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» Part 2. Orthogonal Polynomials: an introduction

> Main properties
Recurrence relations, zeros, distribution of the zeros and so on and on....

> Classical Orthogonal Polynomials
Hermite, Laguerre, Bessel and Jacobi!!

> Other notions of "classical orthogonal polynomials”
How to identify this on the Askey Scheme?

> Semiclassical Orthogonal Polynomials
How do these link to Random Matrix Theory, Painlevé equations and so on?

» Part 3. Multiple Orthogonal Polynomials

When the orthogonality measure is spread across a vector of measures?
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Orthogonal Polynomials: an introduction

Let & be the vector space of polynomials &2 defined as
~+oo
P = U P
n=0

where 2, represents the finite dimensional vector space of polynomials of
degree < n with complex coefficients.

Consider a sequence of polynomials

‘ {Pn}n>0C & suchthat degPn(x)=n ‘

> Clearly {Pn}n>0 forms a basis for the vector space of polynomials & of
complex coefficients.

> It is a monic polynomial sequence if deg(P,—x") <n
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Preliminaries 1

ac >0 C such that eg Pp(x) = n| can be defined via
Each | {Pp}p>0 C & h th deg P, be defined vi

> a terminating series of the form
4 k
x)=Y cnk (x—a)<, n>0,
k=0

or of the form

n
(x)= Y ek (x—a)k, n20,
k=0

or in any other polynomial basis expansion. In particular, we can consider...

> a structural relation, which is basically the Euclidean division of P,41(x)
by Pn(x) and this means there exist coefficients B, and y,; with
j€{0,1,...,n—1} such that

Pni1(x) = (x = Bn)Pn(x) — Z XnjPj () (1)
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Preliminaries 1

Each ‘ {Pn}n>0 C % such that degPp(x)=n ‘ can be also defined via

> a generating function of exponential type
tn
W)= ¥ Pa(x)
n>0 :

or of horizontal type

V(x,t)= Z P,(x)t".

n>0

> a lowering/raising operator &' and a function f(x) such that
F(x)Pn(x) = pa ﬁ”(f(x))

where 0711 (f(x)) =0 (ﬁ” (f(x))) and ¢° (f(x)) :=1f(x) and p, #0
is a normalization constant.
» a differential-difference equation

> etc.
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The notion of Orthogonality

Let u be a positive Borel measure with support S defined on R for which
moments of all orders exist, i.e. ,

/,L,,:/Sx”du(x) < o, n=0,1,2,....

Definition
A sequence of polynomials {Pp},>0 with deg P, = n is orthogonal w.r.t. the
measure U if

/SPk(x)P,,(x)du(x)zN,, ok mk=0,12,... .

where S is the support of i and N, is the square of the weighted L?-norm of
Py, given by

Ny = /S(P,,(x))2du(x) > 0.
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The notion of Orthogonality

Let 1 be a positive Borel measure with support S defined on R for which
moments of all orders exist, i.e. ,

,u,,:/sxndu(x) < o, n=0,1,2,....

Lemma
A sequence of polynomials {Pp}p>0, with
Pn(x) = knx" + ... terms of lower degree, is orthogonal w.r.t. the measure | iff

if n and k are integers s.t. 0<k<n|

where S is the support of 11 and N, is the square of the weighted L2-norm of
P, given by

/Ska,,(x)d/.L(X): No(kn) L 8,k

(kn)_lN,,:/sx”P,,(x)du(x)>0.

Proof. Exercise.
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The notion of Orthogonality: absolutely continuous measures

p.8

When the measure u is absolutely continuous, there exists a locally integrable
function w(x) defined on (a,b), (i.e. w(x) is Lebesgue integrable over every
compact subset K of (a,b)) with distributional derivative du(x) = w(x)dx
where the moments of all orders exist, i.e. ,

b
Un :/ x"w(x)dx < e, n=0,1,2,... .
a
In this case, the orthogonality conditions become

b
/ Pre(x)Pa(x)W(x)dx = Np 8,4 mk=0,1.2,... .
a

where (a, b) is the support of w(x) and N,

[ Pa)wt)ax = Wy >0
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The notion of Orthogonality: examples

1. Chebyshev polynomials: {T,},>0 defined by T,(x) = cos(nf), where
x = cos(8), with 6 € (0, ). We have

1 1 T
/71 Ta(x) Tm(X)ﬁdX = /0 cos(nB)cos(m0)do
_ /” cos((n+m)9)+cos((mfn)G)de
~Jo 2
o N, if m=n>0
o 0 if m#n>0.
where
T if n=0,
N { w/2 if n>1
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The notion of Orthogonality: examples

2. Laguerre polynomials: {Lp(-;0t)}p>0 defined by

L= 20§ CUE (1)

n! k=0 ((X+1)k
= (a—:ill)"M(fn,aJrl;x), n>0.

For each o > —1, {L,(x; &)} n>0 satisfies the orthogonality relations

Mntlta) ¢ m=nand n>0,

te —X 0 —_ nl
/0 Lo(x)Lm(x)e™*x dx—{ 0o " i mn.

Exercise: Prove the latter identity.
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The notion of Orthogonality: examples

2. Laguerre polynomials: {Lp(-;0t)}p>0 defined by

L= 20§ CUE (1)

n! k=0 ((X+1)k
= (a—:ill)"M(fn,aJrl;x), n>0.

For each o > —1, {L,(x; &)} n>0 satisfies the orthogonality relations

F(n+l+a)

+o0 M(n+14a) . _ >
/0 Ln(X)Lm(X)e_XXadX = { 0 n! :: :75 Z‘and n= 07

Exercise: Prove the latter identity.

o Mo+1)r 1)(=m),
Hint. Start by showing/ xMLp(x)e *x%dx = (@t DM (m +a+1)(=m)
Jo

Mn+o+1)
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The notion of Orthogonality: examples

p.-12

3. Charlier polynomials: {Cn(x; @)} n>0 depending on a parameter o defined by
Co(x;0)=n! Ly(a;x—n), n>0,

is a polynomial sequence with deg C,(x; &) = n.

It is an orthogonal polynomial sequence, because it satisfies the (discrete)
orthogonal relation

—+oo
Cn(x; ) Ci(x; &)

o [ e*a™nl#0 if m=nand n>0,
=0 x!

0 if m<#n,

under the assumption that a > 0.
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The notion of Orthogonality: discrete measures

If the weight function w(x) is discrete so that w(xy) > 0 are the values of the
weight at the distinct points xx, k=0,1,...,M for M € NU{eo}, then the

orthogonality relations read as

M
Z Pr(xic) Pm(xk)w(xk) = Nppm, n,m>0.

k=0
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The notion of Orthogonality: discrete measures

p.-14

If the weight function w(x) is discrete so that w(xy) > 0 are the values of the
weight at the distinct points xx, k=0,1,...,M for M € NU{eo}, then the
orthogonality relations read as

M
Z Pr(xic) Pm(xk)w(xk) = Nppm, n,m>0.
k=0

More generally, we can make use of the theory of distributions to define the
Borel measures and further extend the orthogonality notion to the non-positive
definite sense.

For that, we define...
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Moment linear functionals

Without entering into further details...
Consider a moment linear functional
Z P — R {(orC)
p(x) — (Z.p(x))
5o, .Z is an element of the dual space of &, denoted by &'.

The duality pairing between a moment linear functional (or distribution).% in
2’ and any polynomial (in &2) will be denoted by angle brackets

L% — R(orC)
(Z.p(x)) — (Z,p(x))

For instance, any locally integrable function ¢ defined on a set U yields a
moment linear functional on &2’ — that is, an element of £’ — denoted here by
£ = %y whose value on the space of polynomials is

(Z.p() = [ p()-0(x)dx

p.15 University of Kent



Moment linear functionals

Operations on the dual space &'
» are defined by means of the transpose operator, t.Z;
> if 0 is a continuous linear operator defined on &, then '.Z is defined by

duality via
<'0Z,p(x) >=< %, 0p(x)>, forany pc P.
> If
(Z.p() = [ p(x)-9(x)dx
then

<102,p()>= [ p(): (00())dx = [ (0p(x))-0(x)dx
» For instance, given a polynomial g(x) and a linear functional .Z, we define:

<g(x)Z,p(x) >=<Z,g(x)p(x) >, forany peZ;

<D%Z,p(x) >=—<¥%,Dp(x) >, forany peP with Dp(x):=p'(x);
So, with some abuse of notation
<L p(x)>=—-<Z,p(x) >
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Moment linear functionals

Lemma
A linear functional is uniquely defined by its sequence of moments {{,} >0,
which are given by

Up:=<Z,x"> n>0.
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Moment linear functionals

Lemma
A linear functional is uniquely defined by its sequence of moments {{,} >0,
which are given by

Up:=<Z,x"> n>0.

Example of application of the operations. We have
(DxD — aD) (x%e ™) = (x — (@ +1))(x%e ™).
So, if
teo a_,—Xx
(Zp0) = [T plo) (e ) dx

then
(DxD —aD).Z = (x—(a+1)).Z

which implies
(x—(a+1)).Z,x")
=((DxD — D) .Z,x")
=(Z,(DxD+ aD)x")
= (L, n(n+a)x"1)

= Hn+1— (00 + 1)Uy = n(n+a)ip-1
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Moment linear functionals

Remarks. Given a polynomial p(x) and a moment linear functional .Z, then

1. For any coefficients a and b and polynomials f(x) and g(x), we have
< Z.,af(x)+bg(x)>=a< Z,f(x)>+b< . Z,g(x)>.

2. The image of the null polynomial is zero: < .%,0 >=0.
3. If £=0, then <. Z,Pp(x) >=0.
4. < %,Pp(x)>=0 does not imply (in general) that .¥ = 0.
Example.
/0oo e sin(x}/*) x"dx =0, n>0,

0o _x1/4

(and therefore [y°e sin(x1/4) f(x)dx = 0, for any polynomial f(x)).
In fact,

/ e sin(x'/#) x"dx
J0

e (14 (1] 2i(4n+3)!  2i(4n+3)!
. 4n+3 (A+)u _ —(1-N)u o _
= 2//0 u (e e )duf (L1 i)mts T (1= ynte
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The notion of Orthogonality via Moment Linear Functionals

p.20

Definition
A polynomial sequence {Pp}p>0 is said to be orthogonal if there exists a linear
functional .Z such that

(L, PnPi) = Npdp i , with N, #0.

with N, # 0 for any n > 0. In this case we say that {Pp},>0 is an orthogonal
polynomial sequence (OPS) for .Z.
» Equivalently, {Pp}n>0 is an OPS for .Z iff

moo [0 if n>m>0,
(Z,x P">_{ N, if n=m, for n>0.

When N, =1 for all n>0, then {P,}p>0 is an orthonormal sequence for .Z.
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The notion of Orthogonality via Moment Linear Functionals

Lemma
Let {Pn}n>0 be an OPS for £. Any polynomial 7t(x) of degree m >0 can be

expanded on the basis {Pn}p>0 of &
m
n(x)= Y, ckPi(x)
k=0

and the coefficients are given by

oo SLTIPD> o
<Z,P;(x)>
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The

p.22

notion of Orthogonality via Moment Linear Functionals

Lemma
Let {Pn}n>0 be an OPS for £. Any polynomial 7t(x) of degree m >0 can be

expanded on the basis {Pn}p>0 of &
m
n(x)= Y, ckPi(x)
k=0

and the coefficients are given by

< L, (x)Pr(x) >

k= =0,1,...m.
, < Z,P%(x)>

)

Questions:
» Given a linear functional, is it possible to always find an OPS for it? If not,
which necessary and/or sufficient conditions that a linear functional needs

to fulfil?
» If an OPS for a certain linear functional exists, is it unique?
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The notion of Orthogonality via Moment Linear Functionals

Corollary
Suppose that {Pp}n>0 is an OPS for £. If {Qn}n>0 is also an OPS for £,
then there are constants c, # 0, with n > 0, such that

Qn(x) = cpPn(x), n>0.

Proof. Exercise.

> So, an OPS {P}p>0 for £ is uniquely determined if we fix a condition for
the leading coefficient, that is, the coefficient of x” in Pn(x).

» We will mainly consider monic OPSs (unless said otherwise)

> The corresponding orthonormal polynomial sequence of an OPS
{Pn}nZO is
) ~1/2
pn(x) = (< £, P2(x) >) Pp(x), n>0.

> If {Pp}n>0 is an OPS for ., then it also is an OPS for any multiple of .Z,
that is, it is also an OPS for .¥ = ¢ .Z for any fixed constant ¢ # 0
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The notion of Orthogonality: existence

p.24

Theorem
A necessary and sufficient condition for existence of an OPS {Pp}p>o for a
given linear functional £ is that

Ho H1 cee Hn
M1 H2 < Mnt1

Ap(Z) = det[lklo<jk<n = : : . : #0, forall n>0.
Hn  Hpy1 ... H2p

The determinant A,(.%) is known as the Hankel determinant.
Proof. Suppose that {Pp}n>0 is an OPS for .£ . For any n >0, 3¢,  so that

Pa(x) = Z Cp, «x* and this expansion is unique. The linearity of the linear
k=
functional .,2” allows to express

<$X Pn(X Zan<$Xk+m> chk”k+m
k=0 k=0

On the other hand we also have

. (o if m<n,
<EXTPalx) >= { Kn=<Z,x"Pn(x)>#0 if m=n.
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The notion of Orthogonality: existence

p.25

This information can be summarised in the following system of equations:

Ho H1 e Hn €n,0 0
M1 M2 ... Hpta Cn,1 0

. o : =1 (2)
Hn  MHpy1 ... Hop Cn,n Kn

with K, =< Z,x"Pp(x) >.
Since the system has always a unique solution, then A,(.Z) # 0, for any n>0.

Conversely, if Ap(Z)#0, for any n> 0, the system (2) has a unique nonzero
solution which is obtained for any given K, # 0, for all n > 0. Therefore for
each n >0, a polynomial P,(x) exists. Moreover, an application of Cramer's
rule to the system (2) yields

An1 K
C”’":%nn#o’ n>1.
For n=0, we have ¢y o = Ko/Ag, as we have defined A_1:=0 . d
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An OPS via a determinant

Exercise 1. Show that if {Ps}n>0 is a monic OPS for .Z, then

Ho M1 -+ Hn
M1 M2 - Hpta

Po(x)=(Bp-1)H| 0
Hp—1 Hn - Hop-1

1 X cen X"
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An OPS via a determinant

Exercise 1. Show that if {Pp},>0 is a monic OPS for .Z, then

Ho M1 - Hn
M1 M2 - Hpta
Pol)=(Dp-1) |
Up—1 Hn -+ Hop—1
1 X e x"

Exercise 2. Let {¢,},>0 a monic polynomial sequence. What is the relation
between the polynomials Qn(x) and P,(x) if

Ho,0 Hoi -+ Hon
H10 Mi1 -+ Hin
Qu(x)=(Bp1)7H] A
ﬁnfl,o ﬁnfl,l e ﬁnfl,n
do(x)  01(x) - Pn(x)

with [l ; = Z[x'¢;(x)], i.j > 0.
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A 2nd order recurrence relation for an OPS

Theorem
A monic polynomial sequence {Pn}n>0 is orthogonal for a linear functional L if
and only if there exist constants B, and Y41 # 0 for n >0 so that

Pni2(x) = (x = Bnt1) Ppy1(x) = Yn41Pn(x), n >0, (3)
Po(x)=1 and Pi(x) =x—Po.

In this case, we have
(L, Pri1)

_ (Z.xPD) _
Ry T ey TN
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A 2nd order recurrence relation for an OPS: proof

Proof. (=) Suppose {P,}n>0 is a monic OPS for £. Since deg Pp(x) =n

then
n—1
xPn(x) = Ppy1(x) + BnPn(x) + _Z%)XnJPj(X)- (4)
j=
so that
<L, xPp(x)Pi(x) >= < L, Ppy1(x)P(x) > +Bn < L, Pn(x) P (x) >

n—1
+ Y 2nj < ZL.Pi(x)Pi(x) > .
j=0
From the orthogonality conditions, we obtain
< L, xP%(x) > < L, xPp_1(x)Pn(x) >
Bn= 0 poro 0 XAnn-1= >
<Z7Pn(x)> <$,Pn71(X)>

#0, n>1,

and
< Z,xPj(x)Pp(x) >
Anj = >
<Z,P; (x) >

=0 for j=0,1,...n—2 and n>2.

Consequently, the structural relation (4) can be written as in (3), with
Yn+1 = Xn+1,n 7é 0, n>0.
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A 2nd order recurrence relation for an OPS: Proof(cont.)

p.30

(<) Let By and ¥y41 # 0 and {Pn}n>0 be such that
XPn(X) = Pn+1(x)+ﬁnPn(X)+YnPn—1(X)7 n>1, (5)

Since a linear functional is uniquely determined by its sequence of moments, it
can be inductively defined by

<L 1>=pup#0, <.Z,Py(x)>=0, n>0. (6)
Hence, <.Z, P1(x) >= uy — Popo implies u3 = PBouo.
Next, <.Z,Pa(x) >= po — (Bo+ 1)1 + (BoB1 — v1) Lo gives Uz and so on.
Now, (5) implies <.Z,1 >=uy #0 and
< &, xPn(x) >=0, n>1, <$,X2P,,(x) >=0, n>2.

and, by induction, < .2, x¥Pp(x)>=0, forany k=0,...n—1 and n>1,
whilst

< L X"Po(x) >=Yp < L, x" 1P, 1(x) >, for any n> 1. O
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A 2nd order recurrence relation for an OPS: remarks

Proof does not give explicit information about measure or support.

\4

> Measure representation for the linear functional need not be unique and
depends on Hamburger moment problem

» Can be traced back to earlier work on continued fractions with a
rudimentary form given by Stieltjes in 1894;

> Also appears in books by Wintner [1929] and Stone [1932].

> Often referred to as Favard’s theorem but was in fact independently
discovered by Favard, Shohat and Natanson around 1935. We nowadays
often call it the spectral theorem.
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A 2nd order recurrence relation for an OPS: further remarks

Let {Pn}n>0 be orthogonal for £ satisfying
Pny2(x) = (x = Bn+1) Pnt1(X) = Yat1Pa(x), n 20,
with initial conditions Pp(x) =1 and Pi(x) =x—Po.

> {Pn}nen is real if and only if B, € R and ¥,4+1 € R—{0} and all the
moments of .Z are real.

> £ is positive-definite if B, € R and ¥,4+1 > 0 and this implies
Api1(ug) > 0. Consequently,
(Z,x*") >0 and (Z,x*"T1)eR.

Exercise. Show the latter condition on the moments for .Z.

> Z is negative definite if and only if it is real and Agpy1(uo) <O,
Agni2(ug) <0, Agpy3(uo) >0, Agpra(ug) >0
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2nd order recurrence relation: linear transformation

Let {Pn}n>0 be orthogonal for £ satisfying
Pny2(x) = (x = Bn+1)Prt1(X) = Yas1Pn(x), n >0,

with initial conditions Py(x) =1 and P1(x) = x— Bo.

If IS,,(X) = a "Pp(ax+ b) with a# 0, then {15,,},,20 is also orthogonal and
satisfies

- —_ b\ ~ ~
Poi2(x) = (x— B"%) Ppi1(x)— %:2-1 Pn(x), n>0,

with initial conditions Pg(x) =1  and  Py(x)=x— £
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non-monic OPS: 2nd order recurrence relation

When an OPS {B,},>0 is not monic, there exists a corresponding monic OPS
{Pn}n>0 so that Bp(x) = knPn(x), for all n>0. As an OPS, {B,},>0 satisfies
a second order recurrence relation. So, assuming that (3) holds, then {B;},>0

is such that
Bnti1(x) = (anx — bp)Bn(x) — cnBp-1(x), n>1 (M
where B P P
n= ntl , bn= nil ﬁn and ¢y = ntl Yn, n >0, (8)
kn kn kn—l

under the assumption that ¢y = 0.
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orthogonal polynomials as characteristic polynomial of a matrix

Exercise 2. Show that if {Pp},>0 is a monic OPS for ., then P,(x) is the
characteristic polynomial of the matrix tri-diagonal A, given by:

fob 1 0 0O --- 0 0 0 0
w B 1 0 - 0 O 0 0
0 » B 1 -~ 0 0 0 0
A= . . . . . . . . . , nz= 0.
0 0 0 0 0 Yn—2 ﬁn72 1
0 0 0 0 0 0 Y1 PBaa

Quiz 1: What is the relation between the zeros of P,(x) and the eigenvalues
of Ap?

Quiz 2: Can an OPS have complex zeros?

p.35 University of Kent



Jacobi matrices

Suppose
xPp(x) = Ppt1(x) + BnPn(x) + ¥aPn-1(x), n >0,

with initial conditions Py(x) =1 and P;(x) = x— By and assume 7, > 0.

If  Bn(x)=knPn(x) with ky_1/kn=+/Yn. Then B, satisfies

XBH(X) = \/77an+1(X)+[5an(X)+\/ Yn—an—l(X)y n>0,

and we have

po VA - O 0 Bo(x) 0
VE B -0 0 Bi(x) 0
A L 5
0 0 ﬁnfl V-1 anl(X) 0
0 0 v h-1 Bn Bn(x) —/¥aBny1(x)
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Jacobi matrices (cont.)

So we have
Bo A - 0 0 Bo(x) 0
Vi B - 0 0 Bi(x) 0
S L= 5
0 0 Bn-1 \/m anl(X) 0
0 0 - Vi1 B Bu(x) —\/¥nBn+1(x)

Jn

and J, is a truncated Jacobi matrix, whose eigenvalues are the zeros of Bp(x)
(as well as those of P,(x))
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Jacobi matrices (cont.)

So we have
Bo A - 0 0 Bo(x) 0
Vi B - 0 0 Bi(x) 0
S L= 5
0 0 Bn-1 \/m anl(X) 0
0 0 - Vi1 B Bu(x) —\/¥nBn+1(x)

JII

and J, is a truncated Jacobi matrix, whose eigenvalues are the zeros of Bp(x)
(as well as those of P,(x))

therefore

all the zeros of B,(x) are simple and real.
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Christoffel-Darboux formula

Theorem
Let {Pn(x)}n>0 be an OPS (for some linear functional .£) satisfying the
recurrence relation (3) with Yo417#0, n>0. Then,

Pr(x)Pi(y)

Pnt1(x)Pn(y) — Pn(x)Pn+1(y) KA)TKVY)
X—y = (0% Y)kgo Wr - Ve 0. )

under the assumption where Y := 1.

Proof. Exercise.

Observe that if we take the limit as y — x in (9), then we obtain the confluent
version

Pri1(X)Pa(x) = Po(x)Pai1(x) = (071 ---¥n) i’o o , n>0,  (10)
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zeros of an OPS (positive-definite measures)

Under the assumption that 7, > 0, then

Pri1(x)Pn(x) = Pr(x)Pni1(x) = (071 ---7n) Z n>0, (11)
—0 YOY1
implies that (see [Chihara, §5.1])
> all the zeros of P,(x) are simple and real. (Exercise)
> Pp(x) and P,41(x) do not have common zeros. (Exercise)

> Between two consecutive zeros of P,1(x) there exist exactly one zero of
Pn(x), i.e., the zeros of P, and P,;1 separate each other (interlacing
propperty). (Exercise)
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zeros of an OPS (positive-definite measures)

Under the assumption that 7, > 0, then

Pri1(x)Pn(x) = Pr(x)Pni1(x) = (071 ---7n) Z n>0, (11)
—0 YOYl
implies that (see [Chihara, §5.1])
> all the zeros of P,(x) are simple and real. (Exercise)
> Pp(x) and P,41(x) do not have common zeros. (Exercise)

> Between two consecutive zeros of P,1(x) there exist exactly one zero of
Pn(x), i.e., the zeros of P, and P,;1 separate each other (interlacing
propperty). (Exercise)

Let us consider the set of all zeros {x, x}7_; of Pp(x) ordered so that

Xp1 < <Xpk < Xpk+1 << Xnn
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Zeros of an OPS

Definition. Let E C (—oo,+o0). A moment linear functional .Z is said to be
positive-definite on E iff (£, p(x)) > 0 for every real polynomial p(x) >0
with x € E that does not vanish identically on E.

The set E is called a supporting set for .Z.

Theorem. If £ is positive-definite on E and E is an infinite set, then .Z is
positive-definite on every set containing E and also on every dense subset of E.

Proof. See [Chihara,p.27].
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Zeros of an OPS

Theorem. |If E is a supporting interval for a positive-definite .Z, then all the
zeros of Pp(x) are located in the interior of E.

Proof. Since < %, Pp(x) >=0 (by orthogonality), then Pp(x) must change
sign at least once in the interior of E.

So, 3 zero of odd multiplicity on located in the interior of E.

Let z1,...,z; denote the distinct zeros of odd multiplicity in the interior of E
and set

p(x)=(x—21)-(x—2z)
Then p(x)Pp(x) >0 for x € E which implies (£, p(x)Pn(x)) > 0 and this
contradicts the orthogonality conditions, unless k = n. g
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Zeros of an OPS

Regarding the set {x, ,}7_; of all zeros of P,(x) s.t.
KT k=1

Xp1 < < Xpk < Xpk+1 << Xnn

» For each k > 1, the sequence {Xn,k}j,_:k is a decreasing sequence:
Xi,k = Xk+1,k = Xk42,k > ++o > Xnpk ok = -+

and the limit Gi=limpsexni, (i=1,2,...) exists.

» For each k > 1, the sequence {Xn7n7k+1};~1_:k is an increasing sequence:
Xpe,l < Xp412 <Xp423 < -oo <Xppkntl <oy

and the limit Nj =liMmpseoXpn_j+1, (=1,2,...) exists.
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Zeros of an OPS

Regarding the set {x, x}7_; of all zeros of P,(x) s.t.

Xp1 < < Xpk < Xpk+1 << Xnn

» For each k > 1, the sequence {Xn,k}j,_:k is a decreasing sequence:
Xi,k = Xk+1,k = Xk42,k > ++o > Xnpk ok = -+

and the limit Gi=limpsexni, (i=1,2,...) exists.

» For each k > 1, the sequence {Xn7n7k+1};~1_:k is an increasing sequence:
Xpe,l < Xp412 <Xp423 < -oo <Xppkntl <oy

and the limit Nj =liMmpseoXpn_j+1, (=1,2,...) exists.

The closed interval [{1,7n1], called the true interval of orthogonality, is:

» the smallest closed interval that contains all the zeros of all Pp;

> the smallest closed interval that is a supporting set for .Z.
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Symmetric polynomial sequences and linear functionals

Definition. A polynomial sequence {S5(x)}n>0 is called symmetric whenever
Sn(=x) =(-1)"Sn(x), n=0.
This means that 3 {Ry(x)}n>0 and {Qn(x)}n>0 s-t.

Son(x) = R,,(x2) and  Sppt1(x) = xQ,,(x2), n>0.

Proof. Exercise.

Definition. A linear functional .Z is called symmetric when
Zx*"t1]=0, n>o0.

For a symmetric ., we have

(Z,p(—x)) =(Z,p(x)), for any polynomial p(x).
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Symmetric OPS

Proposition. Let {Py(x)}n>0 be the monic OPS for .Z. The following are
equivalent:

(a) Z is symmetric.
(b) {Pn(x)}n=0 is symmetric, that is, P,(—x)=(—1)"Pp(x), n>0.
(c) There exist a sequence of coefficients ¥, # 0 for n > 1, so that {Pn(x)}s>0
satisfies
Pn11(x) = xPn(x) = YaPp-1(x)

with initial conditions Pp(x) =1 and Pi(x) = x.
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Symmetric OPS

Proposition. Let {Ps(x)}n>0 be the monic OPS for .Z. The following are
equivalent:
(a) Z is symmetric.
(b) {Pn(x)}n=0 is symmetric, that is, P,(—x)=(—1)"Pp(x), n>0.
(c) There exist a sequence of coefficients ¥, # 0 for n > 1, so that {Pn(x)}s>0
satisfies
Pry1(x) = xPn(x) = ¥nPn-1(x)
with initial conditions Pp(x) =1 and Pi(x) = x.
Hence, for a symmetric OPS {S,(x)}n>0, then the two components of its
quadratic decomposition

Son(x) = Ra(x?) and  Sppi1(x) = xQn(x?), n>0.
are also orthogonal and they respectively satisfy

Rnt1 = (x=(¥2n+ ¥2n+1)) Ra(x) = 2n¥2n-1Rn-1(x)
Qn+1 = (x— (Y2n+1 + 12n+2)) Qn(X) — Y2n¥2n+1 Q@n-1(x)
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Symmetric OPS

In case .Z admits an integral representation via a weight function W/(x) on the
interval (a,b), that is,

b
< 2L f(x) >= / F()W(x)dx, forany fe 2,

a

then a=—b and W(—x) = W(x) for x € (0,b).

In this case {Sp(x)}n>0 is an OPS for

—~ b? P
< Z,f(x)>= f(x)W(x)dx, forany fe 2,
0

with
' W(/R)+ W(— V%)

W(x) = N
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Symmetric OPS: Example

The (monic) Laguerre polynomials {L,(x; &)} ,>0) are the orthogonal
polynomial components of the so-called generalised Hermite polynomials
{Sn(x; @)} n=0), which are symmetric:

~

Son(x; ) = Lo(x%; ) and Sonp1(x;a) = xLp(x%; a+1)

Here {Sn(x; &)} n>0) satisfies the orthogonality relation
te 2041 ,—x2
/ Sim(x; ) S (x; &) X291 dx = K m

whilst N
/ Lin(x; &) Ln(x; @)x%e™*dx = K, 8p.m
b :

where it was assumed that a > — 1
The particular case where o0 = —3 L. brings the well known relation between
Hermite and Laguerre polynomlals
Furthermore,
> Hermite and Laguerre are examples of classical orthogonal polynomials.
> Generalised Hermite (a # —1/2) is an example of a semiclassical
orthogonal polynomial sequence.
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Chapter 2: Classical Polynomials

A special collection of orthogonal polynomial sequences is the so-called
classical polynomials, which has been tremendously applied in several areas.

Definition. An OPS {P,},>¢ for .Z is classical when the sequence of
derivatives {Qn(x)}n>0 defined by

1
Qn(x) = P Ppi1(x), n=0, (12)

is also orthogonal. In this case, the corresponding moment linear functional .¥
is said to be a classical.

Collectively, the classical polynomials share a number of properties.
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Classical Polynomials: characterisation theorem

Theorem. Let {P,},>0 be a monic OPS for .Z. The following are equivalent:

(a) {Qn(x):= ﬁ P/ 11(x)}n>0 is a monic OPS (Hahn's property)
(b) 3 polynomials ®, W with deg® <2 and degW¥ =1 s.t.
D(®(x)L)+V¥(x)L=0 (Pearson equation)
subject to W(0) — §”(0) # 0 for any n > 0.
(c) 3 polynomials ®, W with deg® <2 and deg¥ =1 and constants 4, s.t.

2p P
¢(X)ddxzn —V(x) ddxn = AnPn(x) (Bochner's equation)

(d) 3 polynomial ® with deg® < 2 and nonzero constants §, s.t.

Pr(x)W(x) = C,,% (CD"(X)W(X)), (Rodrigues’ formula)
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Classical Polynomials: characterisation (proof)

p.54

(a) = (b) and (c)

The dual sequence {un}n=0 of {Pn}n>0 is given by
up = (< ug,x" P, >)71 Pn(x)up, where ¥ = ug.

Likewise the orthogonality of {Qn}n>0 implies that its corresponding dual
sequence {vp}n>0 is given by

Vi = (< v0, X" Qn >) 1 Qu(x) .
Besides, the relation Q,(x) := ﬁ P/ 1(x) implies
vl =—(n+1)upy1, n>0,
so that, we have
(Qn(x)v0)" = =An+1Pnt1(x)uo, n>0,

that is,
Qn(x)vg+ @ (x)vo = —Ant1Pny1(x)uo, n>0, (13)

where
< v, X" Qu(x) >

< ug, x"H 1P, 1(x) >

An=(n+1) #0, n>0.
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With n=0, (13) brings
V= —V(x)u with W(x)=A1P1(x) (14)
which implies that (13) becomes
Qn(x)vo = *(ln+1Pn+1(X) *‘U(X)Qn(X)) ug, n>1.
For n=1, the latter reads
v =0(x)ue with &(x)=—(LP()-MPI()Q(x) (1)

and deg® < 2. After a single differentiation of the latter identity, we prove
(a)=(b), because of (14).

Now, inserting (14) and (15) in the equality (13) brings
—Qn(x)W(x)uo + Qn(x)P(x)uo = —An41Pni1(x)uo, n>0.

Since {P}n>0 is orthogonal for ug, we have that f(x)ug =0 < f(x) =0 for
any polynomial f(x). Consequently, we obtain

—Qn()W(x) + Qu(x)P(x) = —An+1Pny1(x), n>0.
Using the definition of Q,(x) = ﬁP;,H(x), we prove (a)=(c).
University of Kent
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(c) = (b)
Bochner's differential equation implies

0 = <ug,®(x)Py(x) = V(x)Pp(x) >=< ((®(x)u0) +¥(x)uo)", Py >, n>0.
Since the latter is valid for any n >0 and {P,},>0 is orthogonal, then
((®(x)uo) +W(x)up) =0
and this implies
(P(x)ug) +W(x)up =0
(b) = (a)
0 = <(S()u0) +W(x)up X Prsr >=< o, ~0(x) (x*Ppi1 ) +W(x)x Ppi1 >
= < gy~ xF ()Pl (x) + (—kO(x) 4 XW(x)) XL Py >
Hence

(n+1)< ¢(x)u0,ku,,(x) >=< up, (—kP(x) -|—X\U(X))Xk71 Ppi1(x) >
degree <k+1
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(d) = (b):The particular choice of n=1 in the Rodrigues formula corresponds
to Pearson equation.

(c) = (d)
From the Bochner's differential equation, and on account of the Pearson
equation, we can write

(P;(X)q)(X)UO), = AnPn(x)ug

Similarly, we deduce that there are coefficients {y , such that

o (( i "*k(x)) ¢k(X)uo)/ = CknPr(x) .

dxk \ \ dxk

Now Rodrigues formula is obtained from the latter by setting n = 0. g
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Classical polynomials - properties

Proposition.
If {Pn}n>0 is classical, then so is {Qp}n>0 with Qn(x) = ﬁPI’#l(X) and it
satisfies

O(x) @ (x) = (W(x) = ¥'(x)) Qu(x) = (Xn+1+V'(0))Qn(x), n=>0.  (16)

where ® and W are polynomials such that deg® < 2, deg(V¥) =1 and ¢ monic,
and

X0=0 and x,= n(\U'(O)— ¢”2(0)(n— 1)) £0 for n>1.

Proof. As {Pp},>0 is classical, then Bochner's differential equation holds. We
differentiate both sides of the equation w.r.t. x and then replace
Pl 1(x) = (n+1)Qn(x) to get (16).

Since {Qn}n>0 is orthogonal and satisfies (16), we conclude that{Qn}n>0 is
classical. O
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Classical polynomials - properties

More generally, we have:

Corollary. If {P,},>0 is classical, then for each k > 1, the sequence of kth

derivatives .
1 d

P[k] : il

P00 =

is an OPS and also classical.

Prik(x)}nz0

Proof. After the previous characterisation Theorem for classical polynomials
and the latter Proposition, the result follows by induction. g

Highlights. If {Pp},>0 is classical (and orthogonal w.r.t. .Z), then

1 dk
(n+1)k dx*

(PH(x) =

Prik(x)}nz0

is classical and orthogonal w.r.t. the linear functional

L = ok (x).7
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Classical polynomials - some historical remarks

> The characterisation via the Pearson equation is due to J.L. Geronimus
(1940).

> |n 1929, S. Bochner studied all the solutions of the differential equation

d2p, dpy,
d(x) 02 —V¥(x) ix = AnPn(x)

under the restrictions of deg® < 2 and degW = 1. These consisted of
essentially 5 distinct families of polynomials, up to a change of variable,
which are the four families of classical polynomials (Hermite, Laguerre,
Bessel and Jacobi) and the sequence {x"},>0 (which is not orthogonal).
At that time, Bessel polynomials were disregarded as these are not
orthogonal with respect to a positive definite linear functional.

> In 1935, W. Hahn observed that all the classical families of Hermite,
Laguerre, Bessel and Jacobi polynomials are such that the sequence of its
derivatives is also orthogonal. Moreover, he showed this as a necessary
and sufficient condition. A year later, Hahn has shown (with an extremely
short proof) that in fact it is a necessary and sufficient condition for an
OPS to be orthogonal that the sequence of the kth derivatives is an OPS
for some k > 1.
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Classical polynomials - an equivalence relation

Proposition. Suppose {Pp},>0 is classical and therefore assumed to satisfy
®(x) Py (x) = W(x) Py (x) = ZnPn(x)

Then Py(x) :=a "Pp(ax + b) satisfies
®(x) Py/(x) = V(x)P(x) = ZnPn(x)

where

O(x)=a td(ax+b), U(x)=a'"'W(ax+b), and ¥n=a’x, with t=deg®d.

Proof.
The result is a mere consequence of the change of variable x — ax+ b. O
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Classical polynomials - an equivalence relation

Proposition. Suppose {P,},>0 is classical and therefore assumed to satisfy
®(x) Py (x) = W(x) Py (x) = ZnPn(x)

Then Py(x) :=a "Pp(ax + b) satisfies
®(x) Py/(x) = V(x)P(x) = ZnPn(x)

where

O(x)=a td(ax+b), U(x)=a'"'W(ax+b), and ¥n=a’x, with t=deg®d.

Proof.

The result is a mere consequence of the change of variable x — ax+ b. O

The classical character is invariant under any affine transformation

T: ¥ — P
p(x) — (haot_p)p(x) = p(ax+b)

with a € C* /b € C, because T is an isomorphism preserving the orthogonality.
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Classical polynomials - an equivalence relation

The transformed classical polynomials
5,,()() :=a "(TPp)(x):=a "Pp(ax+b),
orhtogonal w.r.t. the classical linear functional .& = (hy-107_p) L satisfying
D (@) +Wiio =0,
with ®(x) = a~t ®(ax+ b), U(x) = al "t W(ax+ b), where t = deg(P) < 2
Therefore it appears to be natural to define the following equivalence relation
Vuve?, u~v & JacCLbeC:u=(hy10Tp)v

or, equivalently,

{Pn}n>0~{Bn}tn>0 & FacC*, beC: Bp(x)=a "Pp(ax+b).

where

(T_pu, f(x)) = (u,Tf (x)) = (u, f(x = b))
(hau, f(x)) = (u, haf (x)) = (u, f(ax))
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Classical polynomials - the four equivalence classes

As a result, there are four equivalence classes, determined by the nature of ®
(monic), which are:

> Hermite polynomials when deg® =0 ;

We will take ®(x) =1 as representative.

> Laguerre polynomials when deg® =1 ;

We will take ®(x) = x as representative.

> Bessel polynomial when deg® =2 and ¢ has a single root;

We will take ®(x) = x? as representative.

> Jacobi polynomials when deg® =2 and ¢ has two simple roots.

We will take ®(x) = (x —1)(x+1) as representative.
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Classical polynomials - determination of the recurrence coefficients

Between

Pni2(x) = (x = Bn+1) Pnt1(x) — Vo1 Pn(x)
and B

Qn+2(x) = (X - ﬁn+1)Qn+1(X) - 7n+1 Qn(x),
we obtain

Pri1(x) = Qni1(x) + (n+1)(Bnt1 — Bn)Qn(X) + (nYnt1 = (n+1)¥n) Qn-1(x).
which leads to
Yn = n+119n}’n+1

(n+2)Bn— -1 = (n+1)Boy1—(n—1)Bn
0n+1ﬁn+1 +(%ng1— 2)En = (20441 —1)Bns2 — Bn+1

(n+1) (1—%219”1) }’n+2+(1+n( —1))}’n+1+(n+1)(l3n+1—ﬁn) =0

where ,
(n+1)2Q _w/(0)
(m) 5% —w'(0)

Uy = n>0.
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Classical polynomials - Case deg® <1

This implies that ¥, =1 for any n > 0. so that

Bn = Bo—(Bo—p1)n
En = ﬁO*ﬁO;ﬁl
Yor1 = (n+1) <Y1+(ﬁ° ﬁl) )

7= (+1) (m+ (B22) (041))

(2n+1)

and, consequently,

d(x) = k1 (cx+ cBo +71) and VY(x)= kil(xf Bo)-

There are two subcases to analyse depending on whether:
c=0 or c#0
N~

. . ~
Hermite polynomials Laguerre polynomials
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Classical polynomials - Case deg® =2

Set p = —W’(0) so that we have
n+p+1

9,=———foralln>0
n+p
as well as
B, = dil c(p>-1)(p +3)
2(2n+p+1)(2n+p-1)
B, = dil c(p>+1)(p+3)
2(2n+p+1)(2n+p+3)
(n+1)(n+p)(1n?+u(p+)n+n(p+1)%(p +2))
Tt = (2n+p)2n+p+1)2(2n+p+2)
with

d= (p—|—1) (ﬁl_p+1ﬁ0) and u:4(p+2)}’1+62(P+3)2
which imply
O(x) = (x—d)2—% and  W(x)=k~}(x— o). (17)
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Classical polynomials - Hermite polynomials

We choose fp =0 and p1 = % so that

d(x)=1 and WY(x)=2x, (18)

and 1
Bn=0 and Yp41= n—; , n>0. (19)

as well as 1
B,=0 and 7,,+1:"’2L , n>0. (20)

Observe that this means that

PJ(x) —2xP/(x) = —2nPu(x), n> 0.
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Classical polynomials - Hermite polynomials (weight function)

In this case, the Hermite OPS is orthogonal for a linear functional . admitting
the integral representation

o0
(Z,f(x)) :/ f(x)W(x)dx, for all polynomials f(x),
where W(x) is a solution of
W'(x) +2xW(x) =0,
~+oo
subject to f(x)W(x)‘ =0 for any polynomial f(x). Indeed, by solving the
homogeneous differential equation, it follows that
W(x) = ke ™

for some integration constant k. Obviously k cannot be zero (otherwise
W(x) =0, identically), and we may choose it so that £[1] =1, which means
that

o0
/ W(x)dx =1.
Hence we take k = ﬁ and we obtain
(L F(x)) = — /+°°f()*xzd for all polynomials £(x)
X)) = —= x)e x, for all polynomials f(x).
) \/E e b p y

p.69 University of Kent



Classical polynomials - Hermite polynomials (other proprieties)

p.70

Rodrigues formula:

exp(—/2)Paxic ) = SV

Similar formulas can be obtained from
_ d E'(x)
E(x)Pa(x)=2""( = 1 2x—
(IPa0) =27 (- 3 +2x -
for suitable choices of the analytic function E(x).
Clearly, the Rodrigues formula can be obtained from the latter by setting
E(x) = exp(—x?/2). Another interesting example is when E(x) = 1, so that we
obtain:

(exp(—x2/2)) , n>0.

)nE(x), n>0,

d n
Pp(x)=27" (—a+2x> , n>0.

Generating function. The Hermite polynomials can also be described via a
generating function:

2n
exp <2xt— t2) =Y — Pn()t",
o n
n

hence, Ln (GXP (2xt —1?) )

I =2"Pp(x), n>0.

t=0
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Classical polynomials - Laguerre polynomials

We choose By and c¢ such that ffp — % =0andc=1and weset 3 =1+« to
obtain

d(x)=x and V(x)=x—(a+1), (21)

and

Bn=2n+0+1 and Ypp1=(n+1)(n+a+1), n>0, (22)
Br=2n+a+2 and Foi1=(n+1)(n+a+2), n>0, (23)

provided that o # —n for any integer n > 1. So we write
Pa(x;a) instead of  Pp(x).
and, from the recurrence coefficients, we deduce that
Phi1(x;@) = (n+1)Pn(x; 0 +1).
and also

xPl(x; &) — (x —a—1)Ph(x; &) = —nPu(x; &), n>0. (24)
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Classical polynomials - Laguerre polynomials (weight function)

p.72

We seek an integral representation for £
(Z,f(x)) = /+w f(x)W(x)dx, for all polynomials f(x),
Hence W(x) is a solution of
(XW(X))/—F (x— a—1)W(x) = cg(x),
subject to the conditions
/ab W(x)dx#0 and p(x)W(x)|é]7 =0, for any polynomial p(x), (25)

With ¢ =0, the general solution of the latter differential equation is given by

| kieTX|x|* if x<0
W(X)_{ koe Xx®% if x>0

So, @ > —1 and necessarily k; =0 and k» # 0 s.t.

+oo 1
k / e x%x=1 = k=—"—.
% Jo 2T T(a+1)
Therefore, we conclude that the linear functional can be represented by
1 oo
L f :7/ F(x)e *x%dx, provided that a> —1.
( (x)) Flas1) Jo (x)e™*x%dx, provided that o >
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Classical polynomials - Laguerre polynomials (other properties)

Rodrigues formula:

dn

x%exp(—x)Pn(x; o, ) = (—1)" i — (x*"exp(—x)), n>0.

Generating function: monic Laguerre polynomials can be described as follows

(1—x)—°‘—1exp( 1> Zana(t)n

n>0

Explicit expression:

Lo(x;a) = (=1)"(a+1)n 1 F1 (o;fl ;x)
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Classical polynomials - Bessel polynomials

We choose p = 0 and therefore ®(x) = (x — d)? and we can set d =0 and
1(p+2)(p+1)? = —4. Hence c?(p +1)?(p +3)% =16. We take
c=—4(p+1)"1(p+3)"! and set p+1 =20 to obtain:

d(x)=x%> and W(x)=—2(ax+1), (26)
and
1 1-a
ﬁ0=—a7 Bn+1:mv (27)

(n+1)(n+2a—1)
2n+2a—1)(n+ a)2(2n+2a+1)
provided that o # —n for any integer n > 0. Denoting B, := Bn(a), it follows
that

7n+1 - , n 2 07 (28)

En =Bn(a+1), ¥n=7va(a+1).
Hence, Bessel polynomials depend on a parameter, so that we write
Pn(x;a) instead of  Pp(x).
The expressions of the recurrence coefficients also tells
P 1(x;a) = (n+1)Py(x;+1), n>0.
They satisfy

2 plt / o o
p.74 x“PJ(x)+2(ax+1)P,(x) = n(n+20a — 1) Py(x), nZO'Universityof Kent



Classical polynomials - Bessel polynomials (other properties

Rodrigues formula:

2 (1)” d" 2
2-2a 2420+2n
2P, P Sl _Z >0.
X exp (X) (X Oc) ( Y 2)n o (X exp( X)) ,n>0

Similar formulas may be obtained via the following:

E(x)Pn(x; 00) = (2;) ( 2;72 2(a+";’1)x—2+x2§((;))) E(x), n>0,

for suitable choices of the analytic function E(x).

Explicit expression.

2n —n, n+200—1 x
Pn(x;a) = ——————2F ’ ==
i) = 0 1)n20< - ' 2)
or, equivalently,
Po(x; ) = x" 1 F: - E
MR =N op—2a 42" x
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Classical polynomials - Jacobi polynomials

Here u # 0. A suitable linear transformation on the variable permits to place
the two distinct roots at —1 and 1. For that, we take gt =4 and d =0. The
other two parameters p and ¢ remain arbitrary, which we replace by other two
parameters o and 3, by setting

2(ax—B)

=OH— +1 and C=-—"—"-———"—-—.
p=oath (1) +3)

With these conditions we obtain
¢(X):x2_1, and W(X):—(a+ﬁ+2)x+a—ﬁ,

and also
a— B B 0627[32
Po= at+p+2’ ﬁ”“*(2n+a+ﬁ+2)(2n+a+ﬁ+4)
Yort = 4(n+1)(n+a+B+1)(n+a+1)(n+p+1) > 0.

(2n+a+B+1)2n+a+B+2)2(2n+ o+ +3)’
Obviously, it is required that a+f # —(n+1), o # —(n+1) and B # —(n+1)
for all n> 0. Besides,

Br=Bn(a+1,8+1), Fn=w(a+1,B+1).
Hence P,(x; o, B) satisfies

(< =1)Py (0. B) (@B +-2)xta—B)P(xi o) = nln-+ @B P op Bl
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Classical polynomials - Jacobi polynomials (weight function)

p.77

Since
((C=)W)Y + (— (@+B+2)x+a—B) W(x) = cg(x).
With ¢ =0, observe that the general solution is given by

[ kQ+x)*1-x)B if x| <1
W(X)’{ 0 if x| >1.

For a > —1 and B > —1, then the conditions (25) are satisfied, so that we can
represent the Jacobi linear functional as follows:

1 T(a+p+2)

200 = g (o) (B)

/ f(x)(14+x)¥*(1—x)Pdx, for any polynomial f.

University of Kent



Classical polynomials - Jacobi polynomials (other properties)

p.78

Rodrigues formula:

(1)1 PalsitB) = g (140470 )47 2o

Generating function:

2a+ﬁ

N o (wwm)“(l_twm)ﬁ

- ¢ e e

n>0

Explicit expression:

Pa(x;0t,B) =

2"t +1)pn! (—n, n+a+/3+1_1—x>
(ntoa+B+1),° " o+l )

and, additionally,
Pa(x;a,B) = (=1)"Pp(—x; B, @)

University of Kent



Jacobi polynomials: particular cases

Legendre Polynomials. With o = 8 =0, we obtain the Legendre
polynomials. These are given by Pp(x) = P,(x;0,0) satisfying

1 22n+1 //2p\\ 2
— >0.
/_lPk(x)P,,(x)dx s ((n)> Sk, mk>0

Chebyshev Polynomials of 1st kind. (when a == -3):
Ti(x)=x and T,(x)=2 "cos(n), for n#1 where x=cos(6).
and can be expressed via the generating function

1—xt N
=V 2T ()"
2= ) "
1—2xt+t S0

The recurrence relation becomes reduced to
~ ~ 1~
Trnt1(x) =xTh(x)— 2 To-1(x)
with To(x) =1 and T1(x) = x.
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Jacobi polynomials: other particular cases

Chebyshev Polynomials of 2nd kind. (When a=ff = %) correspond to

_psin(nB)

Un(x) =2 sin(0) ’

where x = cos(6),

and can be expressed via a generating function

1 ~
= Y 2"Up(x)t".
1—2xt+t2 =

Also, observe that
d

ax ?n+1(X) =(n+ l)U,,(x), n>0.
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Hermite Laguerre Bessel Jacobi
d(x) 1 % x2 21
V() | 2 x—a-1 ~2(ax+1) —(@+B+2)x+(a—p)
X —2n —n n(n+2a-1) n(n+a+p+1)
A e e
Bn 0 2n+o+1 (n+a1—1;.zn+a) (2n+a+Z)2(£fja+;;+2)

(Bo=-3%)
| (n+Dn+a+1) | G S omtaarsy | Grtatpomas 122 Gorecp 1
e e e x 1
IRCE NN ROR = cap | FOOM+x%(1=x)dx

valid for oo > —1

2B (ot i)

with Cap = —ranr(pr)

valid for o, > —1

p.81
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Askey  scheme as
proposed by Jacques
Labelle at the first
OPSFA  meeting in
Bar-Le-Duc  (France)
in 1984
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Askey Scheme

4F3(4) Wilson ﬂ 4F3(4)
Continuous Continuous
3F(3) Hahn Dual Hahn 3F(3)
dual Hahn Hahn
Meixner Pseudo
2F1(2) - Jacobi ) Meixner Krawtchouk | 2F1(2)
Pollaczek Jacobi
1F1(1) /2R (1) Laguerre ‘ Bessel ‘ ‘ Charlier ‘ 1F1(1) /2Fo(1)
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Askey Scheme

Sf - ((«r&tﬂfg(i—%f) = DG _ L) Phiay
Zee I v v
e
F(4) Wilson Racah " F(4)
Alx)= x(ere)
S A )SNX)
Continuous Continuous 4
3F(3) Hahn Dual Hahn 3FR(3)
dual Hahn Hahn B,
Din / /)( M\
Meixner D Pseud
2F1(2) = Jacobi seu 0 Meixner 2F1(2)
Pollaczek Jacobi
1F1(1)/2Fo(1) Laguerre Bessel Charlier 1F1(1) /2Fo(1)
b8y
2F(0) Hermue 2F(0)
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Hahn-classical sequences with respect to Ay

Consider the operator Ay : & — & s.t.

Apf(x) = W’ o +#0.

Definition. An orthogonal polynomial sequence {Pp}n>0 is Agp-classical iff the

polynomial sequence {Qp}n>0 given by

1
Qn(x) = mAanH(X)

is also orthogonal.

p.85 University of Kent



Hahn-classical sequences with respect to Ay

Consider the operator Ay : & — & s.t.

Apf(x) = W’ o +#0.

Definition. An orthogonal polynomial sequence {P,},>0 is Ag-classical iff the
polynomial sequence {Qp}n>0 given by

1
Qn(X) = mAanJ'_]_(X)
is also orthogonal.

In this case it makes all sense to analyse the polynomials on the modified
Pochhammer basis

n—1
(x;—@)p = H (x — wk)
k=0
so that
Do(x;—0)nt1 = % (x+o—(x—wn))=(n+1)(x;—®)n
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Hahn-classical sequences with respect to Ay

Denoting by A} : 2" — P’ the transposed of the operator Ay : # — 2,
then we have
AL =—DN &

so, with some abuse of notation, we have

<A_Z, f(x)>=—-<Z,A_uf(x)>
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Hahn-classical sequences with respect to Ay

Denoting by A} : 2" — P’ the transposed of the operator Ay : # — 2,
then we have

AL =—DN &
so, with some abuse of notation, we have
<A_Z, f(x)>=—-<Z,A_uf(x)>

Theorem. For any OPS {P,},>0 for .Z the following are equivalent
(a) {Pn}n=0 is Ap-classical.

(b) There exists ® and W with deg® <2 and degW =1 s.t.
A_o(P(x)L)+V(x)L =0

(c) There exists ® and W with deg® <2 and deg W =1 and coefficients
An#0, for n>1, s.t.

D(x)(ApoA_uPp)(x) =W (x)(A—pPn)(x) = AnPn(x)
(d) There exists ® with deg® <2 and coefficients &, #0, for n > 1, s.t.

Pn(x)Z =&, <<rhl d(x+ wc)) .Z)
=0
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Hahn-classical sequences with respect to Ay

Similar to the very classical polynomials, and under the same equivalence
relation, one can define the corresponding equivalence classes for the
Ap-classical polynomials because....

If {Pn}n>0 is Agp-classical w.r.t. &, iff (P, = a "Pp(ax+ b)}n>0 is also
Ag-classical w.r.t. &

so that, we have
A_H(P(X)L)+V(x)Z =0

—wal ( :?T) JF\U

where ®(x) = a~t ®(ax+ b), U(x) = a'~t W(ax + b), where t = deg(P) < 2

and

(For more details see Abdelkarim& Maroni, 1997)
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_ flgx)—f(x)
(g—1)x

Hahn-classical sequences with respect to Dgf(x) :=

Consider the operator Dy : & — & s.t.
f(gx) —f(x)
(@—1)x ~

Definition. An orthogonal polynomial sequence {P,}p>0 is Dg-classical iff the
polynomial sequence {Qp}>0 given by

Dqf(x) = qeC\{0} and |q|#1.

1
Q,,(x) = m(DanJrl)(X)

is also orthogonal, where

p.90 University of Kent



— f(g¥)—f(x)

Hahn-classical sequences with respect to Dgf(x) := (@D

Consider the operator Dy : & — & s.t.
f(gx) —f(x)
(@—1)x ~

Definition. An orthogonal polynomial sequence {P,} >0 is Dg-classical iff the
polynomial sequence {Qp}>0 given by

Dqf(x) = qeC\{0} and |q|#1.

Qn(x) 1= ﬁ(oqpm)(x)

is also orthogonal, where
[ ] n 1
n]:=
g—1

Denoting by D;- : P! — P’ the transposed of the operator Dg: &2 — P,

then we have
DJ £ :=-Dg%

so, with some abuse of notation, we have

< DgZ,f(x) >=— < Z,Dgf(x) >
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Hahn-classical sequences with respect to Dy

Theorem. For any OPS {P,} >0 for . the following are equivalent
(a) {Pn}nz0 is Dg-classical.

(b) There exists ® and ¥ with deg® <2 and degW =1 s.t.
Dg(¢(x)ZL)+W¥(x)Z=0

(c) There exists  and W with deg® <2 and deg W =1 and coefficients
An#0, for n>1, s.t.

(x) (Dgo Dy Pn) (x) = W(x) ( “1Pp) (X) = AnPn(x)
(d) There exists ® with deg® <2 and coefficients &, #0, for n > 1, s.t

n—1
Pn(x)Z = EnDg (<H0¢(q0x)> f)
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Hahn-classical sequences with respect to Dy

Similar to the very classical polynomials, and under the equivalence relation
Bn(x) ~ Pn(x) iff Ja#£0 st. Bp(x)=a "Puy(ax)

one can define the corresponding equivalence classes for the Dg-classical
polynomials because....

{P,,},,>9vis Dg-classical w.r.t. 2, iff {Pn:=a""Py(ax)}nz0 is also Dg-classical
w.rt. £ = h,1.Z since we have

Dy (P(x)L)+V(x)Z =0

and

Dq (<T>(x).,s?) +V(x).Z =0

where ®(x) = a~t ®(ax), W(x) = a "t W(ax), where t = deg(P) < 2

(For more details see Khériji & Maroni, 2002)
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Askey-Wilson scheme

) Askey-Wilson / g-Racah “)
P
/ -
Continuous Continuous Bi
3) N g-Hahn Dual g-Hahn 3)
dual g-Hahn g-Hahn g-Jacobi
Al-Salam g-Meixner Continuous Big Little Quantum Affine Dual
2 N N ¢-Meixner g-Krawtchouk @)
Chihara Pollaczek g-Jacobi g-Laguerre g-Jacobi g-Krawichouk g-Krawtchouk| | g-Krawtchouk
1 Continuous | [ Continuous Little Al-Salam Al-Salam 1
() X N g-Laguerre g-Bessel g-Charlier b p 9]
big g-Hermite| | g-Laguerre g-Laguerre Carlitz T Carlitz T
©) ©)

p.94
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Chapter 3. Semiclassical polynomials

Definition. An OPS {Pp},>0 is semiclassical w.r.t. a linear functional .Z iff
there exists a polynomial ¢ and a polynomial W with degW¥ >1 s.t.

(P(x)L) +V¥(x) ¥ =0 (29)

and the pair (®,V) is such that max(deg® —2,degW — 1) > 1 and needs to
satisfy the so called admissible conditions.

Observe that the pair (®, V) realising equation (29) is not unique and there is
simplification criteria

p.95 University of Kent



Semiclassical polynomials

» Simplification criteria: for
(P(x)Z) +VW(x)Z =0
dc such that ®(c) =0 and
/() +W(e)| + |< u,62(®) + 6(¥) | =0, (30)
where 6.(f)(x) = M for any f € &, and u would then fulfill
(6(®)u) + (93(4>) + GC(\U)) u=0.

» The class of u = s is given by (Qi“r}) [max (deg(®) —2,deg(V) —1)]

)
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Semiclassical polynomials

» Simplification criteria: for
(P(x)Z) +VW(x)Z =0
dc such that ®(c) =0 and
/() +W(e)| + |< u,62(®) + 6(¥) | =0, (30)
where 6.(f)(x) = M for any f € &, and u would then fulfill
(6(®)u) + (93(¢) + GC(\U)) u=0.

» The class of u = s is given by (Qi“r}) [max (deg(®) —2,deg(V) —1)]

)

n+deg ¢
» Moreover, ®(x)P;,1(x)= Y OnvPy(x) with 6,n sOnnie#0, n>s.

v=n-s

p.97 University of Kent



Semiclassical polynomials

Theorem. For any monic polynomial ® and any orthogonal sequence {Pp},>0
for .Z, the following are equivalent:
(a) IV withdegWU=p>1st. (P(x)L)+V(x)Z=0
where the pair (¢, V) is admissible and gives the class
s = max(deg® —2,deg W — 1) of the semiclassical linear functional .Z.
(b) There exists an integer s > 0 s.t.

n+deg ®
O(x)Ppp(x)= ). BnyvPy(x)
V=n-—s
with 6pp-sOnnyt #0, n>s.
(c) There exist an integer s > 0 and a polynomial W with degW =p > 1 s.t.
n+s, -
S (x)Pl(x) = V(x)Pn(x) = Z AnvPyii(x), n>deg®d
v=m—deg®

with In,nfdegfb # 0 where

s, = pilv n:07
"7 1 s=max(degd—2,degW 1), n>1,

and we write

~ 2
Ay =—(v+1) (2, P4 () Avn, 0<v<n+s.
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Examples of Semiclassical polynomials

Freud Weights (1976)

(Z,f(x)) :/ Fx)du(x) with  du(x) = [x|” exp(—[x|™)
R
with m=2,4,6 (Géza Freud, 1976) and earlier considered by Shohat in 1939.

Semiclassical extensions of modified Laguerre polynomials

du(x) = x%exp(—x —s/x)dx, x¢€[0,+), o >0,5>0,
—_—————

W(x;s,a)
whose moments of order k are my = 2(1/5)* " 1Ky k1 1(2V/s), and we have
(PW(x;s,a)) +(x* — (@ +2)x —s)W(x;s,a) =0

The recurrence coefficients are related to special solutions of PlIl (but can be
also seen as special solutions of the alternative discrete dPIl) (Chen&lts, 2010)

many more examples can be found in the book (Van Assche, 2018).
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Semiclassical polynomials with respect to A

Theorem. For any monic polynomial ® and any orthogonal sequence {Pp},>0
for .Z, the following are equivalent:

(a) IV with deg¥W =p>1s.t.
A_o(P(x) L)+ V¥ (x) L =0
where the pair (®, V) is admissible and gives the class

s =max(deg® —2,degWV — 1) of the semiclassical linear functional Z.
(b) There exists an integer s > 0 s.t.

n+deg ®
O(x)(AwPri1)(x)= Y OnvPu(x)

V=n-—s
with 6pp—sOpntt #0, n>s.
(c) There exist an integer s > 0 and a polynomial W with degW =p >1 s.t.

n+s, .
D(x) (ApPn) (x) = V(x)Pn(x) = Z AnyvPyyi(x), n>deg®
v=m—deg®
pP— 17 n= 07

With Ap p_dego 7 O where s, =

s=max(deg® —2,degW —1), n>1,
and we write A, :—(v—l—l)ml 0<v<n+s
v (ZPLL0x)) 7V B = = )
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Examples of semiclassical polynomials with respect to Ay

Generalised Charlier polynomials

(Zf(x) =Y f(x) B,a>0,

xeN Xl(ﬁ)
( iB.a)

whose moments of order k are my = 2(1/5)* " 1Ky k1 1(2V/s), and we have

1
~1(W(x;B,a))+ ;(X2+(ﬁ —x—a)W(x;B,a)=0
The recurrence coefficients of the corresponding OPS with recurrence relation

XPp = an4+1Pn+1+ bnpn+anpn-1
satisfy
b+ bp_1—n+p =323
2
bp1—bn+1=22(a7 1 — a5 1)

f’ﬁ(2f)
-1(2va)
Many more examples can be found in the book (Van Assche, 2018).

with initial conditions by = and ag =0
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Semiclassical polynomials with respect to Dy,

Theorem. For any monic polynomial ® and any orthogonal sequence {Pp},>0
for .Z, the following are equivalent:

(a) IV with deg¥W =p>1s.t.
Dyg(¢(x)L)+V¥(x)L =0
where the pair (®, V) is admissible and gives the class

s =max(deg® —2,degWV — 1) of the semiclassical linear functional Z.
(b) There exists an integer s > 0 s.t.

n+deg ®
O(x)(DgPns1)(x)= ), 6nvPyv(x)

V=n—s
with 6 p—sOpntt #0, n>s.
(c) There exist an integer s > 0 and a polynomial W with degW =p >1 s.t.

n+s, .
®(x) (DgPn) (x) —V(x)Pn(x) = Z AnyvPyvi1(x), n>deg®
v=m—deg®
pP— 17 n= 07

With Ap n_dego 7 O where s, =
s=max(deg® —2,degW —1), n>1,
and we write A, :—[v—l—l]ml 0<v<n+s
v (ZP ) m T =" = ’
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Examples of semiclassical polynomials with respect to Dy

Semiclassical extensions of g-Laguerre polynomials (or the
Stieltjes-Wigert) Starting with the indeterminate weight

N x%

W) = (—x2,62)eo(—q%/x%,42)0”

x € [0,00)
where
n—1 B oo B
(a:q)n=[](1—aq") and (a9)w= [](1-aq")
k=0 k=0
then, the recurrence coefficients (ap, bp) of p, defined by

XPn = an+1Pn+1+ bnpn+anpn-1
are such that
2,21 — qlann + q72nfoc+1
b,2,q2"+2axn = Xpy1+ q2”+2aXn71(Xn + q—n—a)2 +2(Xn + q—a)

where )
_ (xn+q%)
Xn71Xn+1 — m
2
with initial conditions xp = —q% and x; = b2 = (%)

are related to the g-discrete PIII.
Many more examples can be found in the book (Van Assche, 2018).
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Semiclassical extensions of Hahn-classical polynomials

{Pn}n>0 is O-semiclassical , whenever the corresponding regular form wug fulfils

to (¢u0)+\|/uo =0
with deg® =t >0 and deg¥V=p=>1.
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Semiclassical extensions of Hahn-classical polynomials

{Pn}n>0 is O-semiclassical , whenever the corresponding regular form wug fulfils
to (¢u0) +Wuy =0
with degd =t>0and degVU=p>1.

» t0=D:
The recurrence coefficients of D-semiclassical polynomial sequences are
often related to Painlevé type equations.

» 0 =Ay: , Where the symmetric case is treated
for the class s = 1.

- connections to discrete Painlevé type equations:
> 10 =Dqy , we refer to
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