ORTHOGONAL POLYNOMIALS AND SPECIAL FUNCTIONS Part 2

LTCC course, February 2020 Ana F. Loureiro (a.loureiro@kent.ac.uk)

Outline

▶ Part 2. Orthogonal Polynomials: an introduction

Main properties

Recurrence relations, zeros, distribution of the zeros and so on and on....

- Classical Orthogonal Polynomials Hermite, Laguerre, Bessel and Jacobi!!
- Other notions of "classical orthogonal polynomials" How to identify this on the Askey Scheme?
- Semiclassical Orthogonal Polynomials How do these link to Random Matrix Theory, Painlevé equations and so on?
- Part 3. Multiple Orthogonal Polynomials

When the orthogonality measure is spread across a vector of measures?

Orthogonal Polynomials: an introduction

Let ${\mathscr P}$ be the vector space of polynomials ${\mathscr P}$ defined as

$$\mathscr{P} = \bigcup_{n=0}^{+\infty} \mathscr{P}_n$$

where \mathscr{P}_n represents the finite dimensional vector space of polynomials of degree $\leq n$ with complex coefficients.

Consider a sequence of polynomials

$$\{P_n\}_{n\geq 0}\subset \mathscr{P}$$
 such that $\deg P_n(x)=n$

- Clearly {P_n}_{n≥0} forms a basis for the vector space of polynomials 𝒫 of complex coefficients.
- It is a monic polynomial sequence if $deg(P_n x^n) < n$

Preliminaries 1

Each
$$| \{P_n\}_{n \ge 0} \subset \mathscr{P}$$
 such that $\deg P_n(x) = n |$ can be defined via

a terminating series of the form

$$P_n(x) = \sum_{k=0}^n c_{n,k} (x-a)^k, \ n \ge 0,$$

or of the form

$$P_n(x) = \sum_{k=0}^n c_{n,k} \ (x-a)_k, \ n \ge 0,$$

or in any other polynomial basis expansion. In particular, we can consider...

• a structural relation, which is basically the Euclidean division of $P_{n+1}(x)$ by $P_n(x)$ and this means there exist coefficients β_n and $\chi_{n,j}$ with $j \in \{0, 1, ..., n-1\}$ such that

$$P_{n+1}(x) = (x - \beta_n)P_n(x) - \sum_{j=0}^{n-1} \chi_{n,j}P_j(x).$$
(1)

Preliminaries 1

Each $[P_n]_{n\geq 0} \subset \mathscr{P}$ such that $\deg P_n(x) = n$ can be <u>also</u> defined via

a generating function of exponential type

$$\Psi(x,t) = \sum_{n\geq 0} P_n(x) \frac{t^n}{n!}$$

or of horizontal type

$$\Psi(x,t)=\sum_{n\geq 0}P_n(x)t^n.$$

▶ a lowering/raising operator \mathscr{O} and a function f(x) such that

$$f(x)P_n(x) = \rho_n \mathcal{O}^n(f(x))$$

where $\mathscr{O}^{n+1}(f(x)) := \mathscr{O}(\mathscr{O}^n(f(x)))$ and $\mathscr{O}^0(f(x)) := f(x)$ and $\rho_n \neq 0$ is a normalization constant.

- a differential-difference equation
- etc.

Let μ be a **positive Borel measure** with support *S* defined on \mathbb{R} for which **moments** of all orders exist, *i.e.*,

$$\mu_n = \int_S x^n \mathrm{d}\mu(x) < \infty, \quad n = 0, 1, 2, \dots$$

Definition

A sequence of polynomials $\{P_n\}_{n\geq 0}$ with $\deg P_n=n$ is orthogonal w.r.t. the measure μ if

$$\int_{\mathcal{S}} P_k(x) P_n(x) \mathrm{d}\mu(x) = N_n \, \delta_{n,k} \quad n,k = 0, 1, 2, \dots$$

where S is the support of μ and N_n is the square of the weighted L^2 -norm of P_n given by

$$N_n = \int_{\mathcal{S}} (P_n(x))^2 \mathrm{d}\mu(x) > 0.$$

Let μ be a **positive Borel measure** with support *S* defined on \mathbb{R} for which **moments** of all orders exist, *i.e.*,

$$\mu_n = \int_S x^n \mathrm{d}\mu(x) < \infty, \quad n = 0, 1, 2, \dots .$$

Lemma

A sequence of polynomials $\{P_n\}_{n\geq 0}$, with $P_n(x) = k_n x^n + \dots$ terms of lower degree, is orthogonal w.r.t. the measure μ iff

$$\int_{S} x^{k} P_{n}(x) \mathrm{d}\mu(x) = N_{n}(k_{n})^{-1} \delta_{n,k} \quad \text{if n and k are integers $s.t.} \quad \boxed{0 \le k \le n}.$$

where S is the support of μ and N_n is the square of the weighted L^2 -norm of P_n given by

$$(k_n)^{-1}N_n = \int_S x^n P_n(x) \mathrm{d}\mu(x) > 0.$$

Proof. Exercise.

When the measure μ is absolutely continuous, there exists a locally integrable function w(x) defined on (a, b), (*i.e.* w(x) is Lebesgue integrable over every compact subset K of (a, b)) with distributional derivative $d\mu(x) = w(x)dx$ where the **moments** of all orders exist, *i.e.*,

$$\mu_n = \int_a^b x^n w(x) \mathrm{d}x < \infty, \quad n = 0, 1, 2, \dots$$

In this case, the orthogonality conditions become

$$\int_a^b P_k(x)P_n(x)w(x)dx = N_n \ \delta_{n,k} \quad n,k = 0,1,2,\dots$$

where (a, b) is the support of w(x) and N_n

$$\int_a^b (P_n(x))^2 w(x) \mathrm{d}x = N_n > 0.$$

1. Chebyshev polynomials: $\{T_n\}_{n\geq 0}$ defined by $T_n(x) = \cos(n\theta)$, where $x = \cos(\theta)$, with $\theta \in (0, \pi)$. We have

$$\int_{-1}^{1} T_n(x) T_m(x) \frac{1}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} \cos(n\theta) \cos(m\theta) d\theta$$
$$= \int_{0}^{\pi} \frac{\cos((n+m)\theta) + \cos((m-n)\theta)}{2} d\theta$$
$$= \begin{cases} N_n & \text{if } m = n \ge 0\\ 0 & \text{if } m \ne n \ge 0. \end{cases}$$

where

$$N_n = \begin{cases} \pi & \text{if } n = 0, \\ \pi/2 & \text{if } n \ge 1. \end{cases}$$

2. Laguerre polynomials: $\{L_n(\cdot; \alpha)\}_{n\geq 0}$ defined by

$$L_n(x;\alpha) = \frac{(\alpha+1)_n}{n!} \sum_{k=0}^n \frac{(-1)^k}{(\alpha+1)_k} \binom{n}{k} x^k$$
$$= \frac{(\alpha+1)_n}{n!} M(-n,\alpha+1;x), \ n \ge 0.$$

For each $\alpha > -1$, $\{L_n(x; \alpha)\}_{n \geq 0}$ satisfies the orthogonality relations

$$\int_0^{+\infty} L_n(x) L_m(x) e^{-x} x^{\alpha} dx = \begin{cases} \frac{\Gamma(n+1+\alpha)}{n!} & \text{if } m=n \text{ and } n \ge 0, \\ 0 & \text{if } m \neq n. \end{cases}$$

Exercise: Prove the latter identity.

2. Laguerre polynomials: $\{L_n(\cdot; \alpha)\}_{n \ge 0}$ defined by

$$L_n(x;\alpha) = \frac{(\alpha+1)_n}{n!} \sum_{k=0}^n \frac{(-1)^k}{(\alpha+1)_k} \binom{n}{k} x^k$$
$$= \frac{(\alpha+1)_n}{n!} M(-n,\alpha+1;x), \ n \ge 0.$$

For each $\alpha > -1$, $\{L_n(x; \alpha)\}_{n \geq 0}$ satisfies the orthogonality relations

$$\int_0^{+\infty} L_n(x) L_m(x) e^{-x} x^{\alpha} dx = \begin{cases} \frac{\Gamma(n+1+\alpha)}{n!} & \text{if } m = n \text{ and } n \ge 0, \\ 0 & \text{if } m \neq n. \end{cases}$$

Exercise: Prove the latter identity. *Hint*. Start by showing $\int_0^{+\infty} x^m L_n(x) e^{-x} x^{\alpha} dx = \frac{\Gamma(\alpha+1)\Gamma(m+\alpha+1)(-m)_n}{\Gamma(n+\alpha+1)}$.

3. Charlier polynomials: $\{C_n(x; \alpha)\}_{n \ge 0}$ depending on a parameter α defined by

$$C_n(x; \alpha) = n! \ L_n(\alpha; x - n), \ n \ge 0,$$

is a polynomial sequence with deg $C_n(x; \alpha) = n$.

It is an orthogonal polynomial sequence, because it satisfies the (discrete) orthogonal relation

$$\sum_{x=0}^{+\infty} C_n(x;\alpha) C_m(x;\alpha) \frac{\alpha^x}{x!} = \begin{cases} e^{\alpha} \alpha^n n! \neq 0 & \text{if } m = n \text{ and } n \ge 0, \\ 0 & \text{if } m \neq n, \end{cases}$$

under the assumption that $\alpha > 0$.

If the weight function w(x) is discrete so that $w(x_k) > 0$ are the values of the weight at the distinct points x_k , k = 0, 1, ..., M for $M \in \mathbb{N} \cup \{\infty\}$, then the orthogonality relations read as

$$\sum_{k=0}^{M} P_n(x_k)P_m(x_k)w(x_k) = N_n\delta_{n,m}, \ n,m \ge 0.$$

If the weight function w(x) is discrete so that $w(x_k) > 0$ are the values of the weight at the distinct points x_k , k = 0, 1, ..., M for $M \in \mathbb{N} \cup \{\infty\}$, then the orthogonality relations read as

$$\sum_{k=0}^{M} P_n(x_k)P_m(x_k)w(x_k) = N_n\delta_{n,m}, \ n,m \ge 0.$$

More generally, we can make use of the theory of distributions to define the Borel measures and further extend the orthogonality notion to the non-positive definite sense.

For that, we define...

Without entering into further details...

Consider a moment linear functional

so, \mathscr{L} is an element of the **dual space of** \mathscr{P} , denoted by \mathscr{P}' .

The duality pairing between a moment linear functional (or distribution) \mathscr{L} in \mathscr{P}' and any polynomial (in \mathscr{P}) will be denoted by angle brackets

$$\begin{array}{ccc} \mathscr{L}' \times \mathscr{L} & \longrightarrow & \mathbb{R} \text{ (or } \mathbb{C}) \\ (\mathscr{L}, p(x)) & \longmapsto & \langle \mathscr{L}, p(x) \rangle \end{array}$$

For instance, any locally integrable function ϕ defined on a set U yields a moment linear functional on \mathscr{P}' – that is, an element of \mathscr{P}' – denoted here by $\mathscr{L} := \mathscr{L}_{\phi}$ whose value on the space of polynomials is

$$\langle \mathscr{L}, p(x) \rangle = \int_U p(x) \cdot \phi(x) \mathrm{d}x$$

Moment linear functionals

Operations on the dual space \mathscr{P}' :

- are defined by means of the transpose operator, ${}^{t}\mathcal{L}$;
- \blacktriangleright if $\mathscr O$ is a continuous linear operator defined on $\mathscr P,$ then ${}^t\mathscr L$ is defined by duality via

$$<^t \mathscr{OL}, p(x) > = <\mathscr{L}, \mathscr{O}p(x) >, \quad ext{for any} \quad p \in \mathscr{P}.$$

If

$$\langle \mathscr{L}, \boldsymbol{p}(\boldsymbol{x}) \rangle = \int_{U} \boldsymbol{p}(\boldsymbol{x}) \cdot \boldsymbol{\phi}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$$

then

$$\langle {}^{t}\mathscr{OL}, p(x) \rangle = \int_{U} p(x) \cdot ({}^{t}\mathscr{O}\phi(x)) \, \mathrm{d}x = \int_{U} (\mathscr{O}p(x)) \cdot \phi(x) \, \mathrm{d}x$$

For instance, given a polynomial g(x) and a linear functional \mathcal{L} , we define:

$$< g(x)\mathscr{L}, p(x) > = <\mathscr{L}, g(x)p(x) >, \text{ for any } p \in \mathscr{P};$$

 $< D\mathcal{L}, p(x) >= - < \mathcal{L}, Dp(x) >$, for any $p \in \mathscr{P}$ with Dp(x) := p'(x); So, with some abuse of notation

$$< \mathscr{L}', p(x) > := - < \mathscr{L}, p'(x) >$$

Lemma

A linear functional is uniquely defined by its sequence of moments $\{\mu_n\}_{n\geq 0}$, which are given by

 $\mu_n:=<\mathscr{L}, x^n>, \ n\geq 0.$

Lemma

A linear functional is uniquely defined by its sequence of moments $\{\mu_n\}_{n\geq 0}$, which are given by

 $\mu_n := < \mathscr{L}, x^n >, \ n \ge 0.$

Example of application of the operations. We have

$$(DxD-\alpha D)(x^{\alpha}e^{-x}) = (x-(\alpha+1))(x^{\alpha}e^{-x}).$$

So, if

$$\langle \mathscr{L}, p(x) \rangle = \int_0^{+\infty} p(x) \left(x^{\alpha} e^{-x} \right) \mathrm{d}x$$

then

$$(D \times D - \alpha D) \mathscr{L} = (x - (\alpha + 1)) \mathscr{L}$$

which implies

$$\begin{array}{l} \langle (x - (\alpha + 1)) \mathcal{L}, x^n \rangle \\ = \langle (DxD - \alpha D) \mathcal{L}, x^n \rangle \\ = \langle \mathcal{L}, (DxD + \alpha D) x^n \rangle \\ = \langle \mathcal{L}, n(n + \alpha) x^{n-1} \rangle \end{array} \Rightarrow \quad \mu_{n+1} - (\alpha + 1)\mu_n = n(n + \alpha)\mu_{n-1}$$

Moment linear functionals

Remarks. Given a polynomial p(x) and a moment linear functional \mathcal{L} , then 1. For any coefficients *a* and *b* and polynomials f(x) and g(x), we have

$$\langle \mathscr{L}, af(x) + bg(x) \rangle = a \langle \mathscr{L}, f(x) \rangle + b \langle \mathscr{L}, g(x) \rangle.$$

- 2. The image of the null polynomial is zero: $\langle \mathcal{L}, 0 \rangle = 0$.
- 3. If $\mathscr{L} = 0$, then $\langle \mathscr{L}, P_n(x) \rangle = 0$.
- 4. $\langle \mathscr{L}, P_n(x) \rangle = 0$ does not imply (in general) that $\mathscr{L} = 0$.

Example.

$$\int_0^\infty e^{-x^{1/4}} \sin(x^{1/4}) \ x^n dx = 0, \ n \ge 0,$$

(and therefore $\int_0^\infty e^{-x^{1/4}} \sin(x^{1/4}) f(x) dx = 0$, for any polynomial f(x)). In fact,

$$\int_0^\infty e^{-x^{1/4}} \sin(x^{1/4}) x^n dx$$

= $-2i \int_0^{+\infty} u^{4n+3} \left(e^{-(1+i)u} - e^{-(1-i)u} \right) du = \frac{2i(4n+3)!}{(1+i)^{4n+4}} + \frac{2i(4n+3)!}{(1-i)^{4n+4}} = 0$

Definition

A polynomial sequence $\{P_n\}_{n\geq 0}$ is said to be orthogonal if there exists a linear functional $\mathscr L$ such that

$$\langle \mathscr{L}, P_n P_k \rangle = N_n \delta_{n,k}$$
, with $N_n \neq 0$.

with $N_n \neq 0$ for any $n \ge 0$. In this case we say that $\{P_n\}_{n\ge 0}$ is an orthogonal polynomial sequence (OPS) for \mathcal{L} .

▶ Equivalently, $\{P_n\}_{n \ge 0}$ is an OPS for \mathscr{L} iff

$$\langle \mathscr{L}, x^m P_n \rangle = \begin{cases} 0 & \text{if } n > m \ge 0, \\ N_n & \text{if } n = m, \text{ for } n \ge 0. \end{cases}$$

When $N_n = 1$ for all $n \ge 0$, then $\{P_n\}_{n \ge 0}$ is an **orthonormal** sequence for \mathscr{L} .

Lemma

Let $\{P_n\}_{n\geq 0}$ be an OPS for \mathscr{L} . Any polynomial $\pi(x)$ of degree $m\geq 0$ can be expanded on the basis $\{P_n\}_{n\geq 0}$ of \mathscr{P}

$$\pi(x) = \sum_{k=0}^{m} c_k P_k(x)$$

and the coefficients are given by

$$c_k = \frac{\langle \mathscr{L}, \pi(x) \mathcal{P}_k(x) \rangle}{\langle \mathscr{L}, \mathcal{P}_k^2(x) \rangle}, \ k = 0, 1, \dots m$$

Lemma

Let $\{P_n\}_{n\geq 0}$ be an OPS for \mathscr{L} . Any polynomial $\pi(x)$ of degree $m\geq 0$ can be expanded on the basis $\{P_n\}_{n\geq 0}$ of \mathscr{P}

$$\pi(x) = \sum_{k=0}^{m} c_k P_k(x)$$

and the coefficients are given by

$$c_k = \frac{\langle \mathscr{L}, \pi(x) \mathcal{P}_k(x) \rangle}{\langle \mathscr{L}, \mathcal{P}_k^2(x) \rangle}, \ k = 0, 1, \dots m.$$

Questions:

- Given a linear functional, is it possible to always find an OPS for it? If not, which necessary and/or sufficient conditions that a linear functional needs to fulfil?
- If an OPS for a certain linear functional exists, is it unique?

Corollary

Suppose that $\{P_n\}_{n\geq 0}$ is an OPS for \mathscr{L} . If $\{Q_n\}_{n\geq 0}$ is also an OPS for \mathscr{L} , then there are constants $c_n \neq 0$, with $n \geq 0$, such that

$$Q_n(x)=c_nP_n(x), \ n\geq 0.$$

Proof. Exercise.

- So, an OPS {P_n}_{n≥0} for *L* is uniquely determined if we fix a condition for the leading coefficient, that is, the coefficient of xⁿ in P_n(x).
- We will mainly consider monic OPSs (unless said otherwise)
- The corresponding orthonormal polynomial sequence of an OPS $\{P_n\}_{n\geq 0}$ is

$$p_n(x) = \left(< \mathscr{L}, P_n^2(x) > \right)^{-1/2} P_n(x), \ n \ge 0.$$

If {P_n}_{n≥0} is an OPS for *L*, then it also is an OPS for any multiple of *L*, that is, it is also an OPS for *Z* = c *L* for any fixed constant c ≠ 0

Theorem

A necessary and sufficient condition for existence of an OPS $\{P_n\}_{n\geq 0}$ for a given linear functional $\mathcal L$ is that

$$\Delta_n(\mathscr{L}) := \det[\mu_{j+k}]_{0 \le j,k \le n} = \begin{vmatrix} \mu_0 & \mu_1 & \dots & \mu_n \\ \mu_1 & \mu_2 & \dots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_n & \mu_{n+1} & \dots & \mu_{2n} \end{vmatrix} \neq 0, \text{ for all } n \ge 0.$$

The determinant $\Delta_n(\mathscr{L})$ is known as the **Hankel determinant**. **Proof.** Suppose that $\{P_n\}_{n\geq 0}$ is an OPS for \mathscr{L} . For any $n\geq 0$, $\exists c_{n,k}$ so that $P_n(x) = \sum_{k=0}^n c_{n,k} x^k$ and this expansion is unique. The linearity of the linear functional \mathscr{L} allows to express

$$\langle \mathscr{L}, x^m \mathcal{P}_n(x) \rangle = \sum_{k=0}^n c_{n,k} \langle \mathscr{L}, x^{k+m} \rangle = \sum_{k=0}^n c_{n,k} \mu_{k+m}.$$

On the other hand we also have

$$\langle \mathscr{L}, x^m P_n(x) \rangle = \begin{cases} 0 & \text{if } m \leq n, \\ K_n = \langle \mathscr{L}, x^n P_n(x) \rangle \neq 0 & \text{if } m = n. \end{cases}$$
University of Kent

The notion of Orthogonality: existence

This information can be summarised in the following system of equations:

$$\begin{bmatrix} \mu_{0} & \mu_{1} & \dots & \mu_{n} \\ \mu_{1} & \mu_{2} & \dots & \mu_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{n} & \mu_{n+1} & \dots & \mu_{2n} \end{bmatrix} \begin{bmatrix} c_{n,0} \\ c_{n,1} \\ \vdots \\ c_{n,n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ K_{n} \end{bmatrix}.$$
(2)

with $K_n = \langle \mathscr{L}, x^n P_n(x) \rangle$.

Since the system has always a unique solution, then $\Delta_n(\mathscr{L}) \neq 0$, for any $n \geq 0$.

Conversely, if $\Delta_n(\mathcal{L}) \neq 0$, for any $n \ge 0$, the system (2) has a unique nonzero solution which is obtained for any given $K_n \neq 0$, for all $n \ge 0$. Therefore for each $n \ge 0$, a polynomial $P_n(x)$ exists. Moreover, an application of Cramer's rule to the system (2) yields

$$c_{n,n}=rac{\Delta_{n-1}\ K_n}{\Delta_n}
eq 0,\ n\geq 1.$$

For n=0, we have $c_{0,0}={\cal K}_0/\Delta_0,$ as we have defined $\Delta_{-1}:=0$.

An OPS via a determinant

Exercise 1. Show that if $\{P_n\}_{n \ge 0}$ is a monic OPS for \mathscr{L} , then

$$P_{n}(x) = (\Delta_{n-1})^{-1} \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ 1 & x & \cdots & x^{n} \end{vmatrix}$$

Exercise 1. Show that if $\{P_n\}_{n\geq 0}$ is a monic OPS for \mathcal{L} , then

$$P_{n}(x) = (\Delta_{n-1})^{-1} \begin{vmatrix} \mu_{0} & \mu_{1} & \cdots & \mu_{n} \\ \mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\ \vdots & \vdots & \vdots & \vdots \\ \mu_{n-1} & \mu_{n} & \cdots & \mu_{2n-1} \\ 1 & x & \cdots & x^{n} \end{vmatrix}$$

Exercise 2. Let $\{\phi_n\}_{n\geq 0}$ a monic polynomial sequence. What is the relation between the polynomials $Q_n(x)$ and $P_n(x)$ if

$$Q_n(x) = (\Delta_{n-1})^{-1} \begin{vmatrix} \widetilde{\mu}_{0,0} & \widetilde{\mu}_{0,1} & \cdots & \widetilde{\mu}_{0,n} \\ \widetilde{\mu}_{1,0} & \widetilde{\mu}_{1,1} & \cdots & \widetilde{\mu}_{1,n} \\ \vdots & \vdots & \vdots & \vdots \\ \widetilde{\mu}_{n-1,0} & \widetilde{\mu}_{n-1,1} & \cdots & \widetilde{\mu}_{n-1,n} \\ \phi_0(x) & \phi_1(x) & \cdots & \phi_n(x) \end{vmatrix},$$

with $\widetilde{\mu}_{i,j} = \mathscr{L}[x^i \phi_j(x)], \ i, j \ge 0.$

Theorem

A monic polynomial sequence $\{P_n\}_{n\geq 0}$ is orthogonal for a linear functional \underline{k} if and only if there exist constants β_n and $\gamma_{n+1} \neq 0$ for $n \geq 0$ so that

$$P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), \ n \ge 0,$$

$$P_0(x) = 1 \quad and \quad P_1(x) = x - \beta_0.$$
(3)

~

In this case, we have

$$\beta_n = \frac{\langle \mathscr{L}, x \mathcal{P}_n^2 \rangle}{\langle \mathscr{L}, \mathcal{P}_n^2 \rangle} \quad \text{and} \quad \gamma_{n+1} = \frac{\langle \mathscr{L}, \mathcal{P}_{n+1}^2 \rangle}{\langle \mathscr{L}, \mathcal{P}_n^2 \rangle} \neq 0, \, n \in \mathbb{N}$$

A 2nd order recurrence relation for an OPS: proof

Proof. (\Rightarrow) Suppose $\{P_n\}_{n\geq 0}$ is a monic OPS for \mathscr{L} . Since deg $P_n(x) = n$ then

$$xP_n(x) = P_{n+1}(x) + \beta_n P_n(x) + \sum_{j=0}^{n-1} \chi_{n,j} P_j(x).$$
(4)

so that

$$\langle \mathscr{L}, x P_n(x) P_k(x) \rangle = \langle \mathscr{L}, P_{n+1}(x) P_k(x) \rangle + \beta_n \langle \mathscr{L}, P_n(x) P_k(x) \rangle$$
$$+ \sum_{j=0}^{n-1} \chi_{n,j} \langle \mathscr{L}, P_j(x) P_k(x) \rangle.$$

From the orthogonality conditions, we obtain

$$\beta_n = \frac{\langle \mathcal{L}, x \mathcal{P}_n^2(x) \rangle}{\langle \mathcal{L}, \mathcal{P}_n^2(x) \rangle}, \quad \chi_{n,n-1} = \frac{\langle \mathcal{L}, x \mathcal{P}_{n-1}(x) \mathcal{P}_n(x) \rangle}{\langle \mathcal{L}, \mathcal{P}_{n-1}^2(x) \rangle} \neq 0, \ n \ge 1,$$

and

$$\chi_{n,j} = \frac{\langle \mathscr{L}, xP_j(x)P_n(x) \rangle}{\langle \mathscr{L}, P_j^2(x) \rangle} = 0 \quad \text{for} \quad j = 0, 1, \dots n-2 \text{ and } n \ge 2.$$

Consequently, the structural relation (4) can be written as in (3), with

$$\gamma_{n+1}=\chi_{n+1,n}\neq 0, \ n\geq 0.$$

A 2nd order recurrence relation for an OPS: Proof(cont.)

(\Leftarrow) Let β_n and $\gamma_{n+1} \neq 0$ and $\{P_n\}_{n \geq 0}$ be such that

$$xP_{n}(x) = P_{n+1}(x) + \beta_{n}P_{n}(x) + \gamma_{n}P_{n-1}(x), \ n \ge 1,$$
(5)

Since a linear functional is uniquely determined by its sequence of moments, it can be inductively defined by

$$<\mathscr{L}, 1>=\mu_0\neq 0, \quad <\mathscr{L}, P_n(x)>=0, \ n\geq 0. \tag{6}$$

Hence, $\langle \mathscr{L}, P_1(x) \rangle = \mu_1 - \beta_0 \mu_0$ implies $\mu_1 = \beta_0 \mu_0$. Next, $\langle \mathscr{L}, P_2(x) \rangle = \mu_2 - (\beta_0 + \beta_1)\mu_1 + (\beta_0\beta_1 - \gamma_1)\mu_0$ gives μ_2 and so on.

Now, (5) implies $< \mathscr{L}, 1 >= \mu_0 \neq 0$ and

$$\langle \mathscr{L}, x P_n(x) \rangle = 0, \ n \ge 1, \qquad \langle \mathscr{L}, x^2 P_n(x) \rangle = 0, \ n \ge 2.$$

and, by induction, $\langle \mathscr{L}, x^k P_n(x) \rangle = 0$, for any $k = 0, \dots n-1$ and $n \ge 1$, whilst

$$< \mathscr{L}, x^n \mathcal{P}_n(x) >= \gamma_n < \mathscr{L}, x^{n-1} \mathcal{P}_{n-1}(x) >, \text{ for any } n \ge 1.$$

A 2nd order recurrence relation for an OPS: remarks

- Proof does not give explicit information about measure or support.
- Measure representation for the linear functional need not be unique and depends on Hamburger moment problem
- Can be traced back to earlier work on continued fractions with a rudimentary form given by Stieltjes in 1894;
- Also appears in books by Wintner [1929] and Stone [1932].
- Often referred to as Favard's theorem but was in fact independently discovered by Favard, Shohat and Natanson around 1935. We nowadays often call it the *spectral theorem*.

A 2nd order recurrence relation for an OPS: further remarks

Let $\{P_n\}_{n\geq 0}$ be orthogonal for \mathscr{L} satisfying

$$P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), \ n \ge 0,$$

with initial conditions $P_0(x) = 1$ and $P_1(x) = x - \beta_0$.

- ▶ $\{P_n\}_{n \in \mathbb{N}}$ is real if and only if $\beta_n \in \mathbb{R}$ and $\gamma_{n+1} \in \mathbb{R} \{0\}$ and all the moments of \mathscr{L} are real.
- \mathscr{L} is positive-definite if $\beta_n \in \mathbb{R}$ and $\gamma_{n+1} > 0$ and this implies $\Delta_{n+1}(u_0) > 0$. Consequently,

$$\langle \mathscr{L}, x^{2n} \rangle > 0$$
 and $\langle \mathscr{L}, x^{2n+1} \rangle \in \mathbb{R}$.

Exercise. Show the latter condition on the moments for \mathscr{L} .

▶ \mathscr{L} is negative definite if and only if it is real and $\Delta_{4n+1}(u_0) < 0$, $\Delta_{4n+2}(u_0) < 0$, $\Delta_{4n+3}(u_0) > 0$, $\Delta_{4n+4}(u_0) > 0$

Let $\{P_n\}_{n\geq 0}$ be orthogonal for \mathscr{L} satisfying

$$P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x), \ n \ge 0,$$

with initial conditions $P_0(x) = 1$ and $P_1(x) = x - \beta_0$.

If $\widetilde{P}_n(x) = a^{-n}P_n(ax+b)$ with $a \neq 0$, then $\{\widetilde{P}_n\}_{n \ge 0}$ is also orthogonal and satisfies

$$\widetilde{P}_{n+2}(x) = \left(x - \frac{\beta_{n+1} - b}{a}\right) \widetilde{P}_{n+1}(x) - \frac{\gamma_{n+1}}{a^2} \widetilde{P}_n(x), \ n \ge 0,$$

with initial conditions $\widetilde{P}_0(x) = 1$ and $\widetilde{P}_1(x) = x - \frac{\beta_0 - b}{a}$.

When an OPS $\{B_n\}_{n\geq 0}$ is not monic, there exists a corresponding monic OPS $\{P_n\}_{n\geq 0}$ so that $B_n(x) = k_n P_n(x)$, for all $n \geq 0$. As an OPS, $\{B_n\}_{n\geq 0}$ satisfies a second order recurrence relation. So, assuming that (3) holds, then $\{B_n\}_{n\geq 0}$ is such that

$$B_{n+1}(x) = (a_n x - b_n) B_n(x) - c_n B_{n-1}(x), \ n \ge 1$$
(7)

where

$$a_n = \frac{k_{n+1}}{k_n}, \quad b_n = \frac{k_{n+1}}{k_n}\beta_n \text{ and } c_n = \frac{k_{n+1}}{k_{n-1}}\gamma_n, \ n \ge 0,$$
 (8)

under the assumption that $c_0 = 0$.

Exercise 2. Show that if $\{P_n\}_{n\geq 0}$ is a monic OPS for \mathscr{L} , then $P_n(x)$ is the characteristic polynomial of the matrix tri-diagonal A_n given by:

$$A_{n} = \begin{bmatrix} \beta_{0} & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \gamma_{1} & \beta_{1} & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & \gamma_{2} & \beta_{2} & 1 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & \gamma_{n-2} & \beta_{n-2} & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \gamma_{n-1} & \beta_{n-1} \end{bmatrix}, \ n \ge 0.$$

Quiz 1: What is the relation between the zeros of $P_n(x)$ and the eigenvalues of A_n ?

Quiz 2: Can an OPS have complex zeros?

Suppose

$$\label{eq:relation} \begin{split} xP_n(x) &= P_{n+1}(x) + \beta_n P_n(x) + \gamma_n P_{n-1}(x), \ n \geq 0, \\ \text{with initial conditions } P_0(x) &= 1 \ \text{and} \ P_1(x) = x - \beta_0 \ \text{and} \ \text{assume} \ \gamma_n > 0. \end{split}$$

If
$$B_n(x) = k_n P_n(x)$$
 with $k_{n-1}/k_n = \sqrt{\gamma_n}$. Then B_n satisfies

$$xB_n(x) = \sqrt{\gamma_n}B_{n+1}(x) + \beta_n B_n(x) + \sqrt{\gamma_{n-1}}B_{n-1}(x), \ n \ge 0,$$

and we have

$$\begin{pmatrix} \begin{bmatrix} \beta_0 & \sqrt{\gamma_1} & \cdots & 0 & 0 \\ \sqrt{\gamma_1} & \beta_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \beta_{n-1} & \sqrt{\gamma_{n-1}} \\ 0 & 0 & \cdots & \sqrt{\gamma_{n-1}} & \beta_n \end{bmatrix} - x I_{n+1} \end{pmatrix} \begin{bmatrix} B_0(x) \\ B_1(x) \\ \vdots \\ B_{n-1}(x) \\ B_n(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -\sqrt{\gamma_n}B_{n+1}(x) \end{bmatrix}$$
Jacobi matrices (cont.)

and J_n is a truncated Jacobi matrix, whose eigenvalues are the zeros of $B_n(x)$ (as well as those of $P_n(x)$)

Jacobi matrices (cont.)

and J_n is a truncated Jacobi matrix, whose eigenvalues are the zeros of $B_n(x)$ (as well as those of $P_n(x)$)

therefore

all the zeros of $B_n(x)$ are simple and real.

Theorem

Let $\{P_n(x)\}_{n\geq 0}$ be an OPS (for some linear functional \mathscr{L}) satisfying the recurrence relation (3) with $\gamma_{n+1} \neq 0$, $n \geq 0$. Then,

$$\frac{P_{n+1}(x)P_n(y)-P_n(x)P_{n+1}(y)}{x-y} = (\gamma_0\gamma_1\dots\gamma_n)\sum_{k=0}^n \frac{P_k(x)P_k(y)}{\gamma_0\gamma_1\dots\gamma_k}, \ n \ge 0,$$
(9)

under the assumption where $\gamma_0 := 1$.

Proof. Exercise.

Observe that if we take the limit as $y \to x$ in (9), then we obtain the confluent version

$$P_{n+1}'(x)P_n(x) - P_n'(x)P_{n+1}(x) = (\gamma_0\gamma_1\dots\gamma_n)\sum_{k=0}^n \frac{P_k^2(x)}{\gamma_0\gamma_1\dots\gamma_k}, \ n \ge 0,$$
(10)

Under the assumption that $\gamma_n > 0$, then

$$P_{n+1}'(x)P_n(x) - P_n'(x)P_{n+1}(x) = (\gamma_0\gamma_1\dots\gamma_n)\sum_{k=0}^n \frac{P_k^2(x)}{\gamma_0\gamma_1\dots\gamma_k}, \ n \ge 0,$$
(11)

implies that

(see [Chihara, $\S5.1$])

- all the zeros of P_n(x) are simple and real. (Exercise)
 P_n(x) and P_{n+1}(x) do not have common zeros. (Exercise)
- Between two consecutive zeros of P_{n+1}(x) there exist exactly one zero of P_n(x), *i.e.*, the zeros of P_n and P_{n+1} separate each other (interlacing propperty).
 (Exercise)

Under the assumption that $\gamma_n > 0$, then

$$P_{n+1}'(x)P_n(x) - P_n'(x)P_{n+1}(x) = (\gamma_0\gamma_1\dots\gamma_n)\sum_{k=0}^n \frac{P_k^2(x)}{\gamma_0\gamma_1\dots\gamma_k}, \ n \ge 0,$$
(11)

implies that

(see [Chihara, §5.1])

- all the zeros of P_n(x) are simple and real. (Exercise)
 P_n(x) and P_{n+1}(x) do not have common zeros. (Exercise)
- Between two consecutive zeros of P_{n+1}(x) there exist exactly one zero of P_n(x), *i.e.*, the zeros of P_n and P_{n+1} separate each other (interlacing propperty).
 (Exercise)

Let us consider the set of all zeros $\{x_{n,k}\}_{k=1}^n$ of $P_n(x)$ ordered so that

$$x_{n,1} < \cdots < x_{n,k} < x_{n,k+1} < \cdots < x_{n,n}$$

Definition. Let $E \subset (-\infty, +\infty)$. A moment linear functional \mathscr{L} is said to be **positive-definite on** E iff $\langle \mathscr{L}, p(x) \rangle > 0$ for every real polynomial $p(x) \ge 0$ with $x \in E$ that does not vanish identically on E. The set E is called a **supporting set for** \mathscr{L} .

Theorem. If \mathcal{L} is positive-definite on E and E is an infinite set, then \mathcal{L} is positive-definite on every set containing E and also on every dense subset of E.

Proof. See [Chihara,p.27].

Theorem. If *E* is a supporting interval for a positive-definite \mathscr{L} , then all the zeros of $P_n(x)$ are located in the interior of *E*.

Proof. Since $\langle \mathcal{L}, P_n(x) \rangle = 0$ (by orthogonality), then $P_n(x)$ must change sign at least once in the interior of E.

So, \exists zero of odd multiplicity on located in the interior of *E*.

Let z_1, \ldots, z_j denote the distinct zeros of odd multiplicity in the interior of E and set

$$\rho(x) = (x - z_1) \cdots (x - z_j)$$

Then $\rho(x)P_n(x) \ge 0$ for $x \in E$ which implies $\langle \mathscr{L}, \rho(x)P_n(x) \rangle > 0$ and this contradicts the orthogonality conditions, unless k = n.

University of Kent

Zeros of an OPS

Regarding the set $\{x_{n,k}\}_{k=1}^n$ of all zeros of $P_n(x)$ s.t.

$$x_{n,1} < \cdots < x_{n,k} < x_{n,k+1} < \cdots < x_{n,n}$$

▶ For each $k \ge 1$, the sequence $\{x_{n,k}\}_{n=k}^{+\infty}$ is a decreasing sequence:

$$x_{k,k} > x_{k+1,k} > x_{k+2,k} > \ldots > x_{n+k,k} > \ldots$$

and the limit $\zeta_i = \lim_{n \to \infty} x_{n,i}, \quad (i = 1, 2, ...)$ exists.

▶ For each $k \ge 1$, the sequence $\{x_{n,n-k+1}\}_{n=k}^{+\infty}$ is an increasing sequence:

$$x_{k,1} < x_{k+1,2} < x_{k+2,3} < \ldots < x_{n+k,n+1} < \ldots$$

and the limit $\eta_j = \lim_{n \to \infty} x_{n,n-j+1}, \quad (j = 1, 2, ...)$ exists.

Zeros of an OPS

Regarding the set $\{x_{n,k}\}_{k=1}^n$ of all zeros of $P_n(x)$ s.t.

$$x_{n,1} < \cdots < x_{n,k} < x_{n,k+1} < \cdots < x_{n,n}$$

▶ For each $k \ge 1$, the sequence $\{x_{n,k}\}_{n=k}^{+\infty}$ is a decreasing sequence:

$$x_{k,k} > x_{k+1,k} > x_{k+2,k} > \ldots > x_{n+k,k} > \ldots$$

and the limit $\zeta_i = \lim_{n \to \infty} x_{n,i}$, (i = 1, 2, ...) exists.

▶ For each $k \ge 1$, the sequence $\{x_{n,n-k+1}\}_{n=k}^{+\infty}$ is an increasing sequence:

$$x_{k,1} < x_{k+1,2} < x_{k+2,3} < \ldots < x_{n+k,n+1} < \ldots$$

and the limit $\eta_j = \lim_{n \to \infty} x_{n,n-j+1}, \quad (j = 1, 2, ...)$ exists.

The closed interval $[\zeta_1, \eta_1]$, called the **true interval of orthogonality**, is:

- the smallest closed interval that contains all the zeros of all P_n ;
- ▶ the smallest closed interval that is a supporting set for *L*.

Definition. A polynomial sequence $\{S_n(x)\}_{n\geq 0}$ is called **symmetric** whenever $S_n(-x) = (-1)^n S_n(x), n > 0.$

This means that $\exists \{R_n(x)\}_{n\geq 0}$ and $\{Q_n(x)\}_{n\geq 0}$ s.t.

$$S_{2n}(x) = R_n(x^2)$$
 and $S_{2n+1}(x) = xQ_n(x^2), n \ge 0.$

Proof. Exercise.

Definition. A linear functional \mathscr{L} is called **symmetric** when $\mathscr{L}[x^{2n+1}] = 0$, $n \ge 0$.

For a symmetric \mathscr{L} , we have

 $\langle \mathscr{L}, p(-x) \rangle = \langle \mathscr{L}, p(x) \rangle$, for any polynomial p(x).

Proposition. Let $\{P_n(x)\}_{n\geq 0}$ be the monic OPS for \mathscr{L} . The following are equivalent:

- (a) \mathscr{L} is symmetric.
- (b) $\{P_n(x)\}_{n\geq 0}$ is symmetric, that is, $P_n(-x) = (-1)^n P_n(x), n \geq 0.$
- (c) There exist a sequence of coefficients $\gamma_n \neq 0$ for $n \ge 1$, so that $\{P_n(x)\}_{n \ge 0}$ satisfies

$$P_{n+1}(x) = xP_n(x) - \gamma_n P_{n-1}(x)$$

with initial conditions $P_0(x) = 1$ and $P_1(x) = x$.

1

Proposition. Let $\{P_n(x)\}_{n\geq 0}$ be the monic OPS for \mathscr{L} . The following are equivalent:

- (a) \mathscr{L} is symmetric.
- (b) $\{P_n(x)\}_{n\geq 0}$ is symmetric, that is, $P_n(-x) = (-1)^n P_n(x), n \geq 0$.
- (c) There exist a sequence of coefficients $\gamma_n \neq 0$ for $n \ge 1$, so that $\{P_n(x)\}_{n \ge 0}$ satisfies

$$P_{n+1}(x) = xP_n(x) - \gamma_n P_{n-1}(x)$$

with initial conditions $P_0(x) = 1$ and $P_1(x) = x$.

Hence, for a symmetric OPS $\{S_n(x)\}_{n\geq 0}$, then the two components of its quadratic decomposition

$$S_{2n}(x) = R_n(x^2)$$
 and $S_{2n+1}(x) = xQ_n(x^2), n \ge 0.$

are also orthogonal and they respectively satisfy

$$R_{n+1} = (x - (\gamma_{2n} + \gamma_{2n+1}))R_n(x) - \gamma_{2n}\gamma_{2n-1}R_{n-1}(x)$$

$$Q_{n+1} = (x - (\gamma_{2n+1} + \gamma_{2n+2}))Q_n(x) - \gamma_{2n}\gamma_{2n+1}Q_{n-1}(x)$$

In case \mathcal{L} admits an integral representation via a weight function W(x) on the interval (a, b), that is,

$$<\mathscr{L}, f(x)>=\int_a^b f(x)W(x)\mathrm{d}x, \quad ext{ for any } \quad f\in\mathscr{P},$$

then a = -b and W(-x) = W(x) for $x \in (0, b)$.

In this case $\{S_n(x)\}_{n\geq 0}$ is an OPS for

$$<\widehat{\mathscr{L}},f(x)>=\int_{0}^{b^{2}}f(x)\widehat{W}(x)\mathrm{d}x,\quad ext{ for any }\quad f\in\mathscr{P},$$

with

$$\widehat{W}(x) = \frac{W(\sqrt{x}) + W(-\sqrt{x})}{2\sqrt{x}}$$

Symmetric OPS: Example

The (monic) Laguerre polynomials $\{\hat{L}_n(x;\alpha)\}_{n\geq 0}$) are the orthogonal polynomial components of the so-called generalised Hermite polynomials $\{S_n(x;\alpha)\}_{n\geq 0}$), which are symmetric:

$$S_{2n}(x; \alpha) = \hat{L}_n(x^2; \alpha)$$
 and $S_{2n+1}(x; \alpha) = x \hat{L}_n(x^2; \alpha+1)$

Here $\{S_n(x;\alpha)\}_{n\geq 0}$ satisfies the orthogonality relation

$$\int_{-\infty}^{+\infty} S_m(x;\alpha) S_n(x;\alpha) |x|^{2\alpha+1} e^{-x^2} dx = K_n \delta_{n,m}$$

whilst

$$\int_0^{+\infty} L_m(x;\alpha) L_n(x;\alpha) x^{\alpha} e^{-x} dx = K_n \delta_{n,m}$$

where it was assumed that $\alpha > -1$. The particular case where $\alpha = -\frac{1}{2}$, brings the well known relation between Hermite and Laguerre polynomials.

Furthermore,

- Hermite and Laguerre are examples of classical orthogonal polynomials.
- Generalised Hermite (α ≠ −1/2) is an example of a semiclassical orthogonal polynomial sequence.

- T. S. Chihhara, introduction to Orthogonal Polynomials, Dover Publ. (reprinted version of 1978)
- M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, 2009
- G. Szegő, Orthogonal Polynomials, 4th ed., AMS Colloquium Publ. 23, AMS, 1975.

A special collection of orthogonal polynomial sequences is the so-called **classical polynomials**, which has been tremendously applied in several areas.

Definition. An OPS $\{P_n\}_{n\geq 0}$ for \mathscr{L} is **classical** when the sequence of derivatives $\{Q_n(x)\}_{n\geq 0}$ defined by

$$Q_n(x) := \frac{1}{n+1} P'_{n+1}(x), \quad n \ge 0,$$
(12)

is also orthogonal. In this case, the corresponding moment linear functional ${\mathcal L}$ is said to be a **classical**.

Collectively, the classical polynomials share a number of properties.

Classical Polynomials: characterisation theorem

Theorem. Let $\{P_n\}_{n \ge 0}$ be a monic OPS for \mathscr{L} . The following are equivalent:

(a)
$$\{Q_n(x) := \frac{1}{n+1} P'_{n+1}(x)\}_{n \ge 0}$$
 is a monic OPS (Hahn's property)

(b) \exists polynomials Φ, Ψ with deg $\Phi \leq 2$ and deg $\Psi = 1$ s.t.

 $D(\Phi(x)\mathscr{L}) + \Psi(x)\mathscr{L} = 0$ (Pearson equation)

subject to $\Psi(0) - \frac{n}{2}\Phi''(0) \neq 0$ for any $n \ge 0$.

(c) \exists polynomials Φ, Ψ with deg $\Phi \leq 2$ and deg $\Psi = 1$ and constants λ_n s.t.

$$\Phi(x)\frac{d^2P_n}{dx^2} - \Psi(x)\frac{dP_n}{dx} = \lambda_n P_n(x)$$
 (Bochner's equation)

(d) \exists polynomial Φ with deg $\Phi \leq 2$ and nonzero constants ζ_n s.t.

$$P_n(x)W(x) = \zeta_n \frac{\mathrm{d}^n}{\mathrm{d}x^n} \Big(\Phi^n(x)W(x) \Big), \qquad \qquad (\text{Rodrigues' formula})$$

(a) \Rightarrow (b) and (c)

The dual sequence $\{u_n\}_{n\geq 0}$ of $\{P_n\}_{n\geq 0}$ is given by

$$u_n = (\langle u_0, x^n P_n \rangle)^{-1} P_n(x) u_0$$
, where $\mathscr{L} = u_0$.

Likewise the orthogonality of $\{Q_n\}_{n\geq 0}$ implies that its corresponding dual sequence $\{v_n\}_{n\geq 0}$ is given by

$$v_n = (\langle v_0, x^n Q_n \rangle)^{-1} Q_n(x) v_0.$$

Besides, the relation $Q_n(x) := \frac{1}{n+1} P'_{n+1}(x)$ implies

$$v'_n = -(n+1)u_{n+1}, \ n \ge 0,$$

so that, we have

$$(Q_n(x)v_0)' = -\lambda_{n+1}P_{n+1}(x)u_0, \ n \ge 0,$$

that is,

$$Q_n(x)v_0' + Q_n'(x)v_0 = -\lambda_{n+1}P_{n+1}(x)u_0, \ n \ge 0, \tag{13}$$

where

$$\lambda_n = (n+1) \frac{\langle v_0, x^n Q_n(x) \rangle}{\langle u_0, x^{n+1} P_{n+1}(x) \rangle} \neq 0 \ , \ n \ge 0.$$

With n = 0, (13) brings

$$v'_0 = -\Psi(x)u_0$$
 with $\Psi(x) = \lambda_1 P_1(x)$ (14)

which implies that (13) becomes

$$Q'_n(x)v_0 = -(\lambda_{n+1}P_{n+1}(x) - \Psi(x)Q_n(x))u_0, \ n \ge 1.$$

For n = 1, the latter reads

$$v_0 = \Phi(x)u_0 \quad \text{with} \quad \Phi(x) = -\left(\lambda_2 P_2(x) - \lambda_1 P_1(x)Q_1(x)\right) \tag{15}$$

and deg $\Phi\leq 2.$ After a single differentiation of the latter identity, we prove (a) \Rightarrow (b), because of (14).

Now, inserting (14) and (15) in the equality (13) brings

$$-Q_n(x)\Psi(x)u_0+Q'_n(x)\Phi(x)u_0=-\lambda_{n+1}P_{n+1}(x)u_0, \ n\geq 0.$$

Since $\{P_n\}_{n\geq 0}$ is orthogonal for u_0 , we have that $f(x)u_0 = 0 \Leftrightarrow f(x) = 0$ for any polynomial f(x). Consequently, we obtain

$$-Q_n(x)\Psi(x) + Q'_n(x)\Phi(x) = -\lambda_{n+1}P_{n+1}(x), \ n \ge 0.$$

Using the definition of $Q_n(x) = \frac{1}{n+1}P'_{n+1}(x)$, we prove (a) \Rightarrow (c).

 $(c) \Rightarrow (b)$ Bochner's differential equation implies

$$0 = < u_0, \Phi(x) P''_n(x) - \Psi(x) P'_n(x) > = < ((\Phi(x)u_0)' + \Psi(x)u_0)', P_n >, n \ge 0.$$

Since the latter is valid for any $n \ge 0$ and $\{P_n\}_{n\ge 0}$ is orthogonal, then

$$\left((\Phi(x)u_0)'+\Psi(x)u_0\right)'=0$$

and this implies

$$(\Phi(x)u_0)'+\Psi(x)u_0=0$$

Hence

$$(n+1) < \Phi(x)u_0, x^k Q_n(x) > = < u_0, \underbrace{(-k\Phi(x) + x\Psi(x))x^{k-1}}_{\text{degree } \le k+1} P_{n+1}(x) >$$

 $(d) \Rightarrow (b)$: The particular choice of n = 1 in the Rodrigues formula corresponds to Pearson equation.

 $(c) \Rightarrow (d)$ From the Bochner's differential equation, and on account of the Pearson equation, we can write

$$(P'_n(x)\Phi(x)u_0)'=\lambda_n P_n(x)u_0$$

Similarly, we deduce that there are coefficients $\zeta_{k,n}$ such that

$$\frac{\mathrm{d}^k}{\mathrm{d}x^k}\left(\left(\frac{\mathrm{d}^k}{\mathrm{d}x^k}P_{n+k}(x)\right)\Phi^k(x)u_0\right)'=\zeta_{k,n}P_k(x)u_0.$$

Now Rodrigues formula is obtained from the latter by setting n = 0.

University of Kent

Proposition.

If $\{P_n\}_{n\geq 0}$ is classical, then so is $\{Q_n\}_{n\geq 0}$ with $Q_n(x) = \frac{1}{n+1}P'_{n+1}(x)$ and it satisfies

$$\Phi(x)Q_n''(x) - (\Psi(x) - \Phi'(x))Q_n'(x) = (\chi_{n+1} + \Psi'(0))Q_n(x), \ n \ge 0.$$
(16)

where Φ and Ψ are polynomials such that $\deg\Phi\leqslant 2,\ \deg(\Psi)=1$ and Φ monic, and

$$\chi_0=0 \quad ext{and} \quad \chi_n=n\Big(\Psi'(0)-rac{\Phi''(0)}{2}(n-1)\Big)
eq 0 \quad ext{for} \quad n\geq 1.$$

Proof. As $\{P_n\}_{n\geq 0}$ is classical, then Bochner's differential equation holds. We differentiate both sides of the equation w.r.t. x and then replace $P'_{n+1}(x) = (n+1)Q_n(x)$ to get (16).

Since $\{Q_n\}_{n\geq 0}$ is orthogonal and satisfies (16), we conclude that $\{Q_n\}_{n\geq 0}$ is classical.

More generally, we have:

Corollary. If $\{P_n\}_{n\geq 0}$ is classical, then for each $k\geq 1$, the sequence of kth derivatives

$$\{P_n^{[k]}(x) := \frac{1}{(n+1)_k} \frac{\mathrm{d}^k}{\mathrm{d}x^k} P_{n+k}(x)\}_{n \ge 0}$$

is an OPS and also classical.

Proof. After the previous characterisation Theorem for classical polynomials and the latter Proposition, the result follows by induction.

Highlights. If $\{P_n\}_{n\geq 0}$ is classical (and orthogonal w.r.t. \mathcal{L}), then

$$\{P_n^{[k]}(x) := \frac{1}{(n+1)_k} \frac{\mathrm{d}^k}{\mathrm{d}x^k} P_{n+k}(x)\}_{n \ge 0}$$

is classical and orthogonal w.r.t. the linear functional

$$\mathscr{L}^{[k]} = \Phi^k(x)\mathscr{L}$$

- ► The characterisation via the Pearson equation is due to J.L. Geronimus (1940).
- ▶ In 1929, S. Bochner studied all the solutions of the differential equation

$$\Phi(x)\frac{\mathrm{d}^2 P_n}{\mathrm{d}x^2} - \Psi(x)\frac{\mathrm{d}P_n}{\mathrm{d}x} = \lambda_n P_n(x)$$

under the restrictions of deg $\Phi \leq 2$ and deg $\Psi = 1$. These consisted of essentially 5 distinct families of polynomials, up to a change of variable, which are the four families of classical polynomials (Hermite, Laguerre, Bessel and Jacobi) and the sequence $\{x^n\}_{n\geq 0}$ (which is not orthogonal). At that time, Bessel polynomials were disregarded as these are not orthogonal with respect to a positive definite linear functional.

▶ In 1935, W. Hahn observed that all the classical families of Hermite, Laguerre, Bessel and Jacobi polynomials are such that the sequence of its derivatives is also orthogonal. Moreover, he showed this as a necessary and sufficient condition. A year later, Hahn has shown (with an extremely short proof) that in fact it is a necessary and sufficient condition for an OPS to be orthogonal that the sequence of the *k*th derivatives is an OPS for some $k \ge 1$.

Classical polynomials - an equivalence relation

Proposition. Suppose $\{P_n\}_{n\geq 0}$ is classical and therefore assumed to satisfy

$$\Phi(x)P_n''(x) - \Psi(x)P_n'(x) = \chi_n P_n(x)$$

Then $\widetilde{P}_n(x) := a^{-n}P_n(ax+b)$ satisfies

$$\widetilde{\Phi}(x)\widetilde{P}_n''(x) - \widetilde{\Psi}(x)\widetilde{P}_n'(x) = \widetilde{\chi}_n\widetilde{P}_n(x)$$

where

$$\widetilde{\Phi}(x) = a^{-t} \Phi(ax+b), \ \widetilde{\Psi}(x) = a^{1-t} \Psi(ax+b), \ \text{and} \ \ \widetilde{\chi}_n = a^2 \chi_n \ \ \text{with} \ \ t = \deg \Phi.$$

Proof.

The result is a mere consequence of the change of variable $x \rightarrow ax + b$.

Classical polynomials - an equivalence relation

Proposition. Suppose $\{P_n\}_{n\geq 0}$ is classical and therefore assumed to satisfy

$$\Phi(x)P_n''(x) - \Psi(x)P_n'(x) = \chi_n P_n(x)$$

Then $\widetilde{P}_n(x) := a^{-n}P_n(ax+b)$ satisfies

$$\widetilde{\Phi}(x)\widetilde{P}_n''(x) - \widetilde{\Psi}(x)\widetilde{P}_n'(x) = \widetilde{\chi}_n\widetilde{P}_n(x)$$

where

$$\widetilde{\Phi}(x) = a^{-t} \Phi(ax+b), \ \widetilde{\Psi}(x) = a^{1-t} \Psi(ax+b), \ \text{and} \ \ \widetilde{\chi}_n = a^2 \chi_n \ \ \text{with} \ \ t = \deg \Phi.$$

Proof.

The result is a mere consequence of the change of variable $x \rightarrow ax + b$.

The classical character is invariant under any affine transformation

$$\begin{array}{rcccc} T : & \mathscr{P} & \longrightarrow & \mathscr{P} \\ & p(x) & \longmapsto & (h_a \circ \tau_{-b}) \, p(x) := p(ax+b) \end{array}$$

with $a \in \mathbb{C}^*, b \in \mathbb{C}$, because T is an isomorphism preserving the orthogonality.

Classical polynomials - an equivalence relation

The transformed classical polynomials

$$\widetilde{P}_n(x) := a^{-n} (TP_n)(x) := a^{-n} P_n(ax+b),$$

orhtogonal w.r.t. the classical linear functional $\widetilde{\mathscr{L}}=\bigl(h_{a^{-1}}\circ\tau_{-b}\bigr)\mathscr{L}$ satisfying

$$D\left(\widetilde{\Phi}\ \widetilde{u}_0\right) + \widetilde{\Psi}\ \widetilde{u}_0 = 0,$$

with $\widetilde{\Phi}(x) = a^{-t} \Phi(ax+b), \ \widetilde{\Psi}(x) = a^{1-t} \Psi(ax+b)$, where $t = \deg(\Phi) \leqslant 2$

Therefore it appears to be natural to define the following equivalence relation

$$\forall u, v \in \mathscr{P}', \quad u \sim v \quad \Leftrightarrow \quad \exists a \in \mathbb{C}^*, b \in \mathbb{C} : u = (h_{a^{-1}} \circ \tau_{-b}) v.$$

or, equivalently,

$$\{P_n\}_{n\geq 0} \sim \{B_n\}_{n\geq 0} \quad \Leftrightarrow \quad \exists a \in \mathbb{C}^*, b \in \mathbb{C} : B_n(x) = a^{-n}P_n(ax+b).$$

where

$$\langle \tau_{-b}u, f(x) \rangle = \langle u, \tau_{b}f(x) \rangle = \langle u, f(x-b) \rangle \langle h_{a}u, f(x) \rangle = \langle u, h_{a}f(x) \rangle = \langle u, f(ax) \rangle$$

Classical polynomials - the four equivalence classes

As a result, there are **four equivalence classes**, determined by the nature of Φ (monic), which are:

• Hermite polynomials when deg $\Phi = 0$;

We will take $\Phi(x) = 1$ as representative.

Laguerre polynomials when deg Φ = 1 ;

We will take $\Phi(x) = x$ as representative.

• Bessel polynomial when deg $\Phi = 2$ and Φ has a single root;

We will take $\Phi(x) = x^2$ as representative.

• Jacobi polynomials when deg $\Phi = 2$ and Φ has two simple roots.

We will take $\Phi(x) = (x-1)(x+1)$ as representative.

Classical polynomials - determination of the recurrence coefficients

Between

$$P_{n+2}(x) = (x - \beta_{n+1})P_{n+1}(x) - \gamma_{n+1}P_n(x)$$

and

$$Q_{n+2}(x) = (x - \widetilde{\beta}_{n+1})Q_{n+1}(x) - \widetilde{\gamma}_{n+1}Q_n(x),$$

we obtain

$$P_{n+1}(x) = Q_{n+1}(x) + (n+1)(\beta_{n+1} - \widetilde{\beta}_n)Q_n(x) + (n\gamma_{n+1} - (n+1)\widetilde{\gamma}_n)Q_{n-1}(x).$$

which leads to

$$\begin{split} \widetilde{\gamma}_{n} &= \frac{n}{n+1} \vartheta_{n} \gamma_{n+1} \\ (n+2)\widetilde{\beta}_{n} - n\widetilde{\beta}_{n-1} &= (n+1)\beta_{n+1} - (n-1)\beta_{n} \\ \vartheta_{n+1}\widetilde{\beta}_{n+1} + (\vartheta_{n+1} - 2)\widetilde{\beta}_{n} &= (2\vartheta_{n+1} - 1)\beta_{n+2} - \beta_{n+1} \\ (n+1)\left(1 - \frac{n+3}{n+2}\vartheta_{n+1}\right)\gamma_{n+2} + \left(1 + n(\vartheta_{n} - 1)\right)\gamma_{n+1} + (n+1)(\beta_{n+1} - \widetilde{\beta}_{n})^{2} = 0 \end{split}$$

where

$$\vartheta_n = \frac{(n+1)\frac{\Phi''(0)}{2} - \Psi'(0)}{(n)\frac{\Phi''(0)}{2} - \Psi'(0)}, \ n \ge 0.$$

Classical polynomials - Case deg $\Phi \leq 1$

This implies that $\vartheta_n = 1$ for any $n \ge 0$. so that

$$\begin{aligned} \beta_n &= \beta_0 - (\beta_0 - \beta_1)n\\ \widetilde{\beta}_n &= \beta_0 - \frac{\beta_0 - \beta_1}{2}(2n+1)\\ \gamma_{n+1} &= (n+1)\left(\gamma_1 + \left(\frac{\beta_0 - \beta_1}{2}\right)^2 n\right)\\ \widetilde{\gamma}_n &= (n+1)\left(\gamma_1 + \left(\frac{\beta_0 - \beta_1}{2}\right)^2 (n+1)\right) \end{aligned}$$

and, consequently,

$$\Phi(x)=k^{-1}ig(cx+ceta_0+\gamma_1ig) \quad ext{and} \quad \Psi(x)=k^{-1}(x-eta_0).$$

There are two subcases to analyse depending on whether:

 $\underbrace{c=0}_{\text{Hermite polynomials}} \text{ or } \underbrace{c\neq 0}_{\text{Laguerre polynomials}}$

University of Kent

p.66

Classical polynomials - Case deg $\Phi=2$

Set $ho=-\Psi'(0)$ so that we have

$$artheta_n = rac{n+
ho+1}{n+
ho}$$
 for all $n \ge 0$

as well as

$$\begin{split} \beta_n &= d + \frac{1}{2} \frac{c(\rho^2 - 1)(\rho + 3)}{(2n + \rho + 1)(2n + \rho - 1)} \\ \widetilde{\beta}_n &= d + \frac{1}{2} \frac{c(\rho^2 + 1)(\rho + 3)}{(2n + \rho + 1)(2n + \rho + 3)} \\ \gamma_{n+1} &= \frac{(n+1)(n+\rho) \left(\mu n^2 + \mu(\rho + 1)n + \gamma_1(\rho + 1)^2(\rho + 2)\right)}{(2n + \rho)(2n + \rho + 1)^2(2n + \rho + 2)} \end{split}$$

with

$$d=rac{(
ho+1)}{2}\left(eta_1-rac{
ho-1}{
ho+1}\widetildeeta_0
ight) \quad ext{and} \quad \mu=4(
ho+2)\gamma_1+c^2(
ho+3)^2$$

which imply

$$\Phi(x) = (x-d)^2 - \frac{\mu}{4} \quad \text{and} \quad \Psi(x) = k^{-1}(x-\beta_0). \tag{17}$$

We choose $\beta_0 = 0$ and $\gamma_1 = \frac{1}{2}$, so that

$$\Phi(x) = 1$$
 and $\Psi(x) = 2x$, (18)

and

$$\beta_n = 0$$
 and $\gamma_{n+1} = \frac{n+1}{2}, n \ge 0.$ (19)

as well as

$$\widetilde{\beta}_n = 0$$
 and $\widetilde{\gamma}_{n+1} = \frac{n+1}{2}, n \ge 0.$ (20)

Observe that this means that

$$P_n''(x) - 2xP_n'(x) = -2nP_n(x), \ n \ge 0.$$

Classical polynomials - Hermite polynomials (weight function)

In this case, the Hermite OPS is orthogonal for a linear functional ${\mathscr L}$ admitting the integral representation

$$\langle \mathscr{L}, f(x) \rangle = \int_{-\infty}^{+\infty} f(x) W(x) dx$$
, for all polynomials $f(x)$.

where W(x) is a solution of

$$W'(x)+2xW(x)=0,$$

subject to $f(x)W(x)\Big|_{-\infty}^{+\infty} = 0$ for any polynomial f(x). Indeed, by solving the homogeneous differential equation, it follows that

$$W(x) = k \mathrm{e}^{-x^2}$$

for some integration constant k. Obviously k cannot be zero (otherwise W(x) = 0, identically), and we may choose it so that L[1] = 1, which means that

$$\int_{-\infty}^{+\infty} W(x) \mathrm{d}x = 1.$$

Hence we take $k = \frac{1}{\sqrt{\pi}}$ and we obtain

$$\langle \mathscr{L}, f(x) \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} f(x) e^{-x^2} dx$$
, for all polynomials $f(x)$.

Rodrigues formula:

$$\exp(-x^2/2)P_n(x;\alpha,\beta) = \frac{(-1)^n}{2^n} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(\exp(-x^2/2)\right), \ n \ge 0.$$

Similar formulas can be obtained from

$$E(x)P_n(x) = 2^{-n} \left(-\frac{\mathrm{d}}{\mathrm{d}x} + 2x - \frac{E'(x)}{E(x)}\right)^n E(x), \ n \ge 0,$$

for suitable choices of the analytic function E(x).

Clearly, the Rodrigues formula can be obtained from the latter by setting $E(x) = \exp(-x^2/2)$. Another interesting example is when E(x) = 1, so that we obtain:

$$P_n(x) = 2^{-n} \left(-\frac{\mathrm{d}}{\mathrm{d}x} + 2x\right)^n, \ n \ge 0.$$

Generating function. The Hermite polynomials can also be described via a generating function:

$$\exp\left(2xt - t^2\right) = \sum_{n \ge 0} \frac{2^n}{n!} P_n(x) t^n$$

hence, $\left. \frac{\partial^n}{\partial x^n} \left(\exp\left(2xt - t^2\right) \right) \right|_{t=0} = 2^n P_n(x), \ n \ge 0.$

Classical polynomials - Laguerre polynomials

We choose β_0 and c such that $\beta_0 - \frac{\gamma_1}{c} = 0$ and c = 1 and we set $\gamma_1 = 1 + \alpha$ to obtain

$$\Phi(x) = x$$
 and $\Psi(x) = x - (\alpha + 1)$, (21)

and

$$\beta_n = 2n + \alpha + 1 \quad \text{and} \quad \gamma_{n+1} = (n+1)(n+\alpha+1), \ n \ge 0, \qquad (22)$$

$$\beta_n = 2n + \alpha + 2$$
 and $\widetilde{\gamma}_{n+1} = (n+1)(n+\alpha+2), n \ge 0,$ (23)

provided that $\alpha \neq -n$ for any integer $n \geq 1$. So we write

 $P_n(x; \alpha)$ instead of $P_n(x)$.

and, from the recurrence coefficients, we deduce that

$$P'_{n+1}(x; \alpha) = (n+1)P_n(x; \alpha+1).$$

and also

$$xP_n''(x;\alpha) - (x-\alpha-1)P_n'(x;\alpha) = -nP_n(x;\alpha), \ n \ge 0.$$
(24)

Classical polynomials - Laguerre polynomials (weight function)

We seek an integral representation for L

$$\langle \mathscr{L}, f(x) \rangle = \int_{-\infty}^{+\infty} f(x) W(x) dx$$
, for all polynomials $f(x)$,

Hence W(x) is a solution of

$$(xW(x))'+(x-\alpha-1)W(x)=cg(x),$$

subject to the conditions

$$\int_{a}^{b} W(x) dx \neq 0 \quad \text{and} \quad p(x) W(x) |_{a}^{b} = 0, \text{ for any polynomial } p(x), \quad (25)$$

With c = 0, the general solution of the latter differential equation is given by

$$W(x) = \begin{cases} k_1 e^{-x} |x|^{\alpha} & \text{if } x < 0\\ k_2 e^{-x} x^{\alpha} & \text{if } x > 0. \end{cases}$$

So, lpha>-1 and necessarily $k_1=0$ and $k_2
eq 0$ s.t.

$$k_2 \int_0^{+\infty} e^{-x} x^{\alpha} \mathrm{d}x = 1 \quad \Rightarrow \quad k_2 = \frac{1}{\Gamma(\alpha+1)}.$$

Therefore, we conclude that the linear functional can be represented by

$$\langle \mathscr{L}, f(x) \rangle = \frac{1}{\Gamma(\alpha+1)} \int_{0}^{+\infty} f(x) e^{-x} x^{\alpha} dx$$
, provided that $\alpha > -1$.
University of Kent
Rodrigues formula:

$$x^{lpha}\exp(-x)P_n(x; lpha, eta) = (-1)^n rac{\mathrm{d}^n}{\mathrm{d}x^n} \left(x^{lpha+n}\exp(-x)
ight), \ n \ge 0.$$

Generating function: monic Laguerre polynomials can be described as follows

$$(1-x)^{-\alpha-1}\exp\left(\frac{xt}{t-1}\right) = \sum_{n\geq 0} P_n(x;\alpha) \frac{(-t)^n}{n!}$$

Explicit expression:

$$L_n(x;\alpha) = (-1)^n (\alpha+1)_{n} {}_1F_1\left(\frac{-n}{\alpha+1};x\right)$$

Classical polynomials - Bessel polynomials

We choose $\mu = 0$ and therefore $\Phi(x) = (x - d)^2$ and we can set d = 0 and $\gamma_1(\rho + 2)(\rho + 1)^2 = -4$. Hence $c^2(\rho + 1)^2(\rho + 3)^2 = 16$. We take $c = -4(\rho + 1)^{-1}(\rho + 3)^{-1}$ and set $\rho + 1 = 2\alpha$ to obtain: $\Phi(x) = x^2$ and $\Psi(x) = -2(\alpha x + 1)$, (26)

and

$$\beta_{0} = -\frac{1}{\alpha}, \quad \beta_{n+1} = \frac{1-\alpha}{(n+\alpha)(n+\alpha+1)}, \quad (27)$$

$$\gamma_{n+1} = -\frac{(n+1)(n+2\alpha-1)}{(2n+2\alpha-1)(n+\alpha)^{2}(2n+2\alpha+1)}, \quad n \ge 0, \quad (28)$$

provided that $\alpha \neq -n$ for any integer $n \ge 0$. Denoting $\beta_n := \beta_n(\alpha)$, it follows that

$$\widetilde{\beta}_n = \beta_n(\alpha+1), \quad \widetilde{\gamma}_n = \gamma_n(\alpha+1).$$

Hence, Bessel polynomials depend on a parameter, so that we write

 $P_n(x; \alpha)$ instead of $P_n(x)$.

The expressions of the recurrence coefficients also tells

$$P'_{n+1}(x; \alpha) = (n+1)P_n(x; \alpha+1), \ n \ge 0.$$

They satisfy

$$x^{2}P_{n}''(x) + 2(\alpha x + 1)P_{n}'(x) = n(n + 2\alpha - 1)P_{n}(x), \ n \ge 0.$$
 University of Kent

p.74

Rodrigues formula:

$$x^{2-2\alpha}\exp\left(\frac{2}{x}\right)P_n(x;\alpha)=\frac{(1)^n}{(-2n-2\alpha+2)_n}\frac{\mathrm{d}^n}{\mathrm{d}x^n}\left(x^{-2+2\alpha+2n}\exp\left(-\frac{2}{x}\right)\right),\ n\geq 0.$$

Similar formulas may be obtained via the following:

$$E(x)P_n(x;\alpha) = \frac{1}{(2\alpha)_n} \left(-x^2 \frac{d^2}{dx^2} - 2\left(\alpha + \frac{n+1}{2}\right)x - 2 + x^2 \frac{E'(x)}{E(x)} \right)^n E(x), \ n \ge 0,$$

for suitable choices of the analytic function E(x).

Explicit expression.

$$P_n(x;\alpha) = \frac{2^n}{(n+2\alpha-1)_n} {}_2F_0\left(\begin{array}{c} -n, n+2\alpha-1 \\ - \end{array}; -\frac{x}{2}\right)$$

or, equivalently,

$$P_n(x;\alpha) = x^n {}_1F_1\left(\frac{-n}{-2n-2\alpha+2};\frac{2}{x}\right)$$

Classical polynomials - Jacobi polynomials

Here $\mu \neq 0$. A suitable linear transformation on the variable permits to place the two distinct roots at -1 and 1. For that, we take $\mu = 4$ and d = 0. The other two parameters ρ and c remain arbitrary, which we replace by other two parameters α and β , by setting

$$ho=lpha+eta+1$$
 and $c=rac{2(lpha-eta)}{(
ho+1)(
ho+3)}.$

With these conditions we obtain

$$\Phi(x) = x^2 - 1$$
, and $\Psi(x) = -(\alpha + \beta + 2)x + \alpha - \beta$,

and also

$$\begin{split} \beta_0 &= \frac{\alpha - \beta}{\alpha + \beta + 2}, \quad \beta_{n+1} = \frac{\alpha^2 - \beta^2}{(2n + \alpha + \beta + 2)(2n + \alpha + \beta + 4)}\\ \gamma_{n+1} &= \frac{4(n+1)(n + \alpha + \beta + 1)(n + \alpha + 1)(n + \beta + 1)}{(2n + \alpha + \beta + 1)(2n + \alpha + \beta + 2)^2(2n + \alpha + \beta + 3)}, \ n \geq 0. \end{split}$$

Obviously, it is required that $\alpha + \beta \neq -(n+1)$, $\alpha \neq -(n+1)$ and $\beta \neq -(n+1)$ for all $n \ge 0$. Besides,

$$\widetilde{eta}_n=eta_n(lpha+1,eta+1),\quad \widetilde{\gamma}_n=\gamma_n(lpha+1,eta+1).$$

Hence $P_n(x; \alpha, \beta)$ satisfies

$$(x^{2}-1)P_{n}''(x;\alpha,\beta) + ((\alpha+\beta+2)x+\alpha-\beta)P_{n}'(x;\alpha,\beta) = n(n+\alpha+\beta+1)P_{n}(x;\alpha,\beta)$$
University of Contraction of the contraction

Since

$$((x^2-1)W(x))' + \left(-(\alpha+\beta+2)x + \alpha-\beta\right)W(x) = cg(x).$$

With c = 0, observe that the general solution is given by

$$W(x) = \begin{cases} k(1+x)^{\alpha}(1-x)^{\beta} & \text{if } |x| < 1\\ 0 & \text{if } |x| > 1. \end{cases}$$

For $\alpha > -1$ and $\beta > -1$, then the conditions (25) are satisfied, so that we can represent the Jacobi linear functional as follows:

$$\langle \mathscr{L}, f(x) \rangle = \frac{1}{2^{\alpha+\beta+1}} \frac{\Gamma(\alpha+\beta+2)}{\Gamma(\alpha)\Gamma(\beta)} \int_{-1}^{1} f(x)(1+x)^{\alpha}(1-x)^{\beta} dx, \text{ for any polynomial } f.$$

Rodrigues formula:

$$(1+x)^{\alpha}(1-x)^{\beta}P_n(x;\alpha,\beta)=\frac{(\alpha+\beta+1)_n}{(\alpha+\beta+1)_{2n}}\frac{\mathrm{d}^n}{\mathrm{d}x^n}\left((1+x)^{\alpha+n}(1-x)^{\beta+n}\right),\ n\geq 0.$$

Generating function:

$$\frac{2^{\alpha+\beta}}{\sqrt{1-2xt+t^2} \left(1+t+\sqrt{1-2xt+t^2}\right)^{\alpha} \left(1-t+\sqrt{1-2xt+t^2}\right)^{\beta}}$$
$$=\sum_{n\geq 0} \frac{(n+\alpha+\beta+1)_n}{2^n n!} P_n(x;\alpha,\beta) t^n$$

Explicit expression:

$$P_n(x;\alpha,\beta) = \frac{2^n(\alpha+1)_n n!}{(n+\alpha+\beta+1)_n} {}_2F_1\left(\begin{array}{c} -n, \ n+\alpha+\beta+1\\ \alpha+1 \end{array}; \frac{1-x}{2}\right)$$

and, additionally,

$$P_n(x;\alpha,\beta) = (-1)^n P_n(-x;\beta,\alpha)$$

Jacobi polynomials: particular cases

Legendre Polynomials. With $\alpha = \beta = 0$, we obtain the Legendre polynomials. These are given by $P_n(x) = P_n(x; 0, 0)$ satisfying

$$\int_{-1}^{1} P_k(x) P_n(x) dx = \frac{2^{2n+1}}{2n+1} \left(\binom{2n}{n} \right)^{-2} \delta_{n,k}, \ n,k \ge 0.$$

Chebyshev Polynomials of 1st kind. (when $\alpha = \beta = -\frac{1}{2}$):

$$\widehat{T}_1(x) = x$$
 and $\widehat{T}_n(x) = 2^{-n}\cos(n\theta)$, for $n \neq 1$ where $x = \cos(\theta)$.

and can be expressed via the generating function

$$\frac{1-xt}{1-2xt+t^2} = \sum_{n\geq 0} 2^{-n+\delta_{n,1}} \widehat{T}_n(x) t^n.$$

The recurrence relation becomes reduced to

$$\widehat{T}_{n+1}(x) = x \widehat{T}_n(x) - \frac{1}{4} \widehat{T}_{n-1}(x)$$

with $\widehat{T}_0(x) = 1$ and $\widehat{T}_1(x) = x$.

Chebyshev Polynomials of 2nd kind. (When $\alpha = \beta = \frac{1}{2}$) correspond to

$$\widehat{U}_n(x) = 2^{-n} \frac{\sin(n\theta)}{\sin(\theta)}, \text{ where } x = \cos(\theta),$$

and can be expressed via a generating function

$$\frac{1}{1-2xt+t^2}=\sum_{n\geq 0}2^n\widehat{U}_n(x)t^n.$$

Also, observe that

$$\frac{\mathrm{d}}{\mathrm{d}x}\,\widehat{T}_{n+1}(x)=(n+1)\,\widehat{U}_n(x),\ n\geq 0.$$

	Hermite	Laguerre	Bessel	Jacobi
		$\alpha \neq -(n+1)$	$lpha eq-rac{n}{2}$	$lpha,eta eq-(n\!+\!1)\ lpha+eta eq-(n\!+\!2)$
Φ(x)	1	x	x ²	$x^2 - 1$
$\Psi(x)$	2x	$x - \alpha - 1$	$-2(\alpha x+1)$	$-(\alpha+\beta+2)x+(\alpha-\beta)$
χn	-2 <i>n</i>	- <i>n</i>	$n(n+2\alpha-1)$	$n(n+\alpha+\beta+1)$
ζn	$(-2)^{-n}$	$(-1)^{n}$	$\frac{\Gamma(n+2\alpha-1)}{\Gamma(2n+2\alpha-1)}$	$\frac{\Gamma(n+\alpha+\beta+1)}{\Gamma(2n+\alpha+\beta+1)}$
βn	0	$2n+\alpha+1$	$\frac{1-\alpha}{(n+\alpha-1)(n+\alpha)}$	$\frac{\alpha^2 - \beta^2}{(2n + \alpha + \beta)(2n + \alpha + \beta + 2)}$
			$(eta_0=-rac{1}{lpha})$	
γ _{n+1}	<u>n+1</u> 2	$(n+1)(n+\alpha+1)$	$\frac{-(n+1)(n+2\alpha-1)}{(2n+2\alpha-1)(n+\alpha)^2(2n+2\alpha+1)}$	$\frac{4(n+1)(n+\alpha+1)(n+\beta+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)^2(2n+\alpha+\beta+3)}$
	$\int_{-\infty}^{+\infty} f(x) \frac{e^{-x^2}}{\sqrt{\pi}} dx$	$\int_0^{+\infty} f(x) \frac{\mathrm{e}^{-x} x^{\alpha}}{\Gamma(\alpha+1)} dx$		$\begin{aligned} c_{\alpha,\beta} \int_{-1}^{1} f(x)(1+x)^{\alpha}(1-x)^{\beta} dx \\ \text{with } c_{\alpha,\beta} &= \frac{2^{-(\alpha+\beta+1)}\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1)\Gamma(\beta+1)} \end{aligned}$
		valid for $lpha>-1$		valid for $lpha,eta>-1$

Askey scheme as proposed by Jacques Labelle at the first OPSFA meeting in Bar-Le-Duc (France) in 1984

p.83

Askey Scheme

p.84

Consider the operator $\Delta_{\omega}: \mathscr{P} \longrightarrow \mathscr{P}$ s.t.

$$\Delta_{\omega}f(x) = \frac{f(x+\omega)-f(x)}{\omega}, \quad \omega \neq 0.$$

Definition. An orthogonal polynomial sequence $\{P_n\}_{n \ge 0}$ is Δ_{ω} -classical iff the polynomial sequence $\{Q_n\}_{n \ge 0}$ given by

$$Q_n(x) := \frac{1}{n+1} \Delta_{\omega} P_{n+1}(x)$$

is also orthogonal.

Consider the operator $\Delta_{\omega}: \mathscr{P} \longrightarrow \mathscr{P}$ s.t.

$$\Delta_{\omega}f(x)=rac{f(x+\omega)-f(x)}{\omega}, \quad \omega\neq 0.$$

Definition. An orthogonal polynomial sequence $\{P_n\}_{n \ge 0}$ is Δ_{ω} -classical iff the polynomial sequence $\{Q_n\}_{n \ge 0}$ given by

$$Q_n(x) := \frac{1}{n+1} \Delta_{\omega} P_{n+1}(x)$$

is also orthogonal.

In this case it makes all sense to analyse the polynomials on the modified Pochhammer basis

$$(x;-\omega)_n:=\prod_{k=0}^{n-1}(x-\omega k)$$

so that

$$\Delta_{\omega}(x;-\omega)_{n+1} = \frac{(x;-\omega)_n}{-\omega} (x+\omega-(x-\omega n)) = (n+1)(x;-\omega)_n$$

Denoting by $\Delta_{\omega}^{T}: \mathscr{P}' \longrightarrow \mathscr{P}'$ the transposed of the operator $\Delta_{\omega}: \mathscr{P} \longrightarrow \mathscr{P}$, then we have

$$\Delta_{\omega}^{\mathcal{T}}\mathscr{L} := -\Delta_{-\omega}\mathscr{L}$$

so, with some abuse of notation, we have

$$<\Delta_{-\omega}\mathscr{L}, f(x)>=-<\mathscr{L}, \Delta_{-\omega}f(x)>$$

Denoting by $\Delta_{\omega}^{T}: \mathscr{P}' \longrightarrow \mathscr{P}'$ the transposed of the operator $\Delta_{\omega}: \mathscr{P} \longrightarrow \mathscr{P}$, then we have

$$\Delta_{\omega}^{\mathcal{T}}\mathscr{L} := -\Delta_{-\omega}\mathscr{L}$$

so, with some abuse of notation, we have

$$<\Delta_{-\omega}\mathscr{L}, f(x)>= -<\mathscr{L}, \Delta_{-\omega}f(x)>$$

Theorem. For any OPS $\{P_n\}_{n \ge 0}$ for \mathscr{L} the following are equivalent (a) $\{P_n\}_{n \ge 0}$ is Δ_{ω} -classical.

(b) There exists Φ and Ψ with $\deg\Phi\leq 2$ and $\deg\Psi=1$ s.t.

$$\Delta_{-\omega}(\Phi(x)\mathscr{L}) + \Psi(x)\mathscr{L} = 0$$

(c) There exists Φ and Ψ with deg $\Phi \leq 2$ and deg $\Psi = 1$ and coefficients $\lambda_n \neq 0$, for $n \geq 1$, s.t.

$$\Phi(x)(\Delta_{\omega}\circ\Delta_{-\omega}P_n)(x)-\Psi(x)(\Delta_{-\omega}P_n)(x)=\lambda_nP_n(x)$$

(d) There exists Φ with deg $\Phi \leq 2$ and coefficients $\xi_n \neq 0$, for $n \geq 1$, s.t.

$$P_n(x)\mathscr{L} = \xi_n \Delta_{-\omega}^n \left(\left(\prod_{\sigma=0}^{n-1} \Phi(x + \omega \sigma) \right) \mathscr{L} \right)$$

Similar to the very classical polynomials, and under the same equivalence relation, one can define the corresponding equivalence classes for the Δ_{ω} -classical polynomials because....

If $\{P_n\}_{n \ge 0}$ is Δ_{ω} -classical w.r.t. \mathscr{L} , iff $\{\widetilde{P}_n := a^{-n}P_n(ax+b)\}_{n \ge 0}$ is also Δ_{ω} -classical w.r.t. $\widetilde{\mathscr{L}}$

so that, we have

$$\Delta_{-\omega}(\Phi(x)\mathscr{L}) + \Psi(x)\mathscr{L} = 0$$

and

$$\Delta_{-\omega a^{-1}}\left(\widetilde{\Phi}(x)\widetilde{\mathscr{L}}\right) + \widetilde{\Psi}(x)\widetilde{\mathscr{L}} = 0$$

where $\widetilde{\Phi}(x) = a^{-t} \Phi(ax+b), \ \widetilde{\Psi}(x) = a^{1-t} \Psi(ax+b)$, where $t = \deg(\Phi) \leqslant 2$

(For more details see Abdelkarim& Maroni, 1997)

Hahn-classical sequences with respect to $D_q f(x) := \frac{f(qx) - f(x)}{(q-1)x}$

Consider the operator $D_q: \mathscr{P} \longrightarrow \mathscr{P}$ s.t.

$$D_q f(x) = rac{f(qx) - f(x)}{(q-1)x}, \quad q \in \mathbb{C} \setminus \{0\} \quad ext{and} \quad |q|
eq 1.$$

Definition. An orthogonal polynomial sequence $\{P_n\}_{n\geq 0}$ is D_q -classical iff the polynomial sequence $\{Q_n\}_{n\geq 0}$ given by

$$Q_n(x) := \frac{1}{[n+1]} (D_q P_{n+1})(x)$$

is also orthogonal, where

$$[n] := \frac{q^n - 1}{q - 1}$$

Hahn-classical sequences with respect to $D_q f(x) := rac{f(qx) - f(x)}{(q-1)x}$

Consider the operator $D_q: \mathscr{P} \longrightarrow \mathscr{P}$ s.t.

$$D_q f(x) = rac{f(qx) - f(x)}{(q-1)x}, \quad q \in \mathbb{C} \setminus \{0\} \quad ext{and} \quad |q|
eq 1.$$

Definition. An orthogonal polynomial sequence $\{P_n\}_{n\geq 0}$ is D_q -classical iff the polynomial sequence $\{Q_n\}_{n\geq 0}$ given by

$$Q_n(x) := \frac{1}{[n+1]} (D_q P_{n+1})(x)$$

is also orthogonal, where

$$[n] := \frac{q^n - 1}{q - 1}$$

Denoting by $D_q^T : \mathscr{P}' \longrightarrow \mathscr{P}'$ the transposed of the operator $D_q : \mathscr{P} \longrightarrow \mathscr{P}$, then we have

$$D_q^T \mathscr{L} := -D_q \mathscr{L}$$

so, with some abuse of notation, we have

$$< D_q \mathcal{L}, f(x) > = - < \mathcal{L}, D_q f(x) >$$

Theorem. For any OPS $\{P_n\}_{n\geq 0}$ for \mathscr{L} the following are equivalent (a) $\{P_n\}_{n\geq 0}$ is D_q -classical.

(b) There exists Φ and Ψ with deg $\Phi \leq 2$ and deg $\Psi = 1$ s.t.

$$D_q(\Phi(x)\mathscr{L})+\Psi(x)\mathscr{L}=0$$

(c) There exists Φ and Ψ with deg $\Phi \leq 2$ and deg $\Psi = 1$ and coefficients $\lambda_n \neq 0$, for $n \geq 1$, s.t.

$$\Phi(x)\left(D_{q}\circ D_{q^{-1}}P_{n}\right)(x)-\Psi(x)\left(D_{q^{-1}}P_{n}\right)(x)=\lambda_{n}P_{n}(x)$$

(d) There exists Φ with deg $\Phi \leq 2$ and coefficients $\xi_n \neq 0$, for $n \geq 1$, s.t.

$$P_n(x)\mathscr{L} = \xi_n D_q^n \left(\left(\prod_{\sigma=0}^{n-1} \Phi(q^{\sigma} x) \right) \mathscr{L} \right)$$

Similar to the very classical polynomials, and under the equivalence relation

$$B_n(x) \sim P_n(x)$$
 iff $\exists a \neq 0$ s.t. $B_n(x) = a^{-n}P_n(ax)$

one can define the corresponding equivalence classes for the D_q -classical polynomials because....

 $\{P_n\}_{n \ge 0}$ is D_q -classical w.r.t. \mathscr{L} , iff $\{\widetilde{P}_n := a^{-n}P_n(ax)\}_{n \ge 0}$ is also D_q -classical w.r.t. $\widetilde{\mathscr{L}} = h_{a^{-1}}\mathscr{L}$ since we have

$$D_q(\Phi(x)\mathscr{L}) + \Psi(x)\mathscr{L} = 0$$

and

$$D_q\left(\widetilde{\Phi}(x)\widetilde{\mathscr{L}}\right) + \widetilde{\Psi}(x)\widetilde{\mathscr{L}} = 0$$

where $\widetilde{\Phi}(x) = a^{-t} \Phi(ax)$, $\widetilde{\Psi}(x) = a^{1-t} \Psi(ax)$, where $t = \deg(\Phi) \leqslant 2$

(For more details see Khériji & Maroni, 2002)

Definition. An OPS $\{P_n\}_{n \ge 0}$ is semiclassical w.r.t. a linear functional \mathscr{L} iff there exists a polynomial Φ and a polynomial Ψ with deg $\Psi \ge 1$ s.t.

$$(\Phi(x)\mathscr{L})' + \Psi(x)\mathscr{L} = 0$$
⁽²⁹⁾

and the pair (Φ, Ψ) is such that $\max(\deg \Phi - 2, \deg \Psi - 1) \ge 1$ and needs to satisfy the so called *admissible conditions*.

Observe that the pair (Φ,Ψ) realising equation (29) is not unique and there is simplification criteria

Semiclassical polynomials

Simplification criteria: for

 $(\Phi(x)\mathscr{L})' + \Psi(x)\mathscr{L} = 0$

 $\exists c \text{ such that } \Phi(c) = 0 \text{ and }$

$$\left|\Phi'(c) + \Psi(c)\right| + \left| < u, \theta_c^2(\Phi) + \theta_c(\Psi) > \right| = 0 , \qquad (30)$$

where $\theta_c(f)(x) = \frac{f(x)-f(c)}{x-c}$, for any $f \in \mathscr{P}$, and u would then fulfill

$$(\theta_c(\Phi)u)' + (\theta_c^2(\Phi) + \theta_c(\Psi))u = 0.$$

► The class of $u = \mathbf{s}$ is given by $\min_{(\Phi, \Psi)} [\max(\deg(\Phi) - 2, \deg(\Psi) - 1)]$

Semiclassical polynomials

Simplification criteria: for

 $(\Phi(x)\mathscr{L})' + \Psi(x)\mathscr{L} = 0$

 $\exists c \text{ such that } \Phi(c) = 0 \text{ and }$

$$\left|\Phi'(c) + \Psi(c)\right| + \left| < u, \theta_c^2(\Phi) + \theta_c(\Psi) > \right| = 0 , \qquad (30)$$

where $\theta_c(f)(x) = \frac{f(x)-f(c)}{x-c}$, for any $f \in \mathscr{P}$, and u would then fulfill

$$(\theta_c(\Phi)u)' + (\theta_c^2(\Phi) + \theta_c(\Psi))u = 0.$$

► The class of u = s is given by $\min_{(\Phi, \Psi)} [\max(\deg(\Phi) - 2, \deg(\Psi) - 1)]$

► Moreover,
$$\Phi(x)P'_{n+1}(x) = \sum_{\nu=n-s}^{n+\deg\Phi} \theta_{n,\nu}P_{\nu}(x)$$
 with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \ge s$.

Semiclassical polynomials

Theorem. For any monic polynomial Φ and any orthogonal sequence $\{P_n\}_{n \ge 0}$ for \mathscr{L} , the following are equivalent:

(a) ∃Ψ with degΨ = p ≥ 1 s.t. (Φ(x)ℒ)' + Ψ(x)ℒ = 0 where the pair (Φ,Ψ) is admissible and gives the class s = max(degΦ - 2, degΨ - 1) of the semiclassical linear functional ℒ.
(b) There exists an integer s ≥ 0 s.t.

$$\Phi(x)P'_{n+1}(x) = \sum_{\nu=n-\mathbf{s}}^{n+\deg\Phi} \theta_{n,\nu}P_{\nu}(x)$$

with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \ge s$.

(c) There exist an integer $s \ge 0$ and a polynomial Ψ with deg $\Psi = p \ge 1$ s.t.

$$\Phi(x)P'_n(x) - \Psi(x)P_n(x) = \sum_{v=m-\deg\Phi}^{n+s_n} \widetilde{\lambda}_{n,v}P_{v+1}(x), \quad n \ge \deg\Phi$$

with $\widetilde{\lambda}_{n,n-\deg\Phi} \neq 0$ where

$$s_n = \begin{cases} p-1, & n=0, \\ s = \max(\deg \Phi - 2, \deg \Psi - 1), & n \ge 1, \end{cases}$$

and we write

$$\widetilde{\lambda}_{n,v} = -(v+1) \frac{\langle \mathscr{L}, P_n^2(x) \rangle}{\langle \mathscr{L}, P_{v+1}^2(x) \rangle} \lambda_{v,n}, \ 0 \le v \le n+s.$$
 University of Kent

p.98

Freud Weights (1976)

$$\langle \mathscr{L}, f(x) \rangle = \int_{\mathbb{R}} f(x) d\mu(x)$$
 with $d\mu(x) = |x|^{\rho} \exp(-|x|^{m})$

with m = 2,4,6 (Géza Freud, 1976) and earlier considered by Shohat in 1939.

Semiclassical extensions of modified Laguerre polynomials

$$\mathrm{d}\mu(x) = \underbrace{x^{lpha}\exp(-x-s/x)}_{W(x;s,lpha)}\mathrm{d}x, \quad x\in [0,+\infty), \quad lpha>0, s\geq 0,$$

whose moments of order k are $m_k = 2(\sqrt{s})^{\alpha+k+1} \mathcal{K}_{\alpha+k+1}(2\sqrt{s})$, and we have

$$(x^{2}W(x; s, \alpha))' + (x^{2} - (\alpha + 2)x - s)W(x; s, \alpha) = 0$$

The recurrence coefficients are related to special solutions of *PIII* (but can be also seen as special solutions of the alternative discrete dPII) (Chen<s, 2010)

many more examples can be found in the book (Van Assche, 2018).

Semiclassical polynomials with respect to Δ_{ω}

Theorem. For any monic polynomial Φ and any orthogonal sequence $\{P_n\}_{n \ge 0}$ for \mathscr{L} , the following are equivalent:

(a) $\exists \Psi$ with deg $\Psi = p \ge 1$ s.t.

$$\Delta_{-\omega}(\Phi(x)\mathscr{L}) + \Psi(x)\mathscr{L} = 0$$

where the pair (Φ, Ψ) is admissible and gives the class $s = \max(\deg \Phi - 2, \deg \Psi - 1)$ of the semiclassical linear functional \mathscr{L} . (b) There exists an integer s > 0 s.t.

$$\Phi(x)(\Delta_{\omega}P_{n+1})(x) = \sum_{\nu=n-\mathbf{s}}^{n+\deg\Phi} \theta_{n,\nu}P_{\nu}(x)$$

with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \ge s$.

(c) There exist an integer $s \ge 0$ and a polynomial Ψ with deg $\Psi = p \ge 1$ s.t.

$$\Phi(x)(\Delta_{\omega}P_{n})(x) - \Psi(x)P_{n}(x) = \sum_{v=m-\deg\Phi}^{n+s_{n}} \widetilde{\lambda}_{n,v}P_{v+1}(x), \quad n \ge \deg\Phi$$

with $\widetilde{\lambda}_{n,n-\deg\Phi} \neq 0$ where $s_{n} = \begin{cases} p-1, & n=0 \end{cases}$

and we write
$$\widetilde{\lambda}_{n,\nu} = -(\nu+1) \frac{\langle \mathscr{L}, P_n^2(\mathbf{x}) \rangle}{\langle \mathscr{L}, P_{\nu+1}^2(\mathbf{x}) \rangle} \lambda_{\nu,n}, \ 0 \leq \nu \leq n+s.$$

Generalised Charlier polynomials

$$\langle \mathscr{L}, f(x) \rangle = \sum_{x \in \mathbb{N}} f(x) \underbrace{\frac{a^x}{x!(\beta)_x}}_{W(x;\beta,a)} \quad \beta, a > 0,$$

whose moments of order k are $m_k = 2(\sqrt{s})^{\alpha+k+1} K_{\alpha+k+1}(2\sqrt{s})$, and we have

$$\Delta_{-1}(W(x;\beta,a)) + \frac{1}{a}(x^2 + (\beta-1)x - a)W(x;\beta,a) = 0$$

The recurrence coefficients of the corresponding OPS with recurrence relation

$$xp_n = a_{n+1}p_{n+1} + b_np_n + a_np_{n-1}$$

satisfy

$$\begin{pmatrix} b_n + b_{n-1} - n + \beta = \frac{a_n}{a_n^2} \\ b_{n-1} - b_n + 1 = \frac{a_n^2}{a_n} (a_{n+1}^2 - a_{n-1}^2) \end{pmatrix}$$

with initial conditions $b_0=\frac{\sqrt{a} l_\beta(2\sqrt{a})}{l_{\beta-1}(2\sqrt{a})}$ and $a_0^2=0$

Many more examples can be found in the book (Van Assche, 2018).

University of Kent

p.101

Semiclassical polynomials with respect to D_q

Theorem. For any monic polynomial Φ and any orthogonal sequence $\{P_n\}_{n \ge 0}$ for \mathscr{L} , the following are equivalent:

(a) $\exists \Psi$ with deg $\Psi = p \ge 1$ s.t.

 $D_q(\Phi(x)\mathscr{L}) + \Psi(x)\mathscr{L} = 0$

where the pair (Φ, Ψ) is admissible and gives the class $s = \max(\deg \Phi - 2, \deg \Psi - 1)$ of the semiclassical linear functional \mathscr{L} . (b) There exists an integer s > 0 s.t.

$$\Phi(x)(D_q P_{n+1})(x) = \sum_{\nu=n-\mathbf{s}}^{n+\deg\Phi} \theta_{n,\nu} P_{\nu}(x)$$

with $\theta_{n,n-s}\theta_{n,n+t} \neq 0$, $n \ge s$.

(c) There exist an integer $s \ge 0$ and a polynomial Ψ with deg $\Psi = p \ge 1$ s.t.

$$\begin{split} \Phi(x)\left(D_{q}P_{n}\right)(x)-\Psi(x)P_{n}(x) &= \sum_{v=m-\deg\Phi}^{n+s_{n}}\widetilde{\lambda}_{n,v}P_{v+1}(x), \quad n \geq \deg\Phi \\ \text{with } \widetilde{\lambda}_{n,n-\deg\Phi} \neq 0 \text{ where } s_{n} &= \begin{cases} p-1, & n=0, \\ s=\max(\deg\Phi-2,\deg\Psi-1), & n\geq 1, \\ \text{and we write } \widetilde{\lambda}_{n,v} = -[v+1]\frac{\langle \mathscr{L},P_{n}^{2}(x)\rangle}{\langle \mathscr{L},P_{v+1}^{2}(x)\rangle}\lambda_{v,n}, & 0 \leq v \leq n+s. \end{cases} \end{split}$$

Examples of semiclassical polynomials with respect to D_q

Semiclassical extensions of *q*-Laguerre polynomials (or the Stieltjes-Wigert) Starting with the indeterminate weight

$$\hat{W}(x) = \frac{x^{lpha}}{(-x^2;q^2)_{\infty}(-q^2/x^2;q^2)_{\infty}}, \quad x \in [0,\infty)$$

where

$$(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k)$$
 and $(a;q)_{\infty} = \prod_{k=0}^{\infty} (1 - aq^k)$

then, the recurrence coefficients (a_n, b_n) of p_n defined by

$$xp_n = a_{n+1}p_{n+1} + b_np_n + a_np_{n-1}$$

are such that

$$\begin{cases} a_n^2 = q^{1-n} x_n + q^{-2n-\alpha+1} \\ b_n^2 q^{2n+2\alpha} x_n = x_{n+1} + q^{2n+2\alpha} x_{n-1} (x_n + q^{-n-\alpha})^2 + 2(x_n + q^{-\alpha}) \end{cases}$$

where

$$x_{n-1}x_{n+1} = \frac{(x_n + q^{\alpha})^2}{(q^{n+\alpha}x_n + 1)^2}$$

with initial conditions $x_0 = -q^{\alpha}$ and $x_1 = b_0^2 = \left(\frac{m_1}{m_0}\right)^2$ are related to the *q*-discrete PIII.

Many more examples can be found in the book (Van Assche, 2018).

University of Kent

p.103

Semiclassical extensions of Hahn-classical polynomials

 $\{P_n\}_{n\geq 0}$ is \mathcal{O} -semiclassical, whenever the corresponding regular form u_0 fulfils

$${}^{t}\mathscr{O}\left(\Phi u_{0}\right)+\Psi u_{0}=0$$

with deg $\Phi = t \ge 0$ and deg $\Psi = p \ge 1$.

Semiclassical extensions of Hahn-classical polynomials

 $\{P_n\}_{n\geq 0}$ is \mathcal{O} -semiclassical, whenever the corresponding regular form u_0 fulfils

$${}^{t}\mathscr{O}\left(\Phi u_{0}\right)+\Psi u_{0}=0$$

with deg $\Phi = t \geqslant 0$ and deg $\Psi = p \geqslant 1$.

• $t \mathcal{O} = D$:

The recurrence coefficients of *D*-semiclassical polynomial sequences are often related to Painlevé type equations.

Magnus (1995,1999), Clarkson (2008), Chen & Its (2010), Chen & Zhang (2010), Dai & Zhang (2010), Clarkson & Jordaan (2013), Clarkson, Jordaan & Kelil (2016), etc...

► ${}^t \mathcal{O} = \Delta_{\omega}$: (Maroni & Mejri, 2008), where the symmetric case is treated for the class s = 1.

- connections to discrete Painlevé type equations: (Boelen, Filipuk &Van Assche (2011,2012)), Clarkson & Jordaan (2013), etc.

► ${}^{t} \mathscr{O} = D_{q}$, we refer to (Khériji, 2003), (Ghressi & Khériji, 2009), (Mejri, 2009), (Ormerod, Witte & Forrester, 2011), (Boelen, Smet & Van Assche, 2010)