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recap on Orthogonality

Let µ be a positive Borel measure with support S defined on R (represented
by the linear functional L ) for which moments of all orders exist, i.e. ,

mn =
∫
S
xndµ(x) < ∞, n = 0,1,2, . . . .

we have seen that...

A sequence of monic polynomials {Pn}n≥0 with degPn = n is orthogonal w.r.t.
the measure µ if

〈L ,xkPn(x)〉 :=
∫
S
xkPn(x)dµ(x) = Nn δn,k k = 0,1,2, . . . ,n .

where S is the support of µ and Nn is the square of the weighted L2-norm of
Pn given by

Nn =
∫
S
xnPn(x)dµ(x) > 0.
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recap on Orthogonality

The system

〈L ,xkPn(x)〉 :=
∫
S
xkPn(x)dµ(x) = 0 k = 0,1,2, . . . ,n−1 .

is a linear system of n equations for the n unknown coefficients cn,k of

Pn(x) =
n
∑

k=0
cn,kx

k with cn,n = 1.

The system has a unique solution because the matrix of the system is the Gram
matrix 

m0 m1 . . . mn−1

m1 m2 . . . mn
...

...
. . .

...
mn−1 mn . . . m2n−2

 where mk =
∫
S
xkdµ(x).

which is a positive definite matrix whenever the support of µ contains at least
n points.
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Multiple Orthogonal Polynomials

A sequence of Multiple Orthogonal Polynomials is a sequence of polynomials of
one variable which is defined by orthogonality relations with respect to r
different measures µ1, . . . ,µr , where r ≥ 1.
Some remarks:

I The case where r = 1 reduces to the standard notion of orthogonality;

I These polynomials should not be confused with multivariate or
multivariable orthogonal polynomials of several variables nor with matrix
orthogonal polynomials;

I Other terminology is also used such as:
I Hermite-Padé polynomials, motivated by the link with Hermite-Padé

approximation or simultaneous Padé approximation, following the works by
(Nuttall, 84), (de Bruin, 85), (Sorokin, 84 & 90), (Bultheel et al., 05);

I Polyorthogonal polynomials after (Nikishin & Sorokin, 91);

I Vector orthogonal polynomials following (Van Iseghem, 87), (Kaliaguine,
95), (Sorokin & Van Iseghem, 97)

I The so-called d-orthogonal polynomials initiated by (Maroni, 89) and
followed by Douak, Ben Cheikh and many others up to now: these are
multiple orthogonal polynomials near the diagonal and d is the number of
orthogonality measures.
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Multiple orthogonal polynomials

There are two types of multiple orthogonal polynomials: type I and type II

In either cases, the polynomials will be depend on the multi-index

~n = (n1, . . . ,nr ) ∈Nr

with length
|~n|= n1 + . . .+nr

Type I multiple orthogonal polynomials are collected in a vector of r
polynomials

(A~n,1(x), . . .A~n,r (x))

where degA~n,j (x)≤ nj −1 s.t.

r

∑
j=1

∫
S
xkA~n,j (x)dµj (x) = 0, for k = 0,1, . . . |~n|−2

r

∑
j=1

∫
S
x |~n|−1A~n,j (x)dµj (x) = 1 ← (normalisation)

which gives a linear system of |~n| equations for the |~n| unknown coefficients of
the polynomials A~n,j (x) for j = 1, . . . r .
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Type I multiple orthogonal polynomials

(A~n,1(x), . . .A~n,r (x)) where degA~n,j (x)≤ nj −1 s.t.

r

∑
j=1

∫
S
xkA~n,j (x)dµj (x) = 0, for k = 0,1, . . . |~n|−2 (1)

r

∑
j=1

∫
S
x |~n|−1A~n,j (x)dµj (x) = 1 (2)

This gives a linear system of |~n| equations for the |~n| unknown coefficients of
the polynomials A~n,j (x) for j = 1, . . . r .

The index ~n is normal if the relations (1) determine the polynomials uniquely,
which corresponds to say that

detM~n 6= 0 where M~n =
[

M
(1)
n1 M

(2)
n2 · · · M

(r)
nr

]
with

M
(j)
nj =


m

(j)
0 m

(j)
1 · · · m

(j)
nj−1

m
(j)
1 m

(j)
2 · · · m

(j)
nj

...
... · · ·

...

m
(j)
|~n|−1 m

(j)
|~n| · · · m

(j)
|~n|+nj−2

 and m
(j)
k =

∫
S
xkdµj (x)
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Type II multiple orthogonal polynomials

The type II multiple orthogonal polynomialsfor ~n corresponds to the monic
polynomials P~n(x) of degree |~n| for which∫

S
xkP~n(x)dµj (x) = 0, k = 0, . . .nj −1, (3)

for j = 1, . . . , r .

The conditions (3) give a system of |~n| equations for the |~n| unknown
coefficients of the monic P~n(x).

The matrix of this linear system is

MT
~n =

[
M

(1)
n1 M

(2)
n2 · · · M

(r)
nr

]T
which is the transpose of M~n.

Hence the system (3) has a unique solution if the multi-index ~n is normal, i.e.
detM~n 6= 0.
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Type I and Type II multiple orthogonal polynomials

A multi-index ~n is normal

⇐⇒ detM~n = det
[

M
(1)
n1 M

(2)
n2 · · · M

(r)
nr

]
6= 0

where M
(j)
nj =


m

(j)
0 m

(j)
1 · · · m

(j)
nj−1

m
(j)
1 m

(j)
2 · · · m

(j)
nj

...
... · · ·

...

m
(j)
|~n|−1 m

(j)
|~n| · · · m

(j)
|~n|+nj−2

 and m
(j)
k =

∫
S
xkdµj (x)

⇐⇒ the type I vector (A~n,1(x), . . .A~n,r (x)) exists and is unique

⇐⇒ the monic type II multiple orthogonal polynomials P~n exists and is
unique
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Special systems: Angelesco systems

Definition. The vector measures (µ1, . . . ,µr ) form an Angelesco system if
the supports of the measures are subsets of disjoint intervals
i.e.,
supp(µj )⊂ Sj and Si ∩Sj = /0 whenever i 6= j .

Usually one allows that the intervals are touching, so that

◦
S i ∩

◦
S j= /0 whenever i 6= j .

Theorem. (Angelesco, Nikishin)

The type II multiple orthogonal polynomials P~n has exactly nj distinct zeros on
◦
S j for j = 1, . . . , r .
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Special systems: AT systems

Definition. The system of linearly independent functions ϕ1, . . . ,ϕn form a

Chebyshev system on [a,b] if every linear combination
n

∑
i=1

aiϕi (x) with

(a1, . . . ,an) 6= (0, . . . ,0) has at most n−1 zeros on [a,b].

Example. ec1x ,xec1x , . . . ,xn1−1ec1x , . . . ,ecr x ,xecr x , . . . ,xnr−1ecr x , with ci 6= cj
whenever i 6= j , is a Chebyshev system of order |~n| on R.

Definition. (AT-system) The measures (µ1, . . . ,µr ) form an AT-system on
the interval [a,b] if the measures are all absolutely continuous with respect to a
positive measure µ on [a,b], i.e.

dµj (x) = wj (x)dµ(x), j = 1, . . . , r ,

and, for every ~n, the functions

w1(x), . . . ,xn1−1w1(x),w2(x), . . . ,xn2−1w2(x), . . . ,wr (x), . . . ,xnr−1wr (x)

are a Chebyshev system on [a,b].
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Special systems: AT systems

Theorem. If (µ1, . . . ,µr ) is an AT-system on the interval [a,b], then the type
II multiple orthogonal polynomials P~n(x) has exactly |~n| distinct zeros on (a,b)
and hence ~n is a normal index.

Theorem. For an AT-system, the function

Q~n(x) =
r

∑
j=1

A~n,j (x)wj (x)

has exactly |~n|−1 sign changes on (a,b).
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Biorthogonality

In an AT-system every measure µk is absolutely continuous w.r.t. a given
measure µ on [a,b] and dµk(x) = wk(x)dµ(x).

In an Angelesco system we can define µ = µ1 + . . .+ µr . If all intervals [aj ,bj ]
are disjoint then dµk(x) = wk(x)dµ(x) where

wk(x) = χ[ak ,bk ](x) =

{
1, if x ∈ [ak ,bk ]
0, if x /∈ [ak ,bk ]

If bj = aj+1 then we consider µj = µ̂j +c1δbj and µj+1 = µ̂j+1 +c2δaj+1 , so that
µ̂j and µ̂j+1 have no mass at bj = aj+1. Then the absolutely continuity w.r.t.
to µ = µ1 + . . .+ µr still holds, but with

wj = χ(aj ,bj )(x) +
c1

c1 + c2
χ{bj}(x)

wj+1 = χ(aj+1,bj+1)(x) +
c2

c1 + c2
χ{aj+1}(x)
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Biorthogonality

For an AT-system and an Angelesco system we have

dµj (x) = wj (x)dµ(x), j = 1,2, . . . , r .

Based on the type I orthogonality relations, then for the type I functions

Q~n(x) =
r

∑
j=1

A~n,j (x)wj (x)

we have ∫ b

a
Q~n(x)xkdµ(x) = 0, k = 0,1, . . . , |~n|−2,∫ b

a
Q~n(x)x |~n|−1dµ(x) = 1.

The type II multiple orthogonal polynomials P~n and these type I functions
Q~n(x) satisfy biorthogonality:

∫ b

a
P~n(x)Q~m(x)dµ(x) =


0, if ~m ≤~n,
0, if |~n| ≤ |~m|−2,
1, if |~n|= |~m|−1.
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Recurrence relations - type II multiple orthogonal polynomials

Nearest neighbour recurrence relations for type II multiple orthogonal
polynomials (see Van Assche, 11)

xP~n(x) = P~n+~e1
(x) +b~n,1P~n(x) +

r

∑
j=1

a~n,jP~n−~ej (x)

...

xP~n(x) = P~n+~er (x) +b~n,rP~n(x) +
r

∑
j=1

a~n,jP~n−~ej (x)

where
~ej = (0, . . . ,0, 1︸︷︷︸

jth entry

,0, . . . ,0)
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Recurrence relations - type I functions

Nearest neighbour recurrence relations for type I functions

xQ~n(x) = Q~n−~e1
(x) +b~n−~e1,1Q~n(x) +

r

∑
j=1

a~n,jQ~n+~ej (x)

...

xQ~n(x) = Q~n−~er (x) +b~n−~er ,rQ~n(x) +
r

∑
j=1

a~n,jQ~n+~ej (x)

where
~ej = (0, . . . ,0, 1︸︷︷︸

jth entry

,0, . . . ,0)
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Recurrence relations - coefficients

Theorem. (Van Assche,11)
The recurrence coefficients (a~n,1, . . . ,a~n,r ) and (b~n,1, . . . ,b~n,r ) satisfy the partial
difference equations

b~n+~ei ,j −b~n,j = b~n+~ej ,i −b~n,i
r

∑
k=1

a~n+~ej ,k −
r

∑
k=1

a~n+~ei ,k = det

(
b~n+~ej ,i b~n,i
b~n+~ei ,j b~n,j

)
a~n,i

a~n+~ej ,i
=

b~n+~ej ,j −b~n+~ei ,i

b~n,j −b~n,i

for all j = 1, . . . , r .
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Example. Multiple Hermite polynomials.

These are given by∫
∞

−∞

xkH~n(x)e−x
2+cjx dx = 0, k = 0,1, . . . ,nj −1,

for 1≤ j ≤ r , where ci 6= cj whenever i 6= j . The recurrence relation is explicitly
given as

xH~n(x) = H~n+~ek (x) +
ck
2
H~n(x) +

1

2

r

∑
j=1

njH~n−~ej (x),

for 1≤ k ≤ r , so that

b~n,j = cj/2, a~n,j = nj/2, 1≤ j ≤ r .

see (Van Assche & Coussement, 01) and (Van Assche, 11)
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Multiple Hermite polynomials: application to RMT

Let M be a random Hermitian matrix of size N×N, and consider the ensemble
with probability distribution

1

ZN
exp
(
−Tr(M2−AM)

)
dM, dM =

N

∏
i=1

dMi ,i ∏
1≤i≤j≤N

dMi ,j

where A is a fixed Hermitian matrix (the external source).

Property. Suppose A has eigenvalues c1, . . . ,cr with multiplicities n1, . . . ,nr ,
then

E(det(M− z IN)) = (−1)|~n|H~n(z).

For further information, I suggest to read (Mart́ınez-Finkelshtein & Van Assche,
16) including the connection to links to non-intersecting Brownian motions.
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Example. Multiple Laguerre polynomials of first kind.

These are given by the orthogonality relations∫
∞

0
xkL~n(x)xαj e−x dx = 0, k = 0,1, . . . ,nj −1,

for 1≤ j ≤ r , where α1, . . . ,αr >−1 and αi −αj /∈ Z.

They can be obtained using the Rodrigues formula

(−1)|~n|e−xL~n(x) =
r

∏
j=1

(
x−αj

dnj

dxnj
xnj+αj

)
e−x (4)

where the product of the differential operators can be taken in any order. This
Rodrigues formula is useful for computing the recurrence coefficients.
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Example. Multiple Laguerre polynomials of first kind. (cont.)

Indeed,∫
∞

0
xnjL~n(x)xαj e−x = (−1)|~n|

∫
∞

0
xnj+αj−α1

dn1

dxn1
xn1+α1

r

∏
i=2

(
x−αi

dni

dxni
xni+αi

)
e−x dx

and integration by parts (n1 times) gives

= (−1)|~n|+n1

(
nj + αj −α1

n1

)
n1!

∫
∞

0
xnj+αj

r

∏
i=2

(
x−αi

dni

dxni
xni+αi

)
e−x dx .

Repeating this r times gives∫
∞

0
xnjL~n(x)xαj e−x = Γ(nj + αj + 1)

r

∏
i=1

(
nj + αj −αi

ni

)
ni !.

From the definition of multiple orthogonality, we have

a~n,j =

∫
xnjL~n(x)dµj (x)∫

xnj−1L~n−~ej (x)dµj (x)
,

which implies

a~n,j = nj (nj + αj )
r

∏
i=1,i 6=j

nj + αj −αi

nj −ni + αj −αi
, j = 1, . . . , r . (5)
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Example. Multiple Laguerre polynomials of first kind. (cont.)

The recurrence coefficients b~n,k can be obtained by comparing the coefficients

of x |~n| in the recurrence relation

xL~n(x) = L~n+~ei (x) +b~n,iL~n(x) +
r

∑
j=1

a~n,jL~n−~ej (x) , i = 1, . . . , r −1.

They are
b~n,k = |~n|+nk + αk + 1, k = 1, . . . , r . (6)
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Example. Multiple Laguerre polynomials of the second kind

These are given by the orthogonality relations∫
∞

0
xkL~n(x)xαe−cjx dx = 0, k = 0,1, . . . ,nj −1,

for 1≤ j ≤ r , where α >−1, c1, . . . ,cr > 0 and ci 6= cj whenever i 6= j . They
can be obtained using the Rodrigues formula

(−1)|~n|
(

r

∏
j=1

c
nj
j

)
xαL~n(x) =

r

∏
j=1

(
ecjx

dnj

dxnj
e−cjx

)
x |~n|+α (7)

where the differential operators in the product can be taken in any order. A
useful integral is∫

∞

0
e−λx

r

∏
j=1

(
ecjx

dnj

dxnj
e−cjx

)
x |~n|+α dx = (−1)|~n|

Γ(|~n|+ α + 1)

λ |~n|+α+1

r

∏
j=1

(cj −λ )nj

which can be evaluated by using integration by parts in a similar way as in the
previous example. Observe that the right hand side has a zero at λ = cj of
multiplicity nj . Using (7) we thus have for λ > 0∫

∞

0
e−λxxαL~n(x)dx =

Γ(|~n|+ α + 1)

λ |~n|+α+1

r

∏
i=1

(1−λ/ci )
ni .
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Example. Multiple Laguerre polynomials of the second kind (cont.)

Clearly

dk

dλ k

∫
∞

0
e−λxxαL~n(x)dx

∣∣∣∣
λ=cj

= (−1)k
∫

∞

0
xkecjxxαL~n(x)dx = 0, 0≤ k < nj ,

which confirms the orthogonality relations, and for k = nj∫
∞

0
xnj ecjxxαL~n(x)dx =

Γ(|~n|+ α + 1)

c
|~n|+nj+α+1
j

nj !
r

∏
i=1,i 6=j

(
1−

cj
ci

)
.

The fact that

a~n,j =

∫
xnjL~n(x)dµj (x)∫

xnj−1L~n−~ej (x)dµj (x)
,

implies

a~n,j =
(|~n|+ α)nj

c2
j

, 1≤ j ≤ r . (8)

For the coefficients b~n,k a comparison of the coefficients of x |~n| on both sides of
the recurrence relation satisfied by L~n(x), and Eq. (23.4.5) in (Ismail) leads to

b~n,k =
|~n|+ α + 1

ck
+

r

∑
j=1

nj
cj
. (9)
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Multiple Laguerre polynomials of second kind: an application to RMT

John Wishart (1928) introduced the Wishart distribution for N×N positive
definite Hermitian matrices

M = XX ∗, X ∈ CN×(N+p)

where all the columns of X are independent and have a multivariate Gauss
distribution with covariance matrix Σ:

1

ZN
exp
(
−Tr(Σ−1M)

)
(detM)p dM.

If Σ = IN , then Laguerre polynomials (with α = p) play an important role.

If Σ−1 has eigenvalues c1, . . . ,cr with multiplicities n1, . . . ,nr , then multiple
Laguerre polynomials of the second kind are crucial:

E(det(M− z IN)) = (−1)|~n|Lp,~c~n (z).

for further details see

Kuijlaars, A.B.J.: Multiple orthogonal polynomials in random matrix theory. In: Bhatia, R. (ed.)

Proceedings of the International Congress of Mathematicians, vol. III, Hyderabad, India, pp.

1417-1432 (2010)
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Example. Jacobi-Piñeiro multiple orthogonal polynomials

These are multiple orthogonal polynomials on [0,1] for the Jacobi weights
xα
i (1−x)β , with α1, . . . ,αr ,β >−1 and αi −αj /∈ Z. They satisfy∫ 1

0
xkP~n(x)xαj (1−x)β dx = 0, k = 0,1, . . . ,nj −1, 1≤ j ≤ r .

They are given by the Rodrigues formula

(−1)|~n|
r

∏
j=1

(|~n|+ αj + β + 1)nj (1−x)βP~n(x)

=
r

∏
j=1

(
x−αj

dnj

dxnj
xnj+αj

)
(1−x)|~n|+β ,

where the product of differential operators is the same as for the multiple
Laguerre polynomials of the first kind.
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Example. Jacobi-Piñeiro multiple orthogonal polynomials (cont.)

One has∫ 1

0
xγP~n(x)(1−x)β dx = (−1)|~n|

∏
r
i=1(αi − γ)ni

∏
r
i=1(|~n|+ αi + β + 1)ni

Γ(γ + 1)Γ(|~n|+ β + 1)

Γ(|~n|+ β + γ + 2)

so that∫ 1

0
xnj+αjP~n(x)(1−x)β dx =

∏
r
i=1

(nj+αj−αi
ni

)
ni !

∏
r
i=1(|~n|+ αi + β + 1)ni

Γ(nj + αj + 1)Γ(|~n|+ β + 1)

Γ(|~n|+nj + αj + β + 2)
.

Using the expression for a~n,j (as in the previous examples) to then find for
1≤ j ≤ r

a~n,j =
r

∏
i=1,i 6=j

nj + αj −αi

nj −ni + αj −αi

r

∏
i=1

|~n|+ αi + β

|~n|+ni + αi + β

×
nj (nj + αj )(|~n|+ β )

(|~n|+nj + αj + β + 1)(|~n|+nj + αj + β )(|~n|+nj + αj + β −1)
. (10)
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Example. Multiple Charlier polynomials

The orthogonality relations are

∞

∑
k=0

C~n(k)k`
akj
k!

= 0, ` = 0,1, . . . ,nj −1,

for 1≤ j ≤ r , where ai > 0 and ai 6= aj whenever i 6= j . The recurrence relation
is given by

xC~n(x) = C~n+~ek (x) + (ak + |~n|)C~n(x) +
r

∑
j=1

njajC~n−~ej (x),

so that
b~n,j = |~n|+aj , a~n,j = njaj , 1≤ j ≤ r .
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Recurrence relations - particular paths

Let (~nk)k≥0 be a path in Nr starting from ~n0 = 0, such that ~nk+1−~nk =~ei for
some i = 1, . . . , r . Then

xP~nk (x) = P~nk+1
(x) +

r

∑
j=0

α~nk ,jP~nk−j (x).

An important case is the stepline

~nk = (i + 1, . . . , i + 1︸ ︷︷ ︸
j

,

r−j︷ ︸︸ ︷
i , . . . , i), with k = ri + j , for j = 0, . . . r −1.

where |~nk |= k = ri + j .
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Recurrence relations - particular case: the stepline

For the the stepline

~nk = (i + 1, . . . , i + 1︸ ︷︷ ︸
j

,

r−j︷ ︸︸ ︷
i , . . . , i), with k = ri + j , for j = 0, . . . r −1.

we consider
Bk(x) = P~nk (x), for k ≥ 0.

Hence Bk(x) satisfies the following recurrence relation of order r + 1, in the

sense that there exist coefficients βk and γ
(j)
k for j = 0,1, . . . , r −1 such that

xBn = Bn+1(x) + βnBn(x) +
r

∑
k=1

γ
(r−k)
n−k Bn−1−k

The polynomial sequence {Bn}n≥0 is an r-orthogonal polynomial sequence...
to be explained....
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r -orthogonal polynomials

Definition. The monic r -orthogonal polynomial sequence {Bn}n≥0 for
(µ1, . . . ,µr ) is such that∫

S
xkBn(x)dµj (x) = 0, n ≥ rk + j ,∫

S
xnBrn+j−1(x)dµj (x) = 0, n ≥ 0,

for each j = 1, . . . , r . (Maroni, 89)

Theorem. The monic polynomial sequence {Bn}n≥0 is r -orthogonal iff

xBn = Bn+1(x) + βnBn(x) +
r

∑
k=1

γ
(r−k)
n−k+1Bn−k

with γ
(0)
n−r+1 6= 0 for n ≥ r .
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Associated banded Hessenberg matrix

We can now introduce the banded Hessenberg matrix Hn such that

Hn


B0(x)
B1(x)

...
Bn−1(x)

= x


B0(x)
B1(x)

...
Bn−1(x)

−Bn(x)


0
...
0
1


Exercise. Find an explicit expression for Hn based on the recurrence relation

xBn = Bn+1(x) + βnBn(x) +
r

∑
k=1

γ
(r−k)
n−k+1Bn−k .

Hence, each zero of Bn(x) is an eigenvalue for Hn.

The matrix Hn is not symmetric and there is no obvious way to do so for r ≥ 2.

No reason, in general, for the eigenvalues (zeros) to be real. Nonetheless in
several examples it is the case.

An important case is when the banded Hessenberg matrix has only non zero
entries on the extremes of the band. This means that

xBn = Bn+1(x) + γ
(r−k)
n−r+1Bn−r .
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Comments on r -orhogonality and multiple orthogonality

I The examples seen are extensions of classical orthogonal polynomials, in
the sense that the corresponding weight functions satisfy a Pearson
equation

(φk(x)wk(x))′+ ψk(x)wk(x) = 0

with deg φk ≤ 2 and deg ψk = 1.

I There are also well studied cases where r -orthogonal polynomials arise
from an extension of Hahn’s classical character and this gives rise to
weight functions that are solution to a second order differential equation
(certainly not of Pearson type)! For such type of weights, the concept of
multiple orthogonality is quite natural.

I The concept of ”classical” in the context of multiple orthogonality is not
unique. Depending on which property of the very classical polynomials one
takes, this will give rise to completely independent multiple orthogonal
polynomials.

I There are also examples of extensions of semiclassical polynomials into the
context of multiple orthogonality. Typically, examples of Angelesco
systems, such as the Jacobi-Angelesco polynomials or the Jacobi-Laguerre
polynomials. The realm of extensions goes beyond these notions...
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The case of 2-orthogonal polynomials

The monic 2-OPS {Pn}n≥0 for u = (u0,u1) satisfies a third order recurrence
relation (see Van Iseghem’88, Maroni’89)

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x) (11)

with P0(x) = 1, P1(x) = x−β0 and P2(x) = (x−β1)P1(x)−α1.

Expressions for the recurrence coefficients follow immediately from the
definition. For instance,

γ2n+1 =
< u0,x

n+1P2n+2 >

< u0,xnP2n >
, γ2n+2 =

< u1,x
n+1P2n+3 >

< u1,xnP2n+1 >
, n ≥ 0.

Conversely, we also have

N0(n) :=< u0,x
n+1P2n+2 >=

n

∏
k=0

γ2k+1

and

N1(n) :=< u1,x
n+1P2n+3 >=

n

∏
k=0

γ2k+2, for n ≥ 0.
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The case of 2-orthogonal polynomials

The monic 2-OPS {Pn}n≥0 for u = (u0,u1) satisfies a third order recurrence
relation (see Van Iseghem’88, Maroni’89)

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x) (11)

with P0(x) = 1, P1(x) = x−β0 and P2(x) = (x−β1)P1(x)−α1.

Expressions for the recurrence coefficients follow immediately from the
definition. For instance,

γ2n+1 =
< u0,x

n+1P2n+2 >

< u0,xnP2n >
, γ2n+2 =

< u1,x
n+1P2n+3 >

< u1,xnP2n+1 >
, n ≥ 0.

Conversely, we also have

N0(n) :=< u0,x
n+1P2n+2 >=

n

∏
k=0

γ2k+1

and

N1(n) :=< u1,x
n+1P2n+3 >=

n

∏
k=0

γ2k+2, for n ≥ 0.
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2-orthogonal polynomials: a revisited example

The type II multiple Laguerre polynomials of second kind for r = 2 measures on
the step-line are

B2n(x) = L(n,n)(x), B2n+1(x) = L(n+1,n)(x)

satisfy

xBn(x) = Bn+1(x) + βnBn(x) + γ
(1)
n Bn−1 + γ

(0)
n−1Bn−2

where

β2n = 3n+ α1 + 1, β2n+1 = 3n+ α2 + 2,

γ
(1)
2n = n(3n+ α1 + α2), γ

(1)
2n+1 = 3n2 +n(3 + α1 + α2) + α1 + 1,

γ
(0)
2n = n(n+ α1)(n+ α1−α2), γ

(0)
2n+1 = n(n+ α2)(n+ α2−α1).
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Example 1 – The 2-orthogonal polynomials with constant rec coef

The sequence of polynomials {Pn(x)}n≥0 satisfying the recurrence relation

Pn+1(x) = xPn(x)−3δn,0
4

27
Pn−2(x)

is 2-orthogonal with respect to U = (u0,u1) such that{
(x3−1)u′′0 + 3

2x
2u′0−

1
2xu0 = 0

u1 = 3(x3−1)u′0−
3
2x

2u0

Such vector functional admits an integral representation on the real line as
follows

< u0, f (x) > =
∫ 1

0
f (x)

9
√

3

4π

[
(1 +

√
1−x3)1/3− (1−

√
1−x3)1/3

]
dx

+
∫ +∞

0
f (x)3e−x

[
λ1
√
x cos(

√
3x) + λ2x

2 sin(
√

3x)

]
dx ,

< u1, f (x) > =
∫
f (x)U1(x)dx ,

(See Douak&Maroni’97 for further details.)
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Example 3. 2-orthogonal polynomials with exponential weights

Consider the monic polynomials Pn,m of degree n+m for which∫
Γ0∪Γ1

x jPn,m(x)exp(−x3 + tx)dx = 0, j = 0, . . . ,n−1,∫
Γ0∪Γ2

x jPn,m(x)exp(−x3 + tx)dx = 0, j = 0, . . . ,m−1,

with Γk = {z ∈ C : argz = e2kπ i/3}, k = 0,1,2.
(see Van Assche & Filipuk & Zhang (2015))

Γ1

Γ2

Γ0

Rodrigues’ formula:

e−x
3+txPn,n+m(x) =

(−1)n

3n
dn

dxn

(
e−x

3+txP0,m(x)
)

e−x
3+txPn+m,n(x) =

(−1)n

3n
dn

dxn

(
e−x

3+txPm,0(x)
)

where Pm,0 and P0,m are orthogonal polynomials...

and {Pk,k}k is 2-OPS.
( Case t = 0 already in Pólya and Szegő (1925).

Special case of Gould-Hopper polynomials (1962).)
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Hahn ’Classical’ 2-orthogonal polynomials

Definition
A monic 2-OPS {Pn}n≥0 is ”classical” in Hahn’s sense when the sequence of
its derivatives {Qn}n≥0, with

Qn(x) =
1

n+ 1
P ′n+1(x)

is also a 2-OPS.

Hence, as a monic 2-OPS, the sequence {Qn}n≥0 satisfies a third order
recurrence relation:

Qn+1(x) = (x− β̃n)Qn(x)− α̃nQn−1(x)− γ̃n−1Qn−2(x), n ≥ 2, (12)

with Q0 = 1, Q1(x) = x− β̃0 and Q2(x) = (x− β̃1)Q1(x)− α̃1.
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”Classical” 2-orthogonal polynomials

On the other hand, the 2-orthogonality of {Pn}n≥0 for U = (u0,u1)
and the 2-orthogonality of {Qn}n≥0 for V = (v0,v1) implies[

v0

v1

]
= Φ

[
u0

u1

]
(13)

and also that [
v ′0
v ′1

]
=−Ψ

[
u0

u1

]
. (14)

with

Φ =

[
φ0,0 φ0,1

φ1,0 φ1,1

]
and Ψ =

[
0 1
ψ(x) ζ

]

where ψ(x) = 2
γ1
P1(x) and ζ =− 2α1

γ1
,

whilst deg{φ0,0,φ0,1,φ1,1} ≤ 1 and deg φ1,0 ≤ 2.
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”Classical” 2-orthogonal polynomials

Theorem
The monic 2-OPS {Pn}n≥0 for U = (u0,u1) is ”classical” iff there are
polynomials ψ and φi ,j , with i , j ∈ {0,1}, and a constant ζ such that([

φ0,0 φ0,1

φ1,0 φ1,1

][
u0

u1

])′
+

[
0 1
ψ(x) ζ

][
u0

u1

]
=

[
0
0

]
(15)

where deg{φ0,0,φ0,1,φ1,1} ≤ 1, deg φ1,0 ≤ 2 and deg ψ = 1.

Relation (15) reads as follows(
Φ

[
u0

u1

])′
+ Ψ

[
u0

u1

]
=

[
0
0

]
(Maroni& Douak’92, Maroni’99)
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”Classical” 2-orthogonal polynomials

Corollary

If the monic 2-OPS {Pn}n≥0 for U = (u0,u1) is ”classical”, then

c(x)

(
(φu0)′′−

(
(φ ′+d(x)−a(x))u0

)′
+ (b(x)−a′(x))u0

)

= c ′(x)

(
φu′0−d(x)u0

)
,

c(x)u1 = φu′0−d(x)u0 .

where

a(x) = φ0,0(x)
(

φ ′1,1(x) + ζ

)
−φ1,0(x)

(
φ ′0,1(x) + 1

)
b(x) = φ ′0,0(x)

(
φ ′1,1(x) + ζ

)
−
(

φ ′0,1(x) + 1
)(

φ ′1,0(x) + ψ(x)
)

c(x) = φ0,1(x)
(

φ ′1,1(x) + ζ

)
−φ1,1(x)

(
φ ′0,1(x) + 1

)
d(x) = φ0,1(x)

(
φ ′1,0(x) + ψ(x)

)
−φ1,1(x)φ ′0,0(x)

(16)

and
φ(x) = detΦ = φ0,0(x)φ1,1(x)−φ0,1(x)φ1,0(x)
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”Classical” 2-orthogonal polynomials

Consequently, we have

γ̃2n+1 =
2n+ 1

2n+ 3

(
1− (n+ 1)φ ′0,1(0)

1−nφ ′0,1(0)

)
γ2n+2

and

γ̃2n+2 =
n+ 1

n+ 2

1− (n+ 1)
φ ′′1,0(0)

2ψ ′(0)

1−n
φ ′′1,0(0)

2ψ ′(0)

γ2n+3

Lengthier expressions can be obtained relating the recurrence coefficients

βn, β̃n, αn, and α̃n.
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Example 2. On 2-orthogonal polynomials with Bessel weights

Pn+1(x) = (x−βn)Pn(x)−αnPn−1(x)− γn−1Pn−2(x)

with

βn = 3n2 + (2α + 2β + 3)n+ (1 + α)(1 + β )

αn = n(3n+ α + β )(n+ α)(n+ β ), n ≥ 1,

γn = n(n+ 1)(n+ α + 1)(n+ α)(n+ β + 1)(n+ β ), n ≥ 2,

They satisfy the 3rd order recurrence relation

x2P ′′′n + (3 + α + β )xP ′′n + ((α + 1)(β + 1)−x)P ′n =−nPn

and are 2-OPS for U = (u0,u1) satisfying

x2u′′0 − (α + β −1)xu′0− (x−αβ )u0 = 0 , (α + 1)(β + 1)u1 =−(xu0)′

Such vector functional U = (u0,u1) admits the following integral representation

< u0, f (x) > = 2
Γ(α+1)Γ(β+1)

∫ +∞

0
f (x)x(α+β)/2Kα−β (2

√
x)dx ,

< u1, f (x) > = 2
Γ(α+1)Γ(β+1)

∫ +∞

0
f (x)

(
x(α+β)/2Kα−β (2

√
x)
)′

dx ,

(See Ben Cheikh&Douak’00 and Van Assche&Yakubovich’00.)

p.47



3-fold symmetric (not necessarily 2-orthogonal) polynomials

Definition
A monic polynomial sequence {Bn}n≥0 is 3-fold symmetric if and only if

Bn(e
2iπ
3 x) = e

2inπ

3 Bn(x)

and
Bn(e

4iπ
3 x) = e

4inπ

3 Bn(x), n ≥ 0.

In other words, this is to say that there exist three sequences {B [j]
n }n≥0 with

j ∈ {0,1,2} such that

B3n(x) = B
[0]
n (x3),

B3n+1(x) = xB
[1]
n (x3),

B3n+2(x) = x2B
[2]
n (x3),

(The sequences {B [j]
n }n≥0 are the components of the cubic decomposition of

the 3-fold symmetric sequence {Bn}n≥0.)
(see Barrucand&Dickinson’66)
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3-fold symmetric 2-orthogonal polynomials

Whilst we are dealing with 3-fold symmetric and 2-orthogonal sequences, we
recall the following result.

Theorem (Douak & Maroni’92)

Let {Pn}n≥0 be a 2-orthogonal polynomial sequence for U = (u0,u1). Then,
{Pn}n≥0 is 3-fold symmetric iff if satisfies the third order recurrence relation

Pn+1(x) = xPn(x)− γn−1Pn−2(x), n ≥ 2,

with P0(x) = 1, P1(x) = x and P2(x) = x2.

(Observe that this is a three-term recurrence relation!)

Moreover, we have
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3-fold symmetric 2-orthogonal polynomials

Lemma (Douak & Maroni’92)

If the a 3-fold symmetric sequence {Pn}n≥0 is 2-orthogonal, then the three
components in the cubic decomposition of {Pn}n≥0 are also 2-orthogonal
fulfilling the recurrence relations:

P
[k]
n+1(x) = (x−β

[k]
n )P

[k]
n (x)−α

[k]
n P

[k]
n−1(x)− γ

[k]
n−1P

[k]
n−2(x),

where

β
[k]
n = γ3n−1+k + γ3n+k + γ3n+1+k , n ≥ 0,

α
[k]
n = γ3n−2+kγ3n+k + γ3n−1+kγ3n−3+k + γ3n−2+kγ3n−1+k , n ≥ 1,

γ
[k]
n = γ3n−2+kγ3n+kγ3n+2+k 6= 0, n ≥ 2,

for each k = 0,1,2.
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3-fold symmetric 2-OPS

Theorem. (Aptekarev et al.’00)
If γn > 0 for n ≥ 1 in

Pn+1(x) = xPn(x)− γn−1Pn−2(x),

then {Pn}n≥0 is a 2-OPS w.r.t. the vector of linear functionals (u0,u1) and

< u0, f (x) >=
∫
S
f (x)dµ0(x) (17)

< u1, f (x) >=
∫
S
f (x)dµ1(x) (18)

where S represents the starlike set

S :=
2⋃

k=0

Γk with Γk = [0,e2π ik/3
∞),

and the measures have a common support which is a subset of S and are
invariant under rotations of 2π/3.
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3-fold symmetric 2-OPS

Theorem. (Ben Romdhane’08)
Let {Pn}n≥0 be a 2-OPS satisfying

Pn+1(x) = xPn(x)− γn−1Pn−2(x).

If γn > 0, then the following statements hold

(a) If x is a zero of P3n+j , then ωkx are also zeros of P3n+j with ω = e2π i/3

(b) 0 is a zero of P3n+j of multiplicity j when j = 1,2

(c) P3n+j has n distinct positive real zeros

(d) Between two real zeros of P3n+j+3 there exist only one zero of P3n+j+2

and only one zero of P3n+j+1
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3-fold symmetric 2-OPS

Theorem. (AL & Van Assche’18)
Let {Pn}n≥0 be a 2-OPS satisfying Pn+1(x) = xPn(x)− γn−1Pn−2(x).
If

0 < γn ≤ cnα +o(nα )

(with c, α > 0), then the largest zero xn,n is s.t.

xn,n ≤
3

22/3
c1/3nα/3 +o(nα/3).
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Hahn-classical 3-fold symmetric 2-orthogonal polynomials

These satisfy a third order differential equation

Lemma (Douak&Maroni’97)

If a 2-symmetric 2-OPS {Pn}n≥0 is ”classical”, then each polynomial is a
solution of the third order differential equation

(anx
3−bn)P ′′′n+1 + cnx

2P ′′n+1 +dnxP
′
n+1 = enPn+1

where

an = (ϑn−1)(ϑn+1−1)

bn = γn+3((n+3)ϑn+2−(n+2))((n+4)ϑn+1−(n+3))((n+5)ϑn+2−(n+4))
(n+3)(n+4)

cn = ϑnϑn+1−1− (n−3)(ϑn−1)(ϑn+1−1)

dn = nϑn+1− (n−1)ϑn(2ϑn+1−1)

en = nϑn+1, for any n ≥ 1,

with a0 = b0 = c0 = d0 = e0 = 0.
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3-fold symmetric 2-orthogonal ”classical” polynomials: the simplest case

Here Qn(x) := 1
n+1P

′
n+1(x) = Pn(x). Additionally

γn+1 = (n+ 1)(n+ 2), and


u′′0 −x u0 = 0

u1 =−u′0

and
−P ′′′n+1(x) +xP ′n+1(x) = nPn+1(x), n ≥ 0.

Remark. The polynomials appear in the Vorob’ev-Yablonski polynomials
associated with rational solutions of Painlevé II equations (Clarkson &
Mansfield’03)
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3-fold symmetric 2-orthogonal ”classical” polynomials: case A

Integral representation (AL&VA)

< u0, f > =
∫

Γ
f (x)W0(x)dx , for all f ∈P,

< u1, f > =
∫

Γ
f (x)W1(x)dx , for all f ∈P,

where W0 : Γ = Γ0∪Γ1∪Γ2 −→ R defined by

W0(x) = Ai(x)IΓ0
− e−2π i/3Ai(e−2π i/3x)IΓ1

− e2π i/3Ai(e2π i/3x)IΓ2

with Γk =
{
w : arg(w) = 2kπ

3

}
,with k = 0,1,2,

where the orientations of Γk are all taken from left to right

Γ1

Γ2

Γ0
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Plot of the zeros of P30,P31 and P32

Remarks.
- All the zeros of Pn(x) are located on Γ0∪Γ1∪Γ2

- In each Γk , between two zeros of Pn+2 there is one zero of Pn and Pn+1.
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supérieur à deux, Ann. Fac. Sci. Toulouse, 10 (1989), 105-139.

I W. Van Assche, Nearest neighbor recurrence relations for multiple
orthogonal polynomials, J. Approx. Theory 163 (2011), 1427-1448.

p.58

https://www.cambridge.org/core/books/classical-and-quantum-orthogonal-polynomials-in-one-variable/430C40F3D14994181DB8801E7AE8574A
https://www.cambridge.org/core/books/classical-and-quantum-orthogonal-polynomials-in-one-variable/430C40F3D14994181DB8801E7AE8574A
https://www.sciencedirect.com/science/article/pii/S0377042798001757
http://www.ams.org/publications/journals/notices/201609/rnoti-p1029.pdf
http://www.ams.org/publications/journals/notices/201609/rnoti-p1029.pdf
http://www.numdam.org/article/AFST_1989_5_10_1_105_0.pdf
http://www.numdam.org/article/AFST_1989_5_10_1_105_0.pdf
https://www.sciencedirect.com/science/article/pii/S0021904511000840
https://www.sciencedirect.com/science/article/pii/S0021904511000840

