

χ : GQ −→ Z×p

that we continue to call the cyclotomic character. This allows us to define a Galois repre-
sentation

χ : GQ −→ GL(V ),

where V is a 1-dimensional Qp-vector space, under Z×p ⊂ Q×p = GL(V ). We write V =

Qp(1) for this Galois representation. Recall from the introduction that, whenever we have
a global Galois representation, we can construct a complex L-function defined as an Euler
product, and note that

L(Qp(1), s) = ζ(s+ 1),

so rescaling the p-adic or complex zeta function corresponds to twisting the Galois repre-
sentation.
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– Note that in this formulation, ζp is precisely the p-adic L-function of the Galois repre-
sentation Qp(1), and this twist by 1 corresponds to the fact that we get ζ(s+ 1), not ζ(s).
The main conjecture (as we will state it) can be viewed as a precise relation between the
Selmer group and the p-adic L-function of Qp(1), so it is more natural in this context to
include the twist by 1.

7.2.1. Passing to G+. — Now observe that ζp (with the new normalisation!), which osten-
sibly is an element of Q(G), vanishes at the characters χk, for any odd integer k > 1. We
will use this fact to show that ζp actually descends to a pseudo-measure on G+.

Lemma 7.4. — Let c ∈ G denote the action of complex conjugation. Let R be a ring in
which 2 is invertible andM an R-module with a continuous action of G. ThenM decomposes
as

M ∼= M+ ⊕M−,

where c acts as +1 on M+ and as −1 on M−.

Proof. — We prove this directly by using the idempotents 1+c
2 and 1−c

2 , which act as pro-
jectors to the corresponding M+ and M−.

Since we are assuming that p is odd, we see that Λ(G) ∼= Λ(G)+ ⊕ Λ(G)− (as Λ(G)-
modules). In fact, the module Λ(G)+ admits a description solely in terms of the quotient
G+.

Lemma 7.5. — There is a natural isomorphism

Λ(G)+ ∼= Λ(G+).

Proof. — We work at finite level. Let Gn ..= Gal(Fn/Q), and G+
n

..= Gal(F+
n /Q). Then

there is a natural surjection

Zp[Gn]→ Zp[G+
n ]

induced by the natural quotient map on Galois groups. Since this must necessarily map
Zp[Gn]− to 0, this induces a map Zp[Gn]+ → Zp[G+

n ]. The result now follows at finite level
by a dimension count (as both are free Zp-modules of rank (p − 1)pn−1/2). We obtain the
required result by passing to the inverse limit.

We henceforth freely identify Λ(G+) with the submodule Λ(G)+ of Λ(G).

Lemma 7.6. — Let µ ∈ Λ(G). Then µ ∈ Λ(G+) if and only if∫
G
χ(x)k · µ = 0

for all odd k ≥ 1.

Proof. — By Lemma 7.4, we can write µ = µ+ + µ−, where µ± = 1±ι
2 µ. We want to show

that µ− = 0 if and only if
∫
G χ(x)k · µ = 0 for all odd k ≥ 1. Since χ(c) = −1, we have∫

G
χ(x)k · µ− =

1

2

Å∫
G
χk · µ− (−1)k

∫
G
χk · µ

ã
.

If k is even, the above expression vanishes. The result follows then by Lemma 3.8.

Corollary 7.7. — The p-adic zeta function is a pseudo-measure on G+.

Proof. — This follows directly from the interpolation property, as ζ(1 − k) = 0 precisely
when k ≥ 2 is odd.
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7.3. The main conjecture. — It is natural to ask about the zeroes of the p-adic zeta
function. Since the zeroes are not modified if we multiply by a unit, studying the zeroes of
a measure is equivalent to studying the ideal generated by it. Recall that, even if ζp is not
a measure but a pseudo-measure, the elements ([σ] − 1)ζp, σ ∈ G, belong to the Iwasawa
algebra Λ(G).

Definition 7.8. — Let I(G) denote the augmentation ideal of Λ(G), that is, the ideal

I(G) = OL-span of {[σ]− 1 : σ ∈ G}.

Similarly, define I(G+) to be the OL-span of [σ]− 1 for σ ∈ G+.

Remark 7.9. — The Iwasawa algebra Λ(G) is the completed group ring OL[[G]], and
elements can be written as ‘power series’ of the form

∑
g∈G cg[g]. There is a natural degree

map

deg : Λ(G) −→ OL,∑
g∈G

cg[g] 7−→
∑
g∈G

cg,

and I(G) is simply the kernel of this map.

Proposition 7.10. — The module I(G)ζp is an ideal in Λ(G). Similarly, the module
I(G+)ζp is an ideal in Λ(G+).

Proof. — Since ζp is a psuedo-measure, we know ([g] − [1])ζp ∈ Λ(G) for all g ∈ G. Hence
the result follows from the definition of I(G). The same argument holds for I(G+)ζp.

Recall that M +
∞ denotes the maximal abelian p-extension of F+

∞ which is unramified
outside the unique prime of F+

∞ above p and X +
∞ = Gal(M +

∞/F
+
∞) is endowed with an

action of Λ(G+). Recall the definition of the characteristic ideal chΛ(G+)(X) of a Λ(G+)-
module X, as given in the appendix. We have then:

Theorem 7.11 (Iwasawa Main Conjecture). — The module X +
∞ is a finitely generated

torsion Λ(G+)-module and we have

chΛ(G+)(X
+
∞ ) = I(G+)ζp.

Remark 7.12. — It is usual in the literature to formulate Iwasawa main conjecture in
terms of an even Dirichlet character of Gal(Q(µp)/Q). As one can already observe from the
behaviour of the Bernoulli numbers, there exists a certain dichotomy involving the parity of
this character which makes the formulation of the main conjecture different in the even and
odd cases. The above formulation takes into account every such even Dirichlet character.
For a formulation of the main conjecture for odd Dirichlet characters, see [HK03].

We intend to provide a proof of the main conjecture for primes not dividing the class
number of the field Q(µp)

+. The arguments of this section form the origins of Iwasawa’s
formulation of the main conjecture, and should also be seen as motivation for it. Its complete
proof involves much more sophisticated techniques: there are at least two proofs of it, each
one showing one divisibility between the two modules and invoking the analytic class number
formula to deduce the other one. One of them (explained in [CS06]) uses the theory of Euler
systems, and we hope that this text will facilitate the reader’s eventual study of this method.
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7.4. Cyclotomic units. — We now return to cyclotomic units, and in particular study
the subgroup generated by them in the (local and global) unit groups. In the global case,
this subgroup has finite index in the whole unit group Vn. Since the determination of the
units of a number field is in general a difficult problem, and cyclotomic units provide a
partial answer in the case of cyclotomic fields, they are objects of classical interest and have
been extensively studied.

Definition 7.13. — For n ≥ 1, we define the group Dn of cyclotomic units of Fn to be
the intersection of O×Fn and the multiplicative subgroup of F×n generated by {±ζpn , ζapn −1 :

1 ≤ a ≤ pn − 1}. We set D+
n = Dn ∩ F+

n .

Recall we defined

cn(a) ..=
ζapn − 1

ζpn − 1
∈ Dn,

and note that
ξn,a ..= ζ

(1−a)/2
pn cn(a)

is an element of D+
n . In fact:

Lemma 7.14. — Let n ≥ 1. Then

(1) The group D+
n is generated by −1 andß

ξn,a : 1 < a <
pn

2
, (a, p) = 1

™
.

(2) The group Dn is generated by ζpn and D+
n .

Proof. — We first show that we need only consider those elements ζapn − 1 with a prime to
p. Indeed, this follows from the identity

ζbp
m

pn =

pm−1∏
j=0

(ζb+jp
n−k

pn − 1),

where (b, p) = 1 and k ≥ 1, and noting that b + jpn−k is prime to p. Also, since
ζapn − 1 = −ζapn(ζ−apn − 1), we can restrict to considering 1 ≤ a ≤ 1

2p
n.

So suppose that
ξ = ±ζdpn

∏
1≤a< 1

2p
n

(a,p)=1

(ζapn − 1)ea ∈ Dn,

for some integers d and ea. Since vp(ζdpn) = 0 and all the p-adic valuations of ζapn−1 coincide
(namely, vp(ζapn − 1) = 1

(p−1)pn−1 ), we deduce that
∑
a ea = 0. Therefore we can write

ξ = ±ζdpn
∏
a

Å
ζapn − 1

ζpn − 1

ãea
= ±ζepn

∏
a

ξean,a,

where e = d + 1
2

∑
a ea(a − 1). This shows the second point and the first point follows by

observing that every term ξean,a of the product is real, so ξ ∈ D+
n if and only if e = 0.

Corollary 7.15. — Let a be a generator of (Z/pnZ)×. Then ξa generates D+
n as a Z[G+

n ]-
module.

Proof. — Indeed, for any integer 1 ≤ b < pn prime to p, b ≡ ar (mod p) for some r ≥ 0,
and hence

ξn,b =
r−1∏
i=0

(ξn,b)
σib .
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As we have already suggested, the group Dn (resp. D+
n ) of cyclotomic units is of finite

index in the group of units Vn (resp. V +
n ) of Fn (resp. F+

n ), and this index turns out to be
a class number.

Definition 7.16. — For n ≥ 1, we write

h+
n

..= #Cl(F+
n )

for the class number of F+
n .

Proposition 7.17. — Let n ≥ 1. The group Dn (resp. D+
n ) is of finite index in the group

of units of Fn (resp. F+
n ) and we have

h+
n = [Vn : Dn] = [V +

n : D+
n ]

Proof. — The result follows by showing that the regulator of cyclotomic units is given in
terms of special L-values at s = 1 of Dirichlet L-functions and by the class number formula.
See [Was97, Theorem 8.2].

7.5. On a theorem of Iwasawa. — We will calculate the image under the Coleman map
of the p-adic closure of the module of cyclotomic units inside local units.

Definition 7.18. — For any n ≥ 1, define Cn as the p-adic closure of Dn inside the local
units Un, let C +

n
..= Cn ∩U +

n , and let

Cn,1 ..= Cn ∩Un,1, C +
n,1

..= C +
n ∩Un,1;

C∞,1 ..= lim←−
n≥1

Cn,1, C +
∞,1

..= lim←−
n≥1

C +
n,1.

Remark 7.19. — As we have pointed out whilst defining notation at the beginning of the
previous chapter, the process of considering elements congruent to 1 modulo the maximal
ideal and taking the p-adic closure allows us to consider the modules C∞,1 and C +

∞,1 as Λ(G)

and Λ(G+)-modules respectively.

Observe that, as a consequence of Corollary 7.15, we easily deduce the following result.

Lemma 7.20. — The module C +
∞,1 is a cyclic Λ(G+)-module generated by (uξn,a)n≥1,

where a ∈ Z is a topological generator of Z×p (for example, take a to be a primitive root
modulo p such that ap−1 6= 1 (mod p)) and u ∈ µp−1 is such that au ≡ 1 (mod p).

Here is the main result of this section, putting the link between cyclotomic units and the
p-adic zeta function into a deeper algebraic structure.

Theorem 7.21. — The Coleman map induces:
(1) An isomorphism of Λ(G+)-modules

U +
∞,1/C

+
∞,1

∼−→ Λ(G+)/I(G+)ζp.

(2) A short exact sequence of Λ(G)-modules

0→ U∞,1/C∞,1 → Λ(G)/I(G)ζp → Zp(1)→ 0.

Proof. — Consider the exact sequence of Λ(G)-modules of Theorem 6.20:

0→ µp−1 × Zp(1) −→ U∞
Col−−→ Λ(G) −→ Zp(1)→ 0.

Since U∞ = µp−1 ×U∞,1, we can rewrite the above as

0→ Zp(1) −→ U∞,1
Col−−→ Λ(G) −→ Zp(1)→ 0.

The theorem will follow by calculating the image of the modules C∞,1 and C +
∞,1 under the

Coleman map.
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By Lemma 7.14, it suffices to calculate the image under Col of an element (ζbpnξn,a)n≥1 ∈
U∞,1, for a, b ∈ Z×p . But this has already been done: by Proposition 6.4, and the fact that
ζbpn lies in the kernel of the Coleman map, we know that

Col
(
(ζbpnξn,a)n≥1

)
= Col

Ä
ζ

(1−a)/2
pn (ξn,a)n≥1

ä
= Col

(
c(a)

)
= ([σa]− 1)ζp,

where as usual σa denotes an element of G such that χ(σa) = a. Since a ∈ Z×p was arbitrary,
we conclude that the image of C∞,1 (resp. C +

∞,1) under Col is I(G)ζp (resp. I(G+)ζp). We
deduce an exact sequence

0→ U∞,1/C∞,1 −→ Λ(G)/I(G)ζp −→ Zp(1)→ 0.

This shows the second point. Since p is odd, taking invariants under the group 〈c〉 ⊂ G of
order two generated by complex conjugation is exact. As c acts on Zp(1) by −1, we see that
Zp(1)〈c〉 = 0, which shows the first point and concludes the proof of the theorem.

Remark 7.22. — For the purposes of the main conjecture, we will be restricting to the
first point of Theorem 7.21 above.

7.6. An application of class field theory. — We next use class field theory to reinter-
pret Theorem 7.21 in terms of some modules arising from Galois theory.

Definition 7.23. — For any n ≥ 1, define En as the p-adic closure of Vn inside the local
units Un, let E +

n
..= En ∩U +

n , and let

En,1 ..= En ∩Un,1, E +
n,1

..= E +
n ∩Un,1;

E∞,1 ..= lim←−
n≥1

En,1, E +
∞,1

..= lim←−
n≥1

E +
n,1.

We have the following result, connecting units in the cyclotomic tower and modules
coming from Galois theory.

Proposition 7.24. — There is an exact sequence of Λ(G+)-modules

0→ E +
∞,1 → U +

∞,1 → Gal(M +
∞/L

+
∞)→ 0.

Proof. — By Proposition 10.5 of the appendix, we know that, if M +
n (resp. L +

n ) de-
notes the maximal abelian p-extension of K+

n unramified outside p (resp. everywhere), then
Gal(M +

n /L
+
n ) = Un,1/En,1. This gives an exact sequence

0→ En,1 → Un,1 → Gal(M +
n /L

+
n )→ 0.

By taking inverse limits, which is exact since all modules in the short exact sequence above
are finitely generated Zp-modules (and hence satisfy the Mittag-Leffler condition), we deduce
the result.

Having in mind that the Coleman map induces an isomorphism of Λ(G+)-modules between
U +
∞,1/C

+
∞,1 and Λ(G+)/I(G+)ζp, we rewrite the above result as follows.

Corollary 7.25. — We have an exact sequence of Λ(G)-modules

0→ E +
∞,1/C

+
∞,1 → U +

∞,1/C
+
∞,1 →X +

∞ → Y +
∞ → 0.

Proof. — This is an immediate consequence of Proposition 7.24.
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7.7. Some consequences of Iwasawa theory. — We will now state some classical re-
sults from Iwasawa theory that will be proved later and show how we can deduce from them
the main conjecture assuming that the prime p does not divide the class number of the field
Q(µp)

+.

Proposition 7.26. — If p - h+
1 then p - h+

n for any n ≥ 1.

Proof. — Recall that Cl(F+
1 )⊗ZZp = Gal(L +

1 /F
+
1 ) and p - #Cl(F+

1 ) translates into L +
1 =

F+
1 . By the control result of lemma 8.7 of the next section, we have, for all n ≥ 0,

(Y +
∞ )G+

n
= Gal(L +

n /F
+
n ),

where we recall that G+
n = Gal(F+

∞/F
+
n ). We deduce that, if p - h+

1 , then (Y +
∞ )G0 = 0. By

Nakayama’s lemma (cf. Lemma 8.8 below), this implies that Y +
∞ = 0. We conclude that

Gal(L +
n /F

+
n ) = 0 for all n 6= 1, i.e., p - h+

n , which finishes the proof.

Corollary 7.27. — Assume p - h+
1 . Then

Y +
∞ = E +

∞,1/C
+
∞,1 = 0.

Proof. — We have already seen in the proof of Proposition that Y +
∞ = 0. We now show

that E +
∞,1 = C +

∞,1. In Proposition 7.17 we saw that [V +
n : D+

n ] = h+
n , which is prime

to p by the previous proposition. Note now that D+
n,1 and V +

n,1 are the kernels of the
reduction maps modulo p; moreover, the image of D+

n (mod p) is contained inside the image
of V +

n (mod p) ⊂ F×p , so we conclude that the index of D+
n,1 inside V +

n,1 divides (p − 1)h+
n .

Hence there is an exact sequence

0→ D+
n,1 → V +

n,1 →Wn → 0,

where Wn is a finite group of order prime to p by hypothesis. Tensoring the above exact
sequence with Zp, we get

D+
n,1 ⊗Z Zp ∼= V +

n,1 ⊗Z Zp.

Recall now that E +
n,1 (resp. C +

n,1) is by definition the p-adic closure of V +
n,1 (resp. D+

n,1)
inside U +

n,1, and that C +
n,1 ⊆ E +

n,1. Since we have natural surjections D+
n,1 ⊗Z Zp → C +

n,1

and V +
n,1 ⊗Z Zp → E +

n,1, we conclude that the inclusion C +
n,1 → E +

n,1 is a surjection, which
finishes the proof.

We can now easily finish the proof of Iwasawa Main Conjecture when p - h+
1 .

Theorem 7.28. — if p - h+
1 , we have an isomorphism of Λ(G+)-modules

X +
∞
∼= Λ(G+)/I(G+)ζp.

In particular, Iwasawa’s main conjecture holds.

Proof. — By Corollary 7.25 and Corollary 7.27, we have

X +
∞
∼= U +

∞,1/C
+
∞,1.

By Theorem 7.21, we have U +
∞,1/C

+
∞,1
∼= Λ(G+)/I(G+)ζp, and we deduce

X +
∞
∼= Λ(G+)/I(G+)ζp.

In particular,
chΛ(G+)(X

+
∞ ) = chΛ(G+)

(
Λ(G+)/I(G+)ζp

)
= I(G+)ζp,

which finishes the proof.

Remark 7.29. — Recall that a regular prime is a prime such that p - h1. A prime p such
that p - h+

1 is called a Vandiver prime and that there are infinitely many irregular primes.
Conjecturally, every prime is a Vandiver prime.
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8. Iwasawa’s µ-invariant

We turn finally to the study of some classical Iwasawa theory. We introduce the µ and
λ-invariants of a Zp-extension. In proving Iwasawa’s theorem on the µ and λ-invariants,
we develop techniques that can be used to show that the modules appearing in the exact
sequence of Corollary 7.25 are finitely generated torsion modules over the Iwasawa algebra.
This completes the proof of the main conjecture given in the last section for a Van-
diver prime. (Other than this rather peripheral appearence, however, the main conjecture
does not appear again in this section, which is largely independent of the rest of these notes).

The following results will hold for an arbitrary Zp-extension of number fields, although
we will only prove them under some hypotheses that slightly simplify the proofs.

Definition 8.1. — Let F be a number field. A Zp-extension F∞ of F is a a Galois
extension such that Gal(F∞/F ) ∼= Zp.

If F∞/F is a Zp-extension, we denote Fn the sub-extension fixed by the unique subgroup
of Γ with quotient Z/pn/Z. Recall first that any number field has at least one Zp-extension,
the cyclotomic extension. Indeed, consider the fields F (µpn), and let

F (µp∞) =
⋃
n≥1

F (µpn).

By Galois theory Gal(F (µp∞)/F ) is an open subgroup of Gal(Q(µp∞)/Q) ∼= Z×p , and hence
contains a maximal quotient isomorphic to Zp (specifically, the quotient by the finite torsion
subgroup). The corresponding field (under the fundamental theorem of Galois theory) is
the cyclotomic Zp-extension.

Definition 8.2. — Let F∞/F be a Zp-extension. For each n, let Fn be the unique subex-
tension of F∞/F such that

Gal(Fn/F ) ∼= Z/pnZ.

Example 8.3. — Let F = Q(µp). Then F∞ = Q(µp∞) is the cyclotomic Zp-extension of
F , and

Fn = Q(µpn+1).

(Note that earlier we denoted this field Fn+1). The cyclotomic Zp-extension of Q is the field
F
µp−1
∞ , the fixed field in F∞ of the torsion subgroup µp−1 ⊂ Gal(F∞/Q).

Leopoldt’s conjecture states that the number of independent Zp-extensions of a number
field F is exactly r2 +1 , where r2 is the number of complex embeddings of F . In particular,
the conjecture predicts that any totally real number field possesses a unique Zp-extension
(the cyclotomic one). Whilst the conjecture remains open for general number fields, it is
known in the case that F is an abelian extension of Q or and abelian extension of an
imaginary quadratic field (See [NSW99, Theorem 10.3.16]).

8.1. Iwasawa’s theorem. — Let F be a number field, F∞/F a Zp-extension, Γ = ΓF =

Gal(F∞/F ) ∼= Zp and γ0 a topological generator of ΓF . Using this choice of γ0, we identify
Λ(Γ) with Λ ..= Zp[[T ]] by sending γ0 to T + 1 (when γ0 is sent to 1 by the isomorphism
Γ ∼= Zp, this is simply the Mahler transform, but this identification holds for any γ0). Let
Ln (resp. L∞) be the maximal unramified abelian p-extension of Fn (resp. F∞), write

YF,n = Yn ..= Gal(Ln/Fn) = Cl(Fn)⊗ Zp,

which is the p-Sylow subgroup of the ideal class group of Fn. Set

Y∞ = YF,∞ ..= lim←−
n

YF,n.
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Write en = vp(#Yn) for the exponent of p in the class number of Fn. The following theorem
is the main result we intend to show in this section.

Theorem 8.4 (Iwasawa). — There exists an integer n0 and integers λ ≥ 0, µ ≥ 0, ν ≥ 0,
all independent of n, such that, for all n ≥ n0, we have

en = µpn + λn+ ν.

Remark 8.5. —

– This is another typical example of the power of Iwasawa theory, in which we derive
information at finite levels by considering all levels simultaneously. There are two basic steps
on the proof of Theorem 8.4. We first show that the module YF,∞ is a finitely generated
torsion Λ(Γ)-module. Using the structure theorem of Λ(Γ)-modules (in the appendix), we
study the situation at infinite level, and then we transfer the result back to finite level to
get the result.

– We will only describe the proof for the case where the extension F∞/F satisfies the
following hypothesis: there is only one prime p of F above p, and it ramifies completely
in F∞. The reduction of the general case to this case is not difficult, and is contained
in [Was97, §13]. This assumption covers our cases of interest; in particular, it applies if
F = Q(µpm) or F = Q(µpm)+ for some m ≥ 0 and F∞/F is the cyclotomic Zp-extension.

8.1.1. First step. — The first step of the proof of Theorem 8.4 consists in showing (Propo-
sition 8.9) that the module Y∞ is a finitely generated Λ(Γ)-module. Then Lemma 8.7
will allow us to recover each Yn from the whole tower Y∞. We then use a variation of
Nakayama’s lemma to conclude.

Since p is totally ramified in F∞, and Ln is unramified over Fn, we deduce that Fn+1 ∩
Ln = Fn and hence

Yn = Gal(Ln/Fn) = Gal(LnFn+1/Fn+1) = Yn+1/Gal(Ln+1/LnFn+1),

showing that Yn+1 surjects onto Yn. The module Y∞ is equipped with the natural Galois
action of Λ = Λ(Γ), and under the identification Λ ∼= Zp[[T ]], the polynomial 1 + T ∈ Λ

acts as γ0 ∈ Γ.

Let p̃ be the prime of L∞ above p, and write

I ⊆ G ..= Gal(L∞/F )

for its inertia group. Since L∞/F∞ is unramified, all of the inertia occurs in the subextension
F∞/F . Accordingly I ∩ Y∞ = 1 and since F∞/F is totally ramified at p, the inclusion
I ↪→ G/Y∞ ∼= Γ is surjective, and hence bijective. We deduce that

G = IY∞ = ΓY∞.
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We’ve shown the following picture of extensions.

L∞

F∞

Ln

Fn

F

Y∞

Yn

Z/pnZ

I ∼= Γ ∼= Zp
G=IY∞

Let σ ∈ I map to the topological generator γ0 ∈ Γ under the natural isomorphism I ∼= Γ.

Lemma 8.6. — Let G′ be the closure of the commutator of G. Then

G′ = (γ0 − 1) · Y∞ = TY∞.

Proof. — Recall that we have a decomposition G = ΓY∞. Let a = αx, b = βy ∈ G, where
α, β ∈ Γ and x, y ∈ Y∞. A straightforward calculation, using the definition of the Λ(Γ)

structure of Y∞, shows that

aba−1b−1 = (xα)1−β(yβ)α−1.

Setting β = 1 and α = γ0, we deduce that (γ0 − 1)Y∞ ⊆ G′. To see the other inclusion,
write β = γc0, where c ∈ Zp, so that 1 − β = −

∑+∞
n=1

(
c
n

)
(γ0 − 1)n = −

∑+∞
n=1

(
c
n

)
Tn ∈ TΛ

and similarly for α− 1, which allows us to conclude.

Recall that the nth power of the Frobenius operator on Zp[[T ]] is given by ϕn(T ) =

(1 + T )p
n − 1. Let ϕ0(T ) = T .

Lemma 8.7. — We have
Yn = Y∞/ϕ

n(T ).

Proof. — We treat first the case n = 0. Since L0 is the maximal unramified abelian p-
extension of F and L∞/F is a p-extension, L0/F is the maximal unramified abelian subex-
tension of L∞. In particular, Y0 = Gal(L0/F ) is the quotient of G by the subgroup
generated by the commutator G′ and by the inertia group I of p. By the above lemma and
the decomposition G = IY∞, we conclude that

Y0 = G/〈G′, I〉
= Y∞I/〈(γ0 − 1)Y∞, I〉
= Y∞/(γ0 − 1)Y∞ = Y∞/TY∞.

For n ≥ 1, we apply the arguments of the last paragraph, replacing F by Fn and γ0 by
γp

n

0 , so that σ0 becomes σp
n

0 and (γ0 − 1)Y∞ becomes

(γp
n

0 − 1)Y∞ = ((1 + T )p
n

− 1)Y∞ = ϕn(T )Y∞,

which gives the result.

We state next a variation of Nakayama’s lemma for testing when is a Λ-module finitely
generated, whose standard proof is left as an exercise.

Lemma 8.8 (Nakayama’s lemma). — Let Y be a compact Λ-module. Then Y is finitely
generated over Λ if and only if Y /(p, T )Y is finite. Moreover, if the image of x1, . . . , xm
generates Y /(p, T )Y over Z, then x1, . . . , xn generate Y as a Λ-module. In particular, if
Y /(p, T )Y = 0, then Y = 0.
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Applying this in our particular situation we obtain the following result.

Proposition 8.9. — Y∞ is a finitely generated Λ-module.

Proof. — Since

ϕ(T ) = (1 + T )p − 1 =

p∑
k=1

Ç
p

k

å
T k ∈ (p, T ),

the module Y∞/(p, T )Y∞ is a quotient of Y∞/ϕ(T )Y∞ = Y1 = Cl(F1) ⊗ Zp, the p-Sylow
subgrop of Cl(F1), which is finite. Therefore, applying Lemma 8.8, we conclude that Y∞ is
a finitely generated Λ-module, as desired.

8.1.2. Second step. — Once we know that the module Y∞ is a finitely generated Λ-module,
we can invoke the structure theorem for these modules (Theorem 11.5) to get an exact
sequence

0→ Q→ Y∞ → A → R→ 0,

where Q and R are finite modules and where

A = Λr ⊕
Å s⊕
i=1

Λ/(pmi)

ã
⊕
Å t⊕
j=1

Λ/(fj(T )kj )

ã
.

for some integers s, r, t ≥ 0, mi, kj ≥ 0 and some distinguished polynomials fj(T ) ∈ Λ.

Recall that we want to calculate the size of Yn = Y∞/ϕn(T ). The following lemma
reduces the problem to calculating the size of A /ϕn(T ).

Lemma 8.10. — There exists a constant c and an integer n0 such that, for all n ≥ n0,

|Y∞/ϕn(T )| = pc|A /ϕn(T )|.

Proof. — Consider the diagram

0 ϕn(T )Y∞ Y∞ Y∞/ϕn(T )Y∞ 0

0 ϕn(T )A A A /ϕn(T )A 0

By hypothesis, the kernel and cokernel of the middle vertical map are bounded. By
elementary calculations and diagram chasing, one ends up showing that the kernel and the
cokernel of the third vertical arrow stabilize for n large enough, which is what is needed to
conclude the proof. We leave the details of these calculations as an exercise.

We now proceed to calculate the size of the module A .

Lemma 8.11. — Let

A = Λr ⊕
Å s⊕
i=1

Λ/(pmi)

ã
⊕
Å t⊕
j=1

Λ/(fj(T )kj )

ã
,

for some integers s, r, t ≥ 0 and mi, kj ≥ 1 and some distinguished polynomials fj(T ) ∈ Λ,
and write m =

∑
mi, ` =

∑
kj deg(fj). Suppose A /ϕn(T )A is finite for all n ≥ 0. Then

r = 0 and there exist constants n0 and c such that, for all n ≥ n0,

|A /ϕn(T )| = pmp
n+`n+c.

Proof. — First observe that, since A /ϕn(T ) is assumed to be finite and Λ/ϕn(T ) is infinite
(use the division algorithm of Proposition 11.2), we deduce that r = 0.

We now deal with the second summand. Let V = Λ/pk for some k ≥ 1. Since ϕn(T ) =

T p
n

+
∑pn−1
k=1

(
pn

k

)
T k is distinguished, we have

|V/ϕn(T )| = |Λ/(pk, T p
n

)| = pkp
n

,
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where the last equality follows again by the division algorithm of Proposition 11.2. We
deduce from this that ∣∣∣∣ s⊕

i=1

Λ/(pmi)

∣∣∣∣ = pmp
n

,

where m =
∑
imi.

Finally, we deal with the last summand. Let g(T ) ∈ OL[T ] be a distinguished poly-
nomial of degree d (that is not necessarily irreducible) and let V = Λ/(g(T )). Hence
T d ≡ pQ(T ) mod g for some Q ∈ OL[T ] so that T k ≡ p (poly) mod g for all k ≥ d, where
(poly) denotes some polynomial in OL[T ]. For pn ≥ d, we deduce that

ϕn(T ) = p (poly) + T p
n

≡ p (poly) mod g.

ϕn+1(T ) ≡ p2 (poly) mod g.

ϕn+2(T ) = ((1 + T )(p−1)pn+1

+ . . .+ (1 + T )p
n+1

+ 1)ϕn+1(T )

≡ p(1 + p (poly))ϕn+1(T ) mod g.

Since ((1 + p (poly)) ∈ Λ×, we deduce that ϕn+2(T )
ϕn+1(T ) acts as p times a unit on V = Λ/(g(T ))

and hence
ϕn+2(T )V = pϕn+1(T )V.

Therefore
|V/ϕn+2(T )V | = |V/pV | |pV/pϕn+1(T )V |.

Since g(T ) is distinguished of degree d, we have

|V/pV | = |Λ/(p, g(T ))| = |Λ/(p, T d)| = pd.

Finally, we compute |pV/ϕn+1(T )V |. Since (g(T ), p) = 1, multiplication by p is injective on
V and hence |pV/pϕn+1(T )V | = |V/ϕn+1(T )V |. Fix one n0 such that pn0 ≥ d. Then, using
the identity

ϕn+1(T ) =
ϕn+1(T )

ϕn(T )
◦ . . . ◦ ϕ

n0+2(T )

ϕn0+1(T )
◦ ϕn0+1(T )

and the fact that ϕk+1(T )
ϕk(T )

act on V as p (unit) for any k > n0, we deduce that ϕn+1(T ) acts
on V as p(n−n0−1)ϕn0+1(T ) and hence

|V/ϕn+1(T )V | = pd(n−n0−1)|V/ϕn0+1(T )V |.

Putting everything together, we deduce that

|V/ϕn(T )V | = pnd+c,

for some constant c and all n > n0. Applying this to the third summand of A , we get∣∣∣∣ t⊕
j=1

Λ/(fj(T )kj )

∣∣∣∣ = p`n+c,

where ` =
∑
j kj deg(fj) and some constant c. This finishes the proof of the proposition.

Along the way, we have proven the following fact.

Corollary 8.12. — Let Y be a finitely generated Λ-module. If Y /ϕn(T )Y is finite for
all n, then Y is torsion.

Proof. — If A is as in the statement of Proposition 8.11, then we showed that r = 0 in
the structure theorem for Y . This implies that A is torsion; each element is annihilated
by the characteristic ideal of A . If Y is any finitely generated Λ-module, then Y is quasi-
isomorphic to a module A as before, and as A is torsion, so is Y .

We can now complete the proof of Theorem 8.4.
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Proof of Theorem 8.4. — Applying Lemma 8.10 and Lemma 8.11, we get

|Yn| = |Y∞/ϕn(T )Y∞| = pc|A /(ϕn(T ))| = pµp
n+λn+ν .

This finishes the proof of the theorem.

8.2. Some consequences of Iwasawa’s theorem. — We have already seen one appli-
cation of Iwasawa’s theorem (Proposition 7.7) during the statement of the main conjecture.
Namely if one class number in a Zp-extension is coprime to p, then so are all the others.
We list here some further interesting applications.

Recall that if A is a finite abelian group, then

A[p] ..= {x ∈ A : px = 0}

denotes the subgroup of p-torsion elements and its p-rank rkp(A) is defined to be

rkp(A) = dimFp(A/pA) = dimFp(A[p]).

Equivalently, we can decompose A uniquely as a direct sum of cyclic groups of prime power
order; then the rank at p is the number of direct summands of p-power order.

Corollary 8.13. — Let F∞/F be a Zp-extensions. Then µ = 0 if and only if rkp(Cl(Fn))

is bounded independently of n.

Proof. — Recall that
Cl(Fn)⊗ Zp = Yn ..= Y∞/(ϕ

n(T )),

that Y∞ = lim←−Yn is quasi-isomorphic to a Λ-module A =
(⊕s

i=1 Λ/(pmi)
)
⊕
(⊕t

j=1 Λ/(gj(T ))
)

for some integers s, t ≥ 0, mi ≥ 1, and gi(T ) ∈ OL[T ] distinguished polynomials, and that
we have (cf. the proof of Lemma 8.11) an exact sequence

0→ Cn → Yn → An → Bn → 0,

where An
..= A /ϕn(T ), with |Bn| and |Cn| bounded independently of n. It suffices then to

show that µ = 0 if and only if dimFp(An/pAn) is bounded independently of n.
We have

A /pAn = A /(p, ϕn(T )) =

Å s⊕
i=1

Λ/(p, ϕn(T ))

ã
⊕
Å t⊕
j=1

Λ/(p, gj(T ), ϕn(T ))

ã
.

Take n big enough such that pn ≥ deg(gj) for all j and recall that gj and ϕn(T ) are
distinguished polynomials (in the sense that all but their leading coefficients are divisible by
p). The above formula then equalsÅ s⊕

i=1

Λ/(p, T p
n

)

ã
⊕
Å t⊕
j=1

Λ/(p, T deg(gj))

ã
= (Z/pZ)sp

n+tg,

where g =
∑

deg(gj). This shows that rkp(Cl(Fn)) is bounded independently of n if and
only if s = 0, i.e. if and only if µ = 0. This finishes the proof.

Concerning Iwasawa’s invariants, we have the following results:

Theorem 8.14 (Ferrero-Washington). — If F is an abelian number field and F∞/F is
the cyclotomic Zp-extension of F , then µ = 0.

Proof. — The above theorem is proved by reducing the problem, using the duality coming
from Kummer theory, to calculating the µ-invariant (i.e. the p-adic valuation) of some p-adic
Dirichlet functions, which can be done explicitly from the constructions that we have given.
See [Was97, §7.5].

Finally, the following is an open conjecture of Greenberg (see [Gre76]).
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Conjecture 8.15 (Greenberg). — For any totally real field F , and any Zp-extension
F∞/F , we have µ = λ = 0. In other words, the values #Cl(Fn) are bounded as n goes to
+∞.
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Appendix

9. The complex class number formula

Let K/Q be an abelian extension(15) of degree d = [K : Q]. By the Kronecker-Weber
theorem, K ⊆ Q(µm) for some minimal positive integer m. Recall the definition of the
Dedekind zeta function ζK(s) of K; this has an Euler product

ζK(s) =
∏
p

Å
1− 1

Nps

ã−1

,

where the product runs over all primes in the ring of integers of K. Since K is abelian, it
corresponds to a finite group X of Dirichlet characters of conductor m; these are precisely
the characters of Gal(Q/Q) that factor through Gal(K/Q) [Was97, §3]. From [Was97,
Theorem 4.3], we have a decomposition

ζK(s) =
∏
χ∈X

L(χ, s),

Looking at the residues at s = 1 of the above equality, one obtains the following alternative
formulation of Theorem 1.2 from the introduction:

Theorem 9.1 (Class Number Formula). — Let r1 (resp. r2), hK , R, w, and D denote,
respectively, the number of real (resp. complex) embeddings, the class number, the regulator,
the number of roots of unity and the discriminant of the field K. Then we have

2r1(2π)r2hKR

w|D|1/2
=
∏
χ 6=1

L(χ, 1).

In particular, if K is real, we get the formula

hKR

|D|1/2
=
∏
χ 6=1

1

2
L(χ, 1).

If K is a CM field, then let h+, R+, and d+ = d/2 = r2 denote the class number, the
regulator and the degree respectively of its maximal totally real subfield K+. Let Q = [O×K :

µ(K)O×K+ ] be Hasse’s unit index (which is equal to either 1 or 2; see [Was97, Theorem
4.12]). Decomposing the formula of Proposition 9.1 and using the formulas of Remark 4.19
one obtains the following:

Proposition 9.2. — Let K be any CM abelian number field. Then we have

h = h+Qw
∏
χ odd

−1

2
B1,χ.

Define

h− ..= h/h+ = Qw
∏
χ odd

−1

2
B1,χ.

Note that the above gives an easily computable product formula for h− that has dispensed
with the transcendental terms of the regular class number formula.

(15)We will only be using the following results when K = Q(µm) or K = Q(µm)+.
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10. Class field theory

We recall some necessary basic statements of class field theory. Let K be a number field
and denote by O its ring of integers. Denote by K×∞ = (K ⊗R)× =

∏
v|∞K×v the group

of archimedean units of K and, for every finite place l of K, denote by O×l the units of the
localisation Kl of K at l. If v | ∞, we just let Ov = K×v .

Definition 10.1. — The idèles of K are defined as the restricted product

A×K :=
∏′

v

K×v =
{(
x∞, (xl)l

)
: x∞ ∈ K×∞, xl ∈ O×l for all but finitely many l

}
,

where the product runs over all places of K and l over its finite places.

We equip A×K with a topology, where a basis of open neighbourhoods of the identity is
given by U =

∏
v Uv =

∏
v|∞ Uv ×

∏
l finite Ul such that Uv ⊆ K×v is open and Ul = Ol for

almost all l, which makes A×K a locally compact topological group. The global units K× of
K are diagonally embedded into A×K and have discrete image.

Definition 10.2. — The quotient CK := K×\A×K is called the idèle class group of K.

If E/K is a finite extension and P is a prime of E above a prime p of K, then the norm
maps NEP/Kp

: EP → Kp define a map

NE/K : A×E → A×K

sending E× to K× and hence inducing a map between idèle class groups. The main state-
ments of global class field theory can be stated in the following way.

Proposition 10.3 (Global Class Field Theory). — Let K be a number field. Then
finite abelian extensions are in bijective correspondence with open subgroups of CK of finite
index. Precisely, if E/K is any finite abelian extension, then

Gal(E/K) ∼= CK/NE/KCE ;

and, conversely, for every such finite index open subgroup H of CK there exists a unique
finite abelian extension E of K with NE/KCE = H. Moreover, a place v of K is unramified
in E if any only if O×v ⊆ NE/KCE.

Remark 10.4. — Let Kab be the maximal abelian extension of K. Passing to the limit in
the above theorem, one gets an isomorphism between Gal(Kab/K) and the profinite com-
pletion of CK . In particular, continuous characters of CK biject with continuous characters
of Gal(Kab/K).

We will give two examples. Let K be a number field and let HK be its Hilbert class field,
i.e. its maximal abelian unramified extension. By the above theorem, the extension HK/K

corresponds to the subgroup K×ŨK of CK , where ŨK =
∏
v O×v , and we therefore have

Gal(HK/K) = A×K/K
×ŨK .

As usual, there is a natural map A×K → {ideals of K}, sending (xv)v to
∏

l finite l
vl(xl),

which is surjective and whose kernel is exactly ŨK , and hence induces an isomorphism
CK/ŨK

∼= Cl(K) between the quotient of the idèle class group and the ideal class group of
K. We conclude that

Gal(HK/K) ∼= Cl(K).

Let now

MK = maximal abelian p-extension of K unramified outside every prime p | p;

LK = maximal unramified abelian p-extension of K.
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Note that LK/K is a subextension of the finite extension HK/K, and by definition, we
have

Gal(LK/K) = Gal(HK/K)⊗ Zp
∼= Cl(K)⊗ Zp = p-Sylow subgroup of Cl(K).

Let UK = (O ⊗ Zp)
× =

∏
p|p O×p be the local units of K at p and let EK be the p-adic

closure of the image VK of O× inside UK (diagonally embedded).

Proposition 10.5. — We have

Gal(MK/LK) = UK/EK .

Proof. — Define

U
(p)
K =

∏
v-p

O×v , ŨK = UK ×U
(p)
K ,

(where O×v = K×v if v is an archimedean place). By class field theory, we have

Gal(MK/K) = A×K/H,

where H = K×U
(p)
K , and the subgroup of Gal(MK/K) corresponding to LK is

J ′′ = K×ŨK/H ∼= UKH/H

∼= UK/(UK ∩H).

Observe that we are considering all the modules inside the idèle class group and that the
inclusion of EK inside A×K is not the inclusion induced by K× ⊆ A×K : the first inclusion has
trivial components at places away from p, while the last inclusion is the diagonal one. For
the sake of clarity, we will note

ι : VK → A×K

the inclusion induced by VK ⊆ EK ⊆ UK ⊆ A×K and we are going to see any global unit
inside the idèles by the diagonal embedding.

We now claim that UK ∩H = EK . One inclusion is clear, since clearly ι(VK) ⊆ UK and,
if x ∈ VK , we can write ι(x) = x (ι(x)/x) ∈ K×U

(p)
K , which shows that ι(VK) ⊆ K×U

(p)
K

and we conclude by taking the closure on both sides of the inclusion (recall that EK = ι(VK)

by definition). To prove that UK ∩H ⊆ EK , define, for every n ≥ 1, the subgroup UK,n =∏
p|p 1 + pnOp. Observe that the sets K×U

(p)
K UK,n (resp. ι(VK)UK,n), for n ≥ 1, define a

cofinal subset of closed neighbourhoods of K×U
(p)
K (resp. ι(VK)) and that

K×U
(p)
K =

⋂
n≥1

K×U
(p)
K UK,n, EK =

⋂
n≥1

ι(VK)UK,n,

so it suffices to prove K×U
(p)
K UK,n ⊆ ι(VK)UK,n for every n. Let x ∈ K×, u′ ∈ U

(p)
K , u ∈

UK,n be such that xu′u ∈ UK . So in particular xu′ ∈ UK . Since u′ has component 1 at all
primes p | p, then x must be a unit at those primes. Since any element in UK has component
1 at all primes v - p and xu′ ∈ UK , then x must be a unit at all those primes. Hence x is
a global unit. Now observe that, at primes above p, we have xu′ = x ∈ VK (since it has
component 1 at any place above p), and at primes outside p, xu′ = 1, so we conclude that
xu′ ∈ ι(VK), hence xu′u ∈ ι(VK)UK,n, which concludes the proof of the proposition.
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11. Power series and Iwasawa algebras

In this section we state and give references for some basic yet fundamental results on
Iwasawa algebras and the structure theory of modules over Λ(Zp).

Fix a finite extension L/Qp and denote OL, p|p, π = πL and k = kL its ring of integers,
its maximal ideal, a uniformizer and its fraction field respectively.

Definition 11.1. — A polynomial P (T ) ∈ OL[T ] is called distinguished if P (T ) = a0 +

a1T + . . .+ an−1T
n−1 + Tn with ai ∈ p for every 0 ≤ i ≤ n− 1.

The following two results are some of the main tools in dealing with power series.

Proposition 11.2. — Let f(T ) =
∑
i≥0 aiT

i ∈ OL[[T ]] and assume that ai ∈ p for 0 ≤
i ≤ n− 1 and that an ∈ O×L . Then:

– (Division algorithm) For every g(T ) ∈ OL[[T ]] there exist unique q(T ) ∈ OL[[T ]] and
r(T ) ∈ OL[T ], where r has degree at most n− 1, such that

g(T ) = q(T )f(T ) + r(T ).

– (Weierstrass Preparation Theorem) The power series f may be uniquely written in the
form

f(T ) = P (T )U(T ),

where U(T ) ∈ OL[[T ]] is a unit and P (T ) ∈ OL[T ] is a distinguished polynomial of degree n.

Proof. — See [Was97, Proposition 7.2; Theorem 7.3].

Let

Λ = lim←−OL[Zp/p
nZp] ∼= OL[[T ]]

be the Iwasawa algebra (identifying Λ(Zp) with OL[[T ]] using the Mahler transform and
dropping Zp from the notation, as is standard). As we have seen, this ring is hugely impor-
tant. Most of the ideas surrounding Iwasawa theory rely on the fact that one has a structure
theorem for finitely generated modules over Λ.

Proposition 11.3. — The prime ideals of Λ are exactly 0, (π, T ), (π) and ideals (P (T ))

where P (T ) is an irreducible distinguished polynomial. Moreover, Λ is a local Noetherian
ring with maximal ideal (π, T ).

Proof. — See [Was97, Proposition 13.9; Lemma 13.11]

Let M,M ′ be two Λ-modules. We say that M is pseudo-isomorphic to M ′, and we write
M ∼ M ′, if there exists a homomorphism M → M ′ with finite kernel and co-kernel, i.e, if
there is an exact sequence

0→ A→M →M ′ → B → 0,

with A and B finite Λ-modules (just in case: A and B have finite cardinality!).

Remark 11.4. — Note that ∼ is not an equivalence relation. In particular, M ∼M ′ does
not imply M ′ ∼ M . For example, (π, T ) ∼ Λ, but Λ 6∼ (π, T ) (see [Was97, §13.2]). This
problem goes away if we restrict to the case where M and M ′ are finitely generated torsion
Λ-modules.

The following is the main result concerning the structure theory of finitely generated
Λ-modules, and says that Λ almost behaves as if it was a principal ideal domain.
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Theorem 11.5. — Let M be a finitely generated Λ-module. Then

M ∼ Λr ⊕
Å s⊕
i=1

Λ/(pni)

ã
⊕
Å t⊕
j=1

Λ/(fj(T )mj )

ã
,

for some integers r, s, t ≥ 0, ni,mj ≥ 1 and irreducible distinguished polynomials fj(T ) ∈
O[T ].

Proof. — See [Was97, Theorem 13.12].

Remark 11.6. — We do not have a similar result for the finite level group algebras
OL[Zp/p

nZp], only for the projective limit. A fundamental concept in Iwasawa theory is the
idea that it is easier to study a tower of p-extensions all in one go, and use results about the
tower to deduce results at finite level, and a major reason for this is this structure theorem.

Definition 11.7. — Suppose M is a finitely generated torsion Λ-module. Then r = 0 in
the structure theorem. We define the characteristic ideal of M to be the ideal

ChΛ(M) =
s∏
i=i

(pni)
t∏

j=1

Ä
f
mj
j

ä
⊂ Λ.

The above definition generalizes slightly to other groups other than those isomorphic to
Zp. Let G = H × Γ ∼= Zp, were H is a finite commutative group of order prime to p and
Γ ∼= Zp. Then we have a decomposition

Λ(G) ∼= OL[G]⊗ Λ.

Let M be a finitely generated torsion Λ(G)-module. Let H∧ denote the group of characters
of H and define, for any ω ∈ H∧,

eω ..=
1

|H|
∑
a∈H

ω−1(a)[a] ∈ OL[H].

Lemma 11.8. — The group H acts on M (ω) ..= eωM via multiplication by ω and we have
a decomposition of Λ(G)-modules

M = ⊕ω∈H∧M (ω).

Moreover, each M (ω) is a finitely generated torsion Λ-module.

Proof. — See [CS06, A.1] or the exercises.

In view of the above lemma, we we have the following definition.

Definition 11.9. — Let G be as above and let M be a finitely generated torsion Λ(G)-
module. We define the characteristic ideal of M to be the ideal

ChΛ(G)(M) ..= ⊕ω∈H∧ChΛ(M (ω)) ⊆ Λ(G).

We will be using the following a basic property of characteristic ideals:

Lemma 11.10. — The characteristic ideal is multiplicative in exact sequences.

Proof. — See [CS06, A.1 Proposition 1]
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