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1 Harmonic Functions

(Lecture 1, 20 Feb 2012)

1.1 Harmonic and holomorphic functions

Let D be domain (connected open set) in C. We shall consider complex-
valued and real valued functions of z = x + iy ∈ D. We shall write h(z) or
often simply h to denote both a function of complex z and a function in two
variables x and y.

Notation: hx will be used to denote the partial derivative of h with respect
to variable x, similarly hxx, hyy, hxy and hyx are the second order partial
derivatives of f .

1E-mail: b.khoruzhenko@qmul.ac.uk, URL: http://maths.qmul.ac.uk\ ∼boris
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Here come our main definition of the day. Recall that C2(D) denotes the
space of functions on D with continuous second order derivatives.

Definition A function h : D → R is called harmonic on D if h ∈ C2(D) and
hxx + hyy = 0 on D.

Examples
(a) h(z) = |z|2 = x2 + y2 is not harmonic anywhere on C as hxx + hyy=2.

(b) h(z) = ln(|z|2) is harmonic on D = C\{0}. Indeed,

ln |z| = ln
√
x2 + y2 and (hxx + hyy)(z) = 0 if z 6= 0.

(c) h(z) = Re z = x2 − y2 is harmonic on C.

Recall that a complex-valued function f is called holomorphic on a do-
main D if it is complex differentiable in a neighbourhood of any point in
D. The existence of a complex derivative is a very strong condition: holo-
morphic functions are actually infinitely differentiable and are represented
by their own Taylor series. For a function f(z) = h(z) + ik(z) to be homo-
morphic the following conditions are necessary and sufficient

Cauchy-Riemann equations: hx = ky and hy = −kx

Thm 1. Let D be a domain in C. If f is holomorphic on D then h = Re f
is harmonic on D.

Proof. This follows from the Cauchy-Riemann equations.

The converse is also true but only for simply connected domains D, i.e.
when every path between two arbitrary points in D can be continuously
transformed, staying within D, into every other with the two endpoints stay-
ing put.

Thm 2. If h is harmonic on D and D is simply-connected then h = Re f
for some holomorphic function f on D. This function is unique up to an
additive constant.

Proof. We first settle the issue of uniqueness. If h = Re f for some holomor-
phic f , say f = h+ ik., then by the Cauchy-Riemann,

f ′ = hx + ikx = hy − ihy . (1.1)

Hence, if such f exists, then it is completely determined by the first order
derivatives of h, and, therefore, is unique up to an additive constant.
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Equation (1.1) also suggest a way to construct the desired f . Define
g = hy − ihy. Then g ∈ C(D) and g satisfies the Cauchy-Riemann equa-
tions because hxx = −hyy (h is harmonic) and hxy = hyx. Therefore g is
holomorphic in D. Now fix z0 ∈ D, and define f to be the anti-derivative of
g:

f(z) = h(z0) +

∫ z

z0

g(z)dz ,

with the integral being along a path in D connecting z and z0. As D is simply
connected, Cauchy’s theorem asserts that the integral does not depend on
the choice of path. By construction, f is holomorphic and

f ′ = g = hx − ihy .

Writing h̃ = Re f , by the Cauchy-Riemann for f ,

f ′ = h̃x − ih̃y.

On comparing the two equations, one concludes that h̃x = hx and h̃y = hy.
Therefore h− h̃ is a constant. Since h and h̃ are equal at z0, they are equal
throughout.

One corollary of these theorems is that every harmonic function is differ-
entiable infinitely many times.

Corollary 3. If h is a harmonic function on a domain D, then h ∈ C∞(D).

Another important corollary of Thm 2 is a property of harmonic functions
that will be later used to define the important class of subharmonic functions.

Let ∆(w, r) denote the disk of radius r about w, and ∆̄(w, r) denote its
closure,

∆(w, r) = {z : |w − z| < r} , ∆̄(w, r) = {z : |w − z| ≤ r} .

The boundary ∂∆ of ∆(w, r) is the set

∂∆(w, r) = {z : z = w + reiθ, θ ∈ [0, 2π)} .

Thm 4. (Mean-Value Property) Let h be a function harmonic in an open
neighbourhood of the disk ∆̄(w, r). Then

h(w) =
1

2π

∫ 2π

0

h(w + reiθ)dθ .
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Proof. Function h is harmonic on ∆(w, ρ) for some ρ > r. By Thm 2 there
exists a function f which is holomorphic on ∆(w, ρ) and such that h = Re f .
By Cauchy’s integral formula for f ,

f(w) =
1

2πi

∮
|z−w|=r

f(z)

z − w
dz .

Introducing the parametrisation z = w + reiθ for the integration path above
(θ runs from 0 to 2π), with dz = ireiθdθ, one arrives at

f(w) =
1

2π

∫ 2π

0

f(w + reiθ)dθ .

The result now follows on taking the real parts of both sides.

Recall that every holomorphic function is completely determined on a
domain by its values in a neighbourhood of a single point. A similar property
holds for harmonic functions.

Thm 5. (Identity Principle) Let h be a harmonic function on a domain D
in C. If h = 0 on a non-empty open subset U of D then h = 0 throughout
D.

Proof. Set g = hx − ihy. Then as in the proof of Thm 2, g is holomorphic
in D. Since h = 0 on U then so is g. Hence, by the Identity Principle for
the holomorphic functions g = 0 on D, and consequently, hx = hy = 0 on
D. Therefore h is constant on D, and as it is zero on U , it must be zero on
D.

Note that for the holomorphic functions a stronger identity principle
holds: if f is holomorphic on D and vanishes on D at infinite number of
points which have a limiting point in D, then f vanishes on D through-
out. This is not the case for harmonic functions, e.g. the harmonic function
h = Re z vanishes on the imaginary axis, and only there.

The theorem below asserts that harmonic functions do not have local
maxima or minima on open sets U unless they are constant. Moreover, if
a harmonic function is negative (positive) on the boundary of an open U it
will be negative (positive) throughout U .

Thm 6. (Maximum Principle) Let h be a harmonic function on a domain
D in C.

(a) If h attains a local maximum in D then h is constant.
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(b) Suppose that D is bounded and h extends continuously to the boundary
∂D of D. If h ≤ 0 on ∂D then h ≤ 0 throughout D.

Proof. Suppose that h attains a local maximum in D. Then there exists a
open disk ∆̃ such that h ≤M in ∆̃ for some M . Consider the set K = {z ∈
∆̃ : h(z) = M}. Since h is continuous, K is closed in ∆, as the set of points
where a continuous function takes a given value is closed. It is also non-
empty. Suppose there exists a boundary point ζ of K in ∆̃. As K is closed,
h(ζ) = M , and, as ∆̃ is open, one can find a disk ∆(ζ, ρ) of radius ρ about ζ
such that ∆(ζ, ρ) ⊂ ∆̃ and such that there exist points on the circumference
of ∆(ζ, ρ) where h < M (for if not, then ζ would not be at the boundary of
K). Let ζ + ρeiθ0 be one such point. Since the complement of K is an open
set, there exists a neighbourhood of ζ + ρeiθ0 where h < M . Therefore one
can find ε > 0 and δ > 0 such that for all θ such that |θ − θ0| < δ:

h(ζ + ρeiθ) < M − ε . (1.2)

Now, write the mean-value property for h at point ζ,

h(ζ) =
1

2π

∫ 2π

0

h(ζ + ρeiθ)dθ

=
1

2π

∫
|θ−θ0|<δ

h(ζ + ρeiθ)dθ +
1

2π

∫
|θ−θ0|≥δ

h(ζ + ρeiθ)dθ

The first integral above is ≤ 2δ(M − ε) in view of (1.2) and the second
≤ (2π − 2δ)M because h ≤M throughout ∆̃. Therefore one concludes that

h(ζ) <
1

2π
[2δ(M − ε) + (2π − 2δ)M ] < M ,

which is a contradiction as by the construction h(ζ) = M . Hence K = {z ∈
∆̃ : h(z) = M} cannot have boundary points in ∆̃ and therefore K = ∆̃.
Hence h is constant on ∆̃. Then, by the identity principle Thm 5, h is
constant on D, and Part (a) is proved.

To prove Part (b), observe that h is continuous on D̄ by assumption.
Since D̄ is compact, then h must attain a (global) maximum at some point
w ∈ D̄. If w ∈ ∂D then h(w) ≤ 0 by assumption, and so h ≤ 0 on D. If
w ∈ D then, by Part (a), h is constant on D. Hence, by continuation, h is
constant on D̄ of which ∂D is a subset, so once again h ≤ 0.

It follows from the identity principle that if two harmonic functions coin-
cide in a neighbourhood of a single point of a domain D then they coincide
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everywhere in D. We shall now establish a stronger property. If two har-
monic functions coincide on the boundary of a disk about a point in D then
they coincide throughout D.

We first settle the issue of uniqueness in the case of the entire D. The
corresponding statement is known as the Uniqueness Theorem

Thm 7. (Uniqueness Theorem) Let D be a bounded domain in C and h1 and
h2 are two harmonic functions that extend continuously to the boundary ∂D
of D. If h1 = h2 on ∂D then these two functions are equal throughout D.

Proof. Consider the function h = h1−h2. This function is harmonic and, by
construction, h = 0 on ∂D. Therefore, by the Maximum Principle (Thm 6)
h ≤ 0 on D. Applying now the Maximum Principle to the function −h we
conclude that h = 0 on D, hence h1 = h2 there.

By evoking the Identity Principle (Thm 6) one can make a stronger state-
ment about uniqueness.

Corollary 8. Let D be a domain in C and z ∈ D. If h1 and h2 are two
functions harmonic on D and such that h1 = h2 on the boundary of a disk
about z in D then these two functions are equal throughout D.

1.2 Poisson integral

Since the boundary values of harmonic function determine this function
uniquely (under the assumption of continuity on the boundary), it is nat-
ural to ask the question about reconstructing the harmonic function from its
boundary values. A slightly more general problem is known as the Dirichlet
Problem.

Definition Let D be a domain in C and let φ : ∂D → R be a continuous
function . The Dirichlet problem is to find a function h harmonic on D and
such that limz→ζ h(z) = φ(ζ) for all ζ ∈ D.

The uniqueness of solution of the Dirichlet Problem follows is asserted by
Thm 7. The question of existence is more delicate. We shall solve here one
important case of a circular domain (disk) when the positive answer comes
via an explicit construction. It uses the so-called Poisson Kernel.

Now we shall set about finding the harmonic function on a disk from its
values on the disk boundary.
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Definition The following real-valued function of two complex variables z
and ζ

P (z, ζ) = Re

(
ζ + z

ζ − z

)
=

1− |z|2

|ζ − z|2
(|z| < 1, |ζ| = 1)

is known as the Poisson kernel.

Lemma 9. (Properties of the Poisson kernel)

(a) P (z, ζ) > 0 for |z| < 1 and |ζ| = 1;

(b) 1
2π

∫ 2π

0
P (z, eiθ)dθ = 1;

(c) sup|ζ−ζ0|≥δ P (z, ζ)→ 0 as z → ζ0 (|ζ0| = 1 and δ > 0) .

Proof. Parts (a) and (c) are obvious (for part (c) observe that as z approaches
ζ0, the top of the fraction defining the Poisson kernel goes to zero and the
bottom is bounded away from zero by the triangle inequality |z − ζ| ≥ |ζ −
ζ0| − |z − ζ0|).

A calculation is required for Part (b) . Observe that

1

2π

∫ 2π

0

P (z, eiθ)dθ = Re

(
1

2πi

∫
|ζ|=1

ζ + z

ζ − z
dζ

ζ

)
.

Since
ζ + z

(ζ − z)ζ
=

2

ζ − z
− 1

ζ
,

Part (b) now follows from Cauchy’s integral formula

f(z) =
1

2πi

∮
f(ζ) dζ

ζ − z

for holomorphic functions.

The Poisson kernel is defined for z in the unit disk about the origin. By
making an affine change of variables u = z−w

ρ
one can map a disk about w of

radius ρ in z-plane to the unit disk about the origin in u-plane. This justifies
the following definition.

Definition Let φ : ∆(w, ρ) → R be continuous function. Then its Poisson
Integral P∆φ is defined by

P∆φ(z) =
1

2π

∫ 2π

0

P

(
z − w
ρ

, eiθ
)
φ(w + ρeiθ)dθ (z ∈ ∆)
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In the polar coordinates for z in the disk about w, this takes the form

P∆φ(w + reit) =
1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
φ(w + ρeiθ)dθ

Lemma 10. (Properties of the Poisson Integral)

(a) P∆φ is harmonic on ∆ (this statement also holds true for Lebesgue
integrable φ).

(b) limz→ζ0 P∆φ(z) = φ(ζ0) for every ζ0 ∈ ∂∆ (for this statement to hold
true the continuity of φ at ζ0 is essential).

Proof. It follows from the definition of the Poisson kernel that P∆φ is the
real part of a holomorphic function of z, hence it is harmonic.

To simplify notations, we shall prove Part (b) for w = 0 and ρ = 1, i.e.
in the case when ∆ is the unit disk about the origin2. In which case

P∆φ(z) =
1

2π

∫ 2π

0

P (z, eiθ)φ(eiθ)dθ .

By making use of properties (a) and (b) of the Poisson kernel

|P∆φ(z)− φ(ζ0)| ≤ 1

2π

∫ 2π

0

P (z, eiθ)|φ(eiθ)− φ(ζ0)|dθ .

Now, we split the integral above in two. One over the range of values of θ for
which |eiθ − ζ0| < δ and the other over the complementary range. For any
ε > 0 the former can be smaller than ε > 0 by the choice of δ. This is because
φ is continuous. And for fixed δ the latter tends to zero as z approaches ζ0

in view of property (c) of the Poisson Integral. Since ε is arbitrary, the limit
in Part (b) follows.

As an immediate consequence of Lemma 10 we obtain a formula that
allows to recover values of a harmonic function in a disk from its values on
the disk boundary. This result, which is an analogue of the Cauchy integral
formula for holomorphic functions, is fundamental.

Thm 11. (Poisson Integral Formula) If h is harmonic in a neighbourhood
of the disk ∆̄(w, ρ), then for r < ρ, i.e. inside the disk

h(w + reit) =
1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
h(w + ρeiθ)dθ

2This will suffice as we can always change variables.
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Proof. Since h is harmonic in a neighbourhood of ∆̄(w, ρ), it is continuous
on the boundary ∂∆. Denote its restriction to ∂∆ by φ, i.e., φ = h |∂∆ .
Then, by Lemma 10, P∆φ(z) is harmonic on ∆, extends continuously to the
boundary of ∆ and coincides there with h. Therefore, by the Uniqueness
Theorem 8 h = P∆φ.

Writing the Poisson Integral Formula in the centre of the disk, i.e. for
r = 0, one recovers the Mean-Value Property of harmonic functions which
we established earlier. Thus, the Poisson Integral Formula can be viewed as
a generalisation of the Mean-Value Property.

1.3 Positive harmonic functions

The Poisson integral formula allows to obtain useful inequalities for positive
harmonic functions. Note that if a non-negative harmonic function attains a
minimum value zero on a domain, it is zero throughout the domain. So the
class of non-negative harmonic functions on a domain consists of all positive
functions and a zero function.

Thm 12. (Harnack’s Inequality) Let h be a positive harmonic function on
the disk ∆(w, ρ) of radius ρ about w. Then for r < ρ and all t

ρ− r
ρ+ r

h(w) ≤ h(w + reit) ≤ ρ+ r

ρ− r
h(w)

i.e. the values of h in the disk ∆(w, ρ) are bounded below and above by
multiples of the value of h at the centre w of the disk, with both bounds only
depending on the distance to the centre.

Proof. Choose any s such that r < s < ρ and apply the Poisson integral
formula to to h on ∆(w, s). As h is positive, we have

h(w + reit) =
1

2π

∫ 2π

0

s2 − r2

s2 − 2sr cos(θ − t) + r2
h(w + seiθ)dθ

≤ 1

2π

∫ 2π

0

s2 − r2

(s− r)2
h(w + seiθ)dθ .

Simplifying the fraction and applying the mean-value property one obtains
the desired upper bound. The lower bound is proved similarly.

Recall that any function that is holomorphic on C and bounded in abso-
lute value is a constant. As an immediate corollary of Harnack’s inequalities
one obtains an analogue of this result for harmonic functions.
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Corollary 13. (Liouville Theorem) Every harmonic function on C that is
bounded below or above is constant.

Proof. It will suffice to show that every positive harmonic function on C is
constant. Let h be positive and harmonic on C. By Harnack’s inequalities
applied for ∆(0, ρ),

h(z) ≤ ρ+ |z|
ρ− |z|

h(0) .

Letting ρ→∞ and keeping z fixed, one concludes that h(z) ≤ h(0) for any
z ∈ C, hence h attains a maximum at 0. The Maximum Principle (Thm 7)
then implies that h must be constant.

Harnack’s inequality on disks extends to general domains and can be used
to define a distance between two points.

Corollary 14. Let D be a domain in C and z, w ∈ C. Then there exists a
number τ such that, for every positive harmonic function on D,

τ−1h(w) ≤ h(z) ≤ τ h(w) . (1.3)

Proof. Given z, w we shall write z ∼ w if there exists τ such that (1.3)
holds for all positive functions harmonic on D. It is apparent that ∼is an
equivalence relation. That is, (i) z ∼ z; (ii) if z ∼ w then w ∼ z; and (iii)
if z ∼ w and w ∼ u then z ∼ u. Consider the corresponding equivalence
classes. By the Harnack’s inequality they are open sets. As D is connected,
there can only be one such equivalence class, hence (1.3) holds for all z, w.

Definition (Harnack Distance) Let D be a domain in C. Given z, w ∈ D,
the Harnack distance between z and w is the smallest number τD(z, w) such
that for every positive harmonic function h on D

τD(z, w)−1h(w) ≤ h(z) ≤ τD(z, w)h(w) .

The Harnack distance is an useful notion and can be used to deduce an
important theorem about convergence of positive harmonic functions, below.
However, we do not have time to discuss it in detail. Instead we just state
two of its properties.

Lemma 15. (Properties of the Harnack Distance)

(a) If D1 ⊂ D2 then τD2(z, w) ≤ τD1(z, w) for all z, w ∈ D1.

(b) If D is a subdomain of C then ln τD(z, w) is a continuous semi-metric
on D (continuity meaning that ln τD(z, w)→ 0 as z → w).
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We shall finish this section with several important results about conver-
gence of a sequence of harmonic functions. Proofs are not given here and can
be found in Ransford’s book.

Firstly, local uniform convergence of harmonic functions implies that the
limiting function is also harmonic.

Thm 16. If (hn)n≥1 is a sequence of harmonic functions on a domain D
converging locally uniformly to a function h, then h is also harmonic on D.

Non-increasing sequences of harmonic functions always converge (locally
uniformly), a result known as Harnack’s theorem.

Thm 17. (Harnack’s Theorem) Let (hn)n≥1 be non-decreasing sequence of
harmonic functions on a domain D, i.e., h1 ≤ h2 ≤ h3 ≤ . . .. Then either
hn → ∞ locally uniformly, or else hn → h locally uniformly, where h is
harmonic.

For positive sequences of harmonic functions one can only guarantee con-
vergence of a subsequence.

Thm 18. Let (hn)n≥1 be a sequence of positive harmonic functions on a
domain D. Then either hn →∞ locally uniformly, or else some subsequence
hnj
→ h locally uniformly, where h is harmonic.

Exercises 1

(1.1a) Show that the Poisson kernel is given by

P (reit, eiθ) =
+∞∑

n=−∞

r|n|ein(t−θ) (r < 1, 0 ≤ t, θ < 2π) .

Use this to derive an alternative proof if Lemma 9 (b).

(1.1b) Show that it φ : ∂∆(0, 1)→ R is an integrable function, then

P∆φ(reit) =
+∞∑

n=−∞

anr
|n|eint (r < 1, 0 ≤ t < 2π) ,

where (an)n is a bounded sequence of complex numbers.
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(1.1c) Assume now that φ is continuous. Writing φr(e
it) = P∆φ(reit), show

that φr → φ uniformly on the unit circle as r → 1, and deduce that
φ(eit) can be uniformly approximated by trigonometric polynomials∑N

n=−N bbe
int.

1.2 (Harnack distance) Let ∆ = ∆(w, 1). Show that

τ∆ =
1 + |z − w|
1− |z − w|

(z ∈ ∆) .

Hint: Use Harnack’s inequality to establish an upper bound and then
show that this bound is attained on the positive harmonic function
h(z) = P (z − w, ζ).
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2 Subharmonic Functions

(Lecture 2, 27 Feb 2012)

There are two standard approaches to define subharmonic functions. One
is to require that uxx + uyy ≥ 0 in the sense of distribution theory, matching
the characteristic property of the harmonic functions. And the other one
is via a submean property, matching the mean value property of harmonic
functions. We shall follow the second approach.

Recall that the harmonic functions are continuous. However, subhar-
monic functions are not required to be continuous. For if they were that
would be too restrictive as continuity is not preserved when taking limits of
functions with uxx + uyy ≥ 0. Obviously, one need to require some kind of
regularity to have a meaningful theory, and it appears that semicontinuity
suffices.

2.1 Upper semicontinuous functions

Recall that a function f on a metric space X is called continuous at x if for
any given positive ε one can find a open ball ∆(x, δ) of radius δ about x,
∆(x, δ) = {y : dist(x, y, ) < δ}, such that

f(x)− ε ≤ f(y) ≤ f(x) + ε (y ∈ ∆(x, δ)) .

The inequality above is two-sided. If only one-sided inequality holds then
the function is said to be semi-continuous.

Definition (Upper semi-continuity) A function f : X → [−∞,+∞) is called
upper semi-continuous at x ∈ X if for any given positive ε one can find a
positive δ such that

f(y) ≤ f(x) + ε (y ∈ ∆(x, δ)) .

Note that upper semi-continuous functions are allowed to take value −∞.
This is consistent with the definition above.

A function f is said to be upper semi-continuous on X if it has this
property at every x ∈ X. An equivalent definition for f to be upper semi-
continuous on X is to require that

lim sup
y→x

f(y) ≤ f(x) (x ∈ X) . (2.1)

Yet another equivalent definition is to require the sets {x ∈ D : f(x) < α}
be open in D for every α ∈ R.
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Obviously, every continuous function is also upper semi-continuous. Be-
low are a few examples of functions that are upper semi-continuous but not
continuous.

Examples
(a) f(z) = ln |z|, z ∈ C. f is not continuous at z = 0.

(b) f(x) = |x| if x 6= 0 and f(0) = 1 (x real or complex).

(c) f(x) = sin(1/x) if x 6= 0 and f(0) = 1.

(d) The characteristic function of a closed set in D.

Obviously, if f and g are upper semi-continuous functions, so is their sum
f + g and max(f(z), g(z)).

Thm 19. Let f be upper semi-continuous. Then f is bounded above on
compact sets and attains its upper bound in every compact set.

Proof. Based on the Bolzano-Weierstrass theorem and is same as for con-
tinuous functions. Let M = supx∈K f(x), where M may be +∞. By the
definition of sup, there exists a sequence (xn) such that f(xn) → M as
n → ∞. If K is compact then (xn) contains a subsequence converging to a
point x ∈ K. It follows from (2.1) that M ≤ f(x), hence M is finite. Also
since f(x) ≤M on K, one concludes that f(x) = M .

Thm 20. (Monotone Approximation by Continuous Majorants) If f is up-
per semi-continuous and bounded above on X then sequence of continuous
functions (fn such that f1 ≥ f2 ≥ f3 ≥ . . . ≥ f and f = limn→∞ fn on X.
The convergence is pointwise.

Proof. In the singular case when f = −∞ we can simply take fn = −n.
Suppose now that f 6≡ −∞. Define

fn(x) = sup
y∈D

(f(y)− n dist(y, x)) .

Obviously fn ≥ fn+1 and fn ≥ f for every n. These functions also satisfy
the inequality

fn(x) ≤ fn(w) + n dist(x,w) (x,w ∈ X) , (2.2)

from which it follows that fn is continuous on X for every n. For, interchang-
ing x and w one gets |f(x)− f(w)| ≤ dist(x,w).
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To prove (2.2), let us fix w. By definition of fn, for every ε > 0 there
exists yε such that

fn(w)− ε ≤ f(yε)− n dist(yε, w) ≤ fn(w) . (2.3)

Now,

fn(x) ≥ f(yε)− n dist(yε, x)

= f(yε)− n dist(yε, w) + n dist(yε, w)− n dist(yε, x)

≥ fn(w)− ε− dist(x,w) ,

where on the last step we have used (2.3) and the triangle inequality dist(yε, w) ≤
dist(yε, x) + dist(x,w). Therefore for every ε > 0,

fn(w) ≤ fn(x) + dist(x,w) + ε .

By letting ε→ 0, one obtains (2.2). So fn are continuous.
It remains to prove that fn converge to f . Fix x. By definition of fn, for

every n, we can find xn such

fn(x)− 1

n
≤ f(xn)− n dist(xn, x) . (2.4)

After rearranging for dist(xn, x):,

n dist(xn, x) ≤ 1

n
− fn(x) + f(xn) ≤ 1− f(x) + sup

x∈X
f(x) .

As f is bounded above, it follows that xn → x as n → ∞. Letting n → ∞
in (2.4), and making use of (2.1),

lim
n→∞

fn(x) ≤ lim sup
n→∞

f(xn) ≤ f(x) .

On the other hand, limn→∞ fn(x) ≥ f(x) because fn(x) ≥ f(x) for every n.
Hence limn→∞ fn(x) ≥ f(x), and theorem follows.

2.2 Subharmonic functions and their properties

Definition (Subharmonic Functions). Let U be an open subset of C. A
function u is called subharmonic is u is upper semi-continuous and satisfies
the local submean inequality. Namely, for any w ∈ U there exists ρ > 0 such
that

u(w) ≤ 1

2π

∫ 2π

0

u(w + ρeit)dt (0 ≤ r < ρ) . (2.5)
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Note, that according to this definition u ≡ −∞ is a subharmonic function.

The integral in (2.5) is understood as the Lebesgue integral and is well
defined for upper semi-continuous functions. Indeed,

∫
u =

∫
u+ −

∫
u−,

where u± = max(±u, 0). By Thm 19 , u+ is bounded. Thus if
∫
u− is finite

then the whole integral is finite too. If
∫
u− = +∞ then the whole integral∫

u = −∞. We shall see later (Corollary 28) that the latter can only happen
only if u ≡ −∞.

The following theorem provides an important example of subharmonic
function.

Thm 21. If f is holomorphic on D then ln |f | is subharmonic on D.

Proof. ln |f | is upper semi-continuous, so one only needs to verify the local
sub-mean property. Consider a point w ∈ D. If f(w) 6= 0, then ln |f | is
harmonic near w and hence (2.5) follows from the mean value property of
harmonic functions. If f(w) = 0 then ln |f(w)| = −∞ and (2.5) is satisfied
anyway.

Note that if u and v are subharmonic then so is αu+ βv for all α, β ≥ 0,
as well as max(u, v).

The following result is central and is an extension of the corresponding
property of the harmonic functions to subharmonic functions (however, spot
the differences ...)

Thm 22. (Maximum Principle) Let u be subharmonic on a domain D in C.

(a) If u attains a global maximum in D then u is constant.

(b) If D is bounded and lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂D, then u ≤ 0 on D.

Proof. Suppose that u attains a maximum value of M on D. Define

A = {z ∈ D : u(z) < M}, K = {z ∈ D : u(z) = M} .

The set A open because u is upper semi-continuous. The set K is open
too because of the local submean property for subharmonic functions (any
sufficiently small circle about z ∈ K must lie in K, for if not then there is a
circle that intersects with A, and since A is open the intersection will contain
a segment of finite length hence the mean value integral will be < 2πM in
violation of the local submean property). By assumption, A and K partition
D. Since D is connected, one of the two sets must be empty. The set K is
non-empty by assumption, therefore A = ∅, and Part (a) is proved.
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To prove part (b), let us extend u to the boundary of D by u(ζ) =
lim supz→ζ u(z), for ζ ∈ ∂D. Then u is upper semi-continuous on D̄. Since
D̄ is compact by Thm 19) u attains a maximum on D̄. If the maximum
point is in D, then u = 0 on D̄ by Part (a). If the maximum point is at the
boundary of D then u ≤ 0 on D̄.

Comparison to the maximum principle for harmonic functions:

- local max for harmonic, global for subharmonic

- min or max for harmonic functions, only max for subharmonic

The subharmonic function u = max(Re z, 0) attains a local maximum
and a global minimum but is not constant.

The following theorem explains the name for subharmonic functions.

Thm 23. (Harmonic Majoration) Let D be a bounded domain in C and
suppose that u is subharmonic in D and h is harmonic there. Then

‘ lim sup
z→ζ

(u− h)(z) ≤ 0 for all ζ ∈ ∂D′ =⇒ ‘u ≤ h on D’ . (2.6)

Proof. The function u− h is subharmonic, hence the result follows from the
maximum principle for subharmonic functions, Part (b) of Thm 22.

Recall that harmonic functions can be represented via the Poisson integral
formula. Correspondingly, subharmonic functions are bounded from above
by the Poisson integral (you might expected this coming ...)

Thm 24. (Poisson Integral Inequality) If u is subharmonic in a neighbour-
hood of ∆̄(w, ρ) then for r < ρ

u(w + reit) ≤ 1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
u(w + ρeiθ)dθ . (2.7)

Proof. By Thm 20, there are continuous functions φn : ∂∆ → R such that
φn ↓ u on ∂∆. Since φn is continuous, the function P∆φn is harmonic and
limz→ζ(P∆φn)(z) → φn(ζ) for ζ ∈ ∂D. Hence, (recall that φn ≥ u for every
n)

lim sup
z→ζ

(u− P∆φn) ≤ u− φn ≤ 0 .

Therefore, by the harmonic majoration theorem, Thm 23, u ≤ P∆φn on ∆.
Letting n → ∞ and using the monotone convergence theorem for Lebesgue
integrals gives the desired inequality.
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As an immediate consequence of the Poisson integral inequality (put r = 0
in (2.7), one concludes that subharmonic functions satisfy the global submean
inequality.

Corollary 25. (Global Submean Inequality) If u is subharmonic on an open
set U and ∆̄(w, ρ) ∈ U then

u(w) ≤ 1

2π

∫ 2π

0

u(w + ρeit)dt .

Observe that (2.7) implies the local submean inequality (2.5), so we have
a sequence of implications

(2.5) =⇒ (2.6) for all harmonic h =⇒ (2.7) =⇒ (2.5),

thus for upper semi-continuous functions any of (2.5)-(2.7) can be used as
a criterion for subharmonicity. By making use of the criterion ’(2.6)
for all harmonic h’ Ransford proves that u ∈ C2(U) is subharmonic if and
only if hxx + hyy ≥ 0.

The following limit theorem for decreasing sequences of subharmonic func-
tions is simple but useful.

Thm 26. Let (un)n be subharmonic functions on an open set U in C and
suppose that u1 ≥ u2 ≥ u3 ≥ . . . on U . Then u := limn→∞ un is subharmonic.

Proof. For each α ∈ R the set {z : u(z) < α} is the union of the open sets
{z : un(z) < α}, so it is open too and hence u is upper semi-continuous.

If ∆̄(w, ρ) ∈ U then the global submean inequality for un ensures

un(w) ≤ 1

2π

∫ 2π

0

un(w + ρeit)dt .

for all n. Letting n → ∞ and applying the monotone convergence theorem
on deduces that u satisfies the submean inequality, hence is subharmonic.

2.3 Integrability of subharmonic functions

Subharmonic functions are bounded above on compact sets but can be un-
bounded below. This poses the natural question about their integrability.
The answer tuns out to be positive, subharmonic functions are locally inte-
grable, implying that they cannot be ‘too unbounded’.

Thm 27. (Local Integrability) Let u be subharmonic on a domain D in C
such that u 6= −∞ identically on D. Then u is locally integrable.
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Proof. One has to verify that for every w ∈ D∫
∆(w,ρ)

|u(z)|d2z <∞ for some ρ > 0 , (2.8)

where d2z = dxdy is the element of area in the complex plane. Let A be
the set of w possessing this property and B be its complement in D. The
strategy of proof is to show that both A and B are open, and that u = −∞
on B. This will imply that D = A and B = ∅ since D is connected and
u 6≡ −∞ on D.

A is open: Let w ∈ A so that (2.8) holds. Then every z ∈ ∆(w, ρ) belongs
to A as well. For, ∆(z, r) ⊂ ∆(w, ρ) for sufficiently small r, and hence the
integral of |u| over ∆(z, r) is finite too.

B is open: Let w ∈ B and choose ρ such that ∆̄(w, 2ρ) ⊂ D. Then,
because w ∈ B, ∫

∆(w,ρ)

|u(z)| d2z =∞ .

Given w′ ∈ ∆(w, ρ) set ρ′ = ρ + |w′ − w|. The disk about w′ of radius ρ′

covers ∆(w, ρ), hence ∫
∆(w′,ρ′)

|u(z)| d2z =∞ .

As u is bounded above on compact sets, this implies that∫
∆(w′,ρ′)

u(z) d2z = −∞ .

By the submean inequality at w′,

πρ′2u(w′) ≤
∫ ρ′

0

(∫ 2π

0

u(w′ + reit)dt

)
r dr =

∫
∆(w′,ρ′)

u(z) d2z = −∞ .

(As u is bounded above on ∆(w′, ρ′) , the repeated integral coincides with
the double integral). Hence u = infty on ∆(w, ρ). This implies that B is
open and u = −∞ on B.

By the compactness argument, local integrability implies integrability on
compact sets. This implies integrability on circles.

Corollary 28. Let u subharmonic on a domain D and u 6≡ −∞ there. Then∫ 2π

0

u(w + ρeit)dt > −∞ (∆̄(w, ρ) ⊂ U) .
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Proof. We may assume that u ≤ 0 on D (recall that u is bounded on compact
sets). Then by the Poisson integral inequality, Thm 24, for any r < ρ,

u(w + reit) ≤ 1

2π

∫ 2π

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
u(w + ρeiθ)dθ

≤ ρ− r
ρ+ r

1

2π

∫ 2π

0

u(w + ρeiθ)dθ .

Suppose that
∫ 2π

0
u(w+ ρeit)dt = −∞. Then the last inequality implies that

u = −∞ on ∆(w, ρ), and, consequently, u is not integrable. This contradicts
Thm 27, hence the integral above is finite.

By a standard measure theory argument, integrability on compact sets
implies that the set of points in C where a subharmonic function takes value
−∞ has Lebesgue measure zero.

2.4 Three theorems not covered but useful (of course
there are many more ....)

Thm 29. Let U be an open subset of C, and u ∈ C2(U). Then u is subhar-
monic on U if and only if uxx + uyy ≥ 0.

Thm 30. (Liouville Theorem) Let u be subharmonic on C such that

lim sup
z→∞

u(z)

ln |z|
≤ 0 .

Then u is constant on C. E.g., every subharmonic function on C which is
bounded above must be constant.

Thm 31. (Weak Identity Principle) Let u v be subharmonic on an open set
U in C. If u = v almost everywhere on U then u = v everywhere on C. E.g.,
if two subharmonic functions coincide off the real line, they coincide on the
real line too!

2.5 Two topics not covered but important

There are strong similarities between subharmonic functions and convex func-
tions on R. More on this in Ransford’s book, and also in Notions of Convexity
by Lars Hörmander.
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We also had no time to time to study the important technique of smooth-
ing, mightn need to come back to this one later.

Exercises 2

(1) By making use of the integral

1

2π

∫ 2π

0

ln |reit − ζ| dt =

{
ln |ζ|, if r ≤ |ζ|,
ln r, if r > |ζ|,

show that the function u(z) =
∞∑
n=1

2−n ln |z − 2−n| is subharmonic.

(2a) Suppose that (un) is sequence of subharmonic functions on C such that
supn un is bounded above on compact sets. Let u =

∑∞
n=1 αnun, where

αn ≥ 0 and
∑∞

n=1 αn <∞. Prove that u is upper semi-continuous and
satisfies the local submean inequality, hence, is subharmonic.

[Hint: Upper semi-continuity follows from Fatou’s Lemma. ]

(2b) Let (wn) be a countable dense subset of the unit disk ∆̄(0, 1) in the
complex plane. Define u(z) =

∑∞
n=1 2−n ln |z−wn|. It follows from (2a)

that u is subharmonic. Prove that u is discontinuous almost everywhere
in ∆̄(0, 1).

[Hint: Consider the set E = {z : u(z) = −∞} ⊂ C. The function u is
discontinuous at every point in Ē\E.]

3 Let u be a subharmonic function on ∆(0, 1) such that u < 0. Prove
that for every ζ ∈ ∂∆(0, 1),

lim sup
r→1−

u(rζ)

1− r
< 0

[Hint: Apply the maximum principle to u(z) + c ln |z| on the annulus
0.5 < |z| < 1 for a suitable constant c. ]
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(Lecture 3, 5 March 2012)

3 Potentials and Generalised Laplacian

We shall only consider potentials of finite measures with compact support in
C. This captures the essence but avoids technicalities.

The measures we consider are Borel measures, i.e. positive measures on
the Borel σ algebra of open sets in C. The support suppµ of measure µ is
the (closed) set of all z ∈ C such that µ(∆(z, r)) > 0 for any r > 0.

Definition (Logarithmic Potential) Let µ be a finite mass Borel measure on
C with compact support. Its potential pµ is the function

pµ(z) =

∫
C

ln |z − w| dµ(w) (z ∈ C).

Thm 32. pµ is subharmonic on C and harmonic on C\(suppµ).

Proof. Let K be the support of µ. Since K is compact, the function fz(w) =
ln |z − w| is bounded above on K. It then follows that pµ(z) is upper semi-
continuous (by Fatou’s Lemma), and has the submean property (by Fubini
Theorem and subharmonicity of ln |z|). Hence pµ(z) is subharmonic on C.

As K is closed, C\K is open. Hence pµ(z) is harmonic on C\K, e.g., by
direct computation.

Note that the log-potential is some time defined as
∫
C ln(1/|z−w|) dµ(w),

so that it is superharmonic function (lower semi-conitinuous and the inequal-
ity in the submean property in the other direction. This corresponds better
to the real word, where the electric potential created by a point charge q
at distance r from the charge is proportional to qrd−2 in d-dimensions word
and to q ln(1/r) in two dimensions. Correspondingly, the potential due to a
charge distribution ρ(w) will be given by

∫
C ln(1/|z − w|) ρ(w)d2w.

Thm 33. (Continuity at Boundary of Support) Let µ be a finite Borel mea-
sure with compact support K and ζ0 ∈ ∂K. Then

lim inf
z→ζ0

pµ(z) = lim inf
ζ→ζ0, ζ∈K

pµ(ζ) . (3.1)

Furthermore,

if lim
ζ→ζ0, ζ∈K

pµ(ζ) = pµ(ζ0) then lim
z→ζ0

pµ(z) = pµ(ζ0) . (3.2)
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Proof. If pµ(ζ0) = −∞ then limz→ζ0 pµ(z) = −∞ by upper semi-continuity,
and (3.1) holds.

Suppose now that pµ(ζ0) > −∞. Then µ({ζ0}) = 0. Since µ(∩nAn) =
limn→∞ µ(An), it then follows that for every ε > 0 there exists r > 0 such
that µ(∆(ζ0, r)) < ε. By definition of lim sup,

lim inf
z→ζ0

pµ(z) ≤ lim inf
ζ→ζ0, ζ∈K

pµ(ζ) ,

so to prove (3.1) it will suffice to prove the inequality in the opposite direction.
For every z ∈ C choose ζz ∈ K that minimizes |z − ζ| over ζ ∈ K. Then

|ζz − w|
|z − w|

≤ |z − ζz|+ |z − w|
|z − w|

≤ 2 .

Therefore

pµ(z) ≥ pµ(ζz)− ε ln 2−
∫
K\∆(ζ0,r)

ln
|ζz − w|
|z − w|

dµ(w) .

As z → ζ0 in C, the corresponding ζz → ζ0 in K, and, hence,

lim inf
z→ζ0

pµ(z) ≥ lim inf
ζz→ζ0, ζ∈K

pµ(ζz)− ε ln 2 .

Be letting ε→ 0,

lim inf
z→ζ0

pµ(z) ≥ lim inf
ζz→ζ0, ζ∈K

pµ(ζz) ≥ lim inf
ζ→ζ0, ζ∈K

pµ(ζ) ,

which proves (3.1). In its turn, (3.1) and upper semi-continuity proves (3.2).

Thm 34. (Minimum Principle) Let µ be a finite Borel measure with compact
support K.

If pµ ≥M on K then pµ ≥M on C.

Proof. The function u = −pµ(z) is subharmonic on C\K and u(z) → −∞
as z → ∞. Then for all sufficiently large R > 0, u(R) ≤ −M . Applying
the maximum principle for subharmonic functions to u and the domain D =
∆(0, R)\K, one concludes that u(z) ≤ −M on D for all sufficiently large R,
hence the theorem.
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3.1 Polar Sets

Polar sets play the role of negligible sets in potential theory. To define polar
sets, we need first to introduce the concept of energy associated with measure
(actually, anti-energy, due to our choice of sign of the logarithmic potential,
so that minimisation of physical energy would correspond to maximisation
of I(µ) as defined below.)

Definition Let µ be a finite Borel measure with compact support. Its energy
I(µ) is defined as

I(µ) =

∫
pµdµ =

∫ ∫
ln |z − w|dµ(z)dµ(w).

Since pµ is bounded above on compact sets, the above integral is well defined,
and I(µ) < µ(K) supK pµ. However, it may happen that I(µ) = −∞. For
example, the Dirac measure dµ = δz0 has potential ln |z− z0|, hence I(δz0) =
−∞. Similarly, any measure supported by a finite or countable set has
infinite energy. Sets supporting only measures of infinite energy, of which a
countable set is an example, are called polar sets.

Definition (Polar Set) A subset E of C is called polar if I(µ) = −∞ for
every non-zero Borel measure µ of finite mass supported on a compact subset
of E.

The theorem below asserts that, in the language of electrostatics, bounded
Borel polar can hold no charge.

Thm 35. Let µ be a finite Borel measure with compact support and such that
I(µ) > −∞. Then µ(E) = 0 for every Borel polar set E.

Proof. Let E be a measurable set such that µ(E) > 0. By regularity of µ,
one can choose a compact subset K ⊂ E such that µ(K) > 0. Set µ̃ = µ |K .
Then µ̃ is a finite measure with support K. Set now d to be the diameter of
the support of µ, so that ln |z−w|

d
≤ 0 for all z, w ∈ suppµ. Then

I(µ̃) =

∫
K

∫
K

ln
|z − w|
d

dµ(z)dµ(w) + µ(K)2 ln d

≥
∫
C

∫
C

ln
|z − w|
d

dµ(z)dµ(w) + µ(K)2 ln d

= I(µ)− µ(C)2 ln d+ µ(K)2 ln d > −∞ ,

so E cannot be polar.

Corollary 36. Every Borel polar set in C has 2D Lebesgue measure zero.
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Proof. Let R > 0 and µ̃ be the restriction the two-dimensional Lebesgue
measure to the disk ∆(0, R). Since ln |z| is locally integrable, its potential
pµ̃(z) =

∫
∆(0,R)

ln |z−w|d2w > −∞, hence integrable on ∆(0, R) by the local

integrability theorem for subharmonic functions. This can also be checked
directly of course. Therefore, I(µ̃) > −∞ for every R. The assertion of
Corollary now follows from Thm 35 by letting R→∞.

A property is said to hold nearly everywhere (n.e.) on S ⊂ C if it holds
on S\E for some Borel polar E. Thus ‘nearly everywhere’ implies almost
everywhere. The converse is false (e.g., the unit interval [0,1] has Lebesgue
measure zero but is not polar).

Corollary 37. A countable union of Borel polar sets is polar too.

Proof. Let E = ∪nEn and En are all polar. Suppose that µ is a finite non-
zero Borel measure supported by K ⊂ E. Suppose I(µ) > −∞. Then, by
Thm 35, µ(En) = 0 for all n. Hence, µ(E) = 0 too, and µ must be zero as
µ(K) ≤ µ(E) = 0. Therefore, I(µ) = −∞ for µ 6= 0, and E is polar.

3.2 Equilibrium Measure

Definition (Equilibrium Measure) Let K be a compact subset of C and
denote by P(K) the set of all Borel probability measures on K. If there
exists ν ∈ P(K) such that

I(ν) = sup
µ∈P(K)

I(µ)

then this measure ν is called the equilibrium measure.

Thm 38. Every compact subset K of C has an equilibrium measure. If K
is non-polar this equilibrium measure is unique.

Proof. We shall only prove existence. Set M = supµ∈P(K) I(µ) and choose
a sequence (µn)n in P(K) such that I(µn) → M as n → ∞. By Helly’s
selection theorem, (µn)n contains a weakly converging subsequence (µnk

),
i.e. for any bounded continuous function f ,

lim
k→∞

∫
K

f(z)dµnk
(z) =

∫
K

f(z)dµ(z) . (3.3)

The limiting measure µ is of course a probability measure.
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The Stone-Weierstrass theorem asserts that every continuous function of
two variables χ(z, w) on K × K can be uniformly approximated by finite
sums of the form

∑
j φj(z)ψj(w), where the φj’s and ψj’s are continuous on

K. Therefore(3.3) implies

lim
k→∞

∫
K

∫
K

χ(z, w)dµnk
(z)dµnk

(w) =

∫
K

∫
K

χ(z, w)dµ(z)dµ(w) . (3.4)

This can be applied to the energy functional I(µ) after introducing a regu-
larisation the log function,

fε(z) =

{
ln |z|, if |z| ≥ ε;

ln ε, if |z| < ε.

Obviously, ln |z| ≤ fε(z), so that

I(µnk
) ≤

∫
K

∫
K

fε(z − w)dµnk
(z)dµnk

(w) .

Now it follows from (3.4) that

M = lim
k→∞

I(µnk
) ≤

∫
K

∫
K

fε(z − w)dµ(z)dµ(w) .

Hence, by the monotone convergence theorem, M ≤ I(µ), and M = I(µ).

Thm 39. (Frostman’s Theorem) Let K be a compact set in C, and let ν be
an equilibrium measure for K. Then:

(a) pν ≥ I(ν) on C.

(b) pν = I(ν) on K\E, where E is a polar subset of ∂K.

There are several proofs of this important theorem, one can be in Rans-
ford’s book.

3.3 The Generalised Laplacian and Poisson’s Equation

Laplacian: ∆u = uxx + uyy.

Thm 40. Let U be an open subset of C, and u ∈ C2(U). Then u is subhar-
monic on U if and only if ∆u ≥ 0.
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Proof. Let u ∈ C2(U) and assume that ∆u ≥ 0. To show that u is subhar-
monic it will suffice to verify the harmonic majoration criterion (2.6) (see the
corresponding remark following proof of the Global Submean Inequality).

Correspondingly, let D be a relatively compact subdomain of U and h be
harmonic on D and such that lim supz→ζ(u − h)(z) ≤ 0 for all ζ ∈ ∂D. For
ε > 0, define

vε(z) =

{
u(z)− h(z) + ε|z|2, if z ∈ D
ε|z|2, if z ∈ ∂D .

Then vε is upper semi-continuous on D̄, and, hence, attains a maximum
there. It cannot attain a local maximum on D because ∆vε ≥ 4ε > 0,
hence the maximum is attained at the boundary ∂D. This implies that
u(z)− h(z) + ε|z|2 ≤ εmaxz∈∂D |z|2 on D for any ε > 0, hence u− h ≤ 0 on
D. Hence u is subharmonic.

Suppose now that u is subharmonic and ∆u < 0 at w ∈ D. By continuity,
∆u < 0 in a neighbourhood of w, and therefore, by the above argument, u
must be superharmonic there, which is impossible.

This theorem can be generalised to arbitrary subharmonic functions if
the Laplacian is understood in the sense of distributions. To this end, it is
necessary to make a short excursion into distribution theory. Our starting
point is Green’s theorem. Let D be a domain in the complex plane. Then
Green’s theorem asserts that under appropriate conditions on φ, ψ,∫

D

(φ∆u− u∆φ)d2z =

∮
∂D

(u
∂φ

∂n
− φ∂u

∂n
)dS , (3.5)

where ∂
∂n

is the directional derivative along the inward normal into D. In
particular, if φ ∈ C∞c (D), the set of all C∞ functions whose support is a
compact subset of D, and u is C2 subharmonic then∫

D

φ∆u dz2 =

∫
D

u∆φ d2z .

In view of Thm 40, ∆u dz2 can be identified with a positive measure. This
measure is normally denoted by ∆u, so that∫

D

φ∆u =

∫
D

u∆φ d2z (φ ∈ C∞c (D)) . (3.6)

The right hand-side above makes sense for arbitrary subharmonic functions
which are not identically −∞ (as such u are locally integrable). The theorem
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below asserts that it actually defines a Radon measure which is known as the
generalised Laplacian. Radon measures are Borel measures with the property
that the total mass of every compact set is finite.

Thm 41. Let u be a subharmonic function on a domain D in C and u 6≡ −∞.
Then there exists a unique Radon measure ∆u such that (3.6) holds.

Proof. Since u is locally integrable, the integral on the right hand-side in
(3.6) defines a linear functional Λu on C∞c (D),

Λuφ =

∫
D

u∆φ d2z (φ ∈ C∞c (D)) .

It will suffice to prove that Λu is positive and can be extended, by continuity,
onto the space Cc(D) of continuous functions with compact support in D.
Then the existence of a positive Radon measure µ, such that Λφ =

∫
D
φ dµ,

and its uniqueness, will follow from the Riesz representation theorem.

Step 1 : Positivity on C∞c (D).

Let φ ∈ C∞c (D) with φ ≥ 0. Choose a relatively compact set U in D that
covers the support of φ. By employing the standard technique of smoothing
by convolutions (for details see, e.g., Ransford’s book), given a subharmonic
function u on U , with u 6≡ −∞, there exist C∞ subharmonic functions un
such that un ↓ u. By Thm 40 ∆un ≥ 0. Therefore∫

un ∆φ d2z =

∫
φ∆un d

2z ≥ 0 .

We have u ≤ un ≤ u1, for all n, with u being locally integrable and u1

bounded. Letting n→∞ in the above inequality, we conclude that Λuφ ≥ 0
by the dominated convergence theorem.

Step 2: Extending Λu from C∞c (D) to Cc(D).

Let φ ∈ Cc(D) and U be a relatively compact set in D covering the
support of φ. By employing the technique of smoothing by convolutions, φ
can be approximated in the uniform norm by φn ∈ C∞c (D), so that ||φ−φn||∞
can be made arbitrary small. The φn’s are supported inside U and if φ ≥ 0
then so are φn, see Ransford’s book for details. Now, choose ψ ∈ C∞c (D)
such that ψ = 1 on U and 0 ≤ ψ ≤ 1 throughout D and set C = Luψ. By
positivity of Lu, |Luφn| ≤ C||φn||∞, hence Luφn has a limit as n→∞, which
we will assign to be Luφ. This gives the desired extension of Lu to C∞c (D)
to Cc(D). The extended functional is positive by continuity.

Step 3: Uniqueness.
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Suppose that µ1 and µ2 are two Radom measures such that
∫
D
φ dµ1 =∫

D
φ dµ2 for all φC∞c (D). Since any function in Cc(D) can be approximated

by functions from C∞c (D) as above, the two integrals are also equal for test
functions from Cc(D). Hence, by the uniqueness part of the Riesz represen-
tation theorem µ1 = µ2.

The following theorem allows one to restore the measure from its potential
and is fundamental.

Thm 42. (Poisson’s Equation) Let µ be a finite Borel measure on C with
compact support. Then

∆pµ = 2π µ .

Proof. By definition of the generalised Laplacian (3.6), we have to show that∫
C
pµ ∆φ d2z =

∫
C

2πφ dµ (φ ∈ C∞c (D)) .

Correspondingly, let φ ∈ C∞c (D). Then∫
C
pµ ∆φ d2z =

∫
C

(∫
C

ln |z − w|∆φ(z) d2z

)
dµ(w) ,

where we have used Fubini’s theorem. This is justified as ln |z| is locally
integrable and φ has a compact support (and bounded). Now for fixed w,
the function ln | · −w| is harmonic away from w. On making use of Green’s
theorem (3.6)∫
C

ln |z − w|∆φ(z) d2z = lim
ε→0

∫
|z−w|>ε

ln |z − w|∆φ(z) d2z

= lim
ε→0

∫ 2π

0

(
φ(w + εeit)− ε ln ε

∂φ

∂r
(w + reit) |r=ε

)
dt

= 2πφ(w) ,

where, to arrive at the integral in the middle by Green’s theorem, we have
used that (i) the arc-length of the circle of radius r is the arc-length of the
unit circle times r, and (ii) the corresponding inner normal is −(x/r, y/r) so
that ∂

∂n
ln |z| = −1

r
on the circle |z| = r.

Corollary 43. Let µ1 and µ2 be finite Borel measures on C with compact
support. If pµ1 = pµ2 + h on an open set U , where h is harmonic on U , then
dµ1 |U = dµ2 |U .
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The converse is also true.

Lemma 44. (Weyl’s Lemma) Let u and v be subharmonic functions on a
domain D in C, with u, v 6= −∞. If ∆u = ∆v then u = v + h where is
harmonic on D.

For proof, see e.g. Ransford book.

Weyl’s Lemma is important because it implies that any non-trivial sub-
harmonic function can be written as the sum of log-potential and a harmonic
function. The corresponding statement is known as the Riesz decomposition
theorem.

Thm 45. ( Riesz Decomposition Theorem) Let u be a subharmonic function
on a domain D in C, with u 6= −∞. Given a relatively compact open subset
U of D,

u = pµ + h on U ,

where µ = 1
2π

∆u |U and h is harmonic on U .

Proof. Set µ = 1
2π

∆u |U Then ∆pµ = 2πµ = ∆u on U . The result now
follows from Weyl’s lemma (applying it on each component of U).

The following a straightforward application of Corollary 43 (Poisson’s
equation to be precise).

Thm 46. Let f be holomorphic on a bounded domain D and is not identically
zero there, and let µ be the zero counting measure for f , in the sense that
it assigns mass 1 to each of zeros of f , counted according to multiplicities.
Then µ = 1

2π
∆ ln |f |.

Proof. Let (zn)Nn=1 be zeros of f in D. Then f(z) = g(z)
∏N

jn=1(z − zn) for
some holomorphic g which is non-zero D, and

ln |f(z)| =
N∑
n=1

ln |z − zn|+ ln |g(z)| .

The first term above is the potential of µ and the second term is a harmonic
function. Hence, by Poisson’s equation, µ = 1

2π
∆ ln |f |.

Obviously, the relation µ = 1
2π

∆ ln |f | extends to unbounded domains.
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(Lecture 4, 12 March 2012)

3.4 Poisson’s Equation, Continued

Poisson’s equation relates measures and their potentials. This can be ex-
ploited to obtain limiting distributions of roots of polynomials or eigenvalues
of matrices in the limit of large degree/matrix dimension by the way of cal-
culating the limiting potential.

Let z1, . . . , zn be n points in a bounded domain C, not necessarily distinct,
and denote by µn the unit mass measure that assigns mass 1

n
to each of zj,

i.e.

µn =
1

n

n∑
j=1

δzj ,

where δz is the Dirac measure supported by {z}. We shall call µn the nor-
malised counting measure. The (log)-potential of µn is

pn(z) =

∫
ln |z − w| dµn(w) =

1

n

n∑
j=1

ln |z − zj| .

and correspondingly 1
2π

∆pn = µn. The theorem below asserts that this rela-
tion holds in the limit n→∞

Thm 47. (Widom’s Lemma) Suppose that the counting measures µn have
all support inside a bounded domain in C. If pn converges to p as n → ∞
almost everywhere (with respect to the Lebesgue measure) in C then p is
locally integrable, ∆p ≥ 0 and the measures µn converge weakly to the measure
µ = 1

2π
∆p.

Proof. Local integrability of ln |z| implies that the family of functions (pn) is
uniformly integrable on compact sets with respect to the Lebesgue measure
on C. That is, for every compact K and every ε > 0 there exists a δ > 0
such that if B is a subset of K of measure less than δ than

∫
B
|fn|d2 < ε for

every n. It follows from the uniform integrability and Egorov’s theorem that
for any continuous function ψ with compact support

lim
n→∞

∫
pn(z)ψ(z) d2z =

∫
p(z)ψ(z) d2z .

In particular, p is locally integrable and ∆p is well defined (as a distribution).
As ∆pn ≥ 0 then so is ∆p by limiting transition, and thus is a measure (see
Step 2 in proof of Thm 41). For φ ∈ C∞c ),∫

φ∆p =

∫
p∆φd2z = lim

n

∫
pn ∆φ d2z = lim

n

∫
φ∆pn .
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which means that the measures µn converge to µ as distributions. As any
sequence of measures of unit mass (supported inside a compact set) that
converge as distributions must converge weakly, the result follows.

With a little bit more effort it can be shown that p(z) =
∫

ln |z−w|dµ(w)
almost everywhere.

Consider now an application of this theorem to the problem of finding the
limiting distribution of zeros of truncated exponential series

∑n
j=0

wj

j!
in the

limit n → ∞. Anticipating that zeros might spread in the complex plane,
we scale w with n by introducing a new variable z = w/n. Thus consider

fn(z) =
n!

nn

n∑
j=0

(nz)j

j!
.

The factor in front of the series is introduced for convenience, so that fn
is a monic polynomial of degree n, fn(z) = zn + . . .. Correspondingly, the
normalised counting measure of its zeros z1, . . . , zn is

pn(z) =
1

n

n∑
j=1

ln |z − zj| =
1

n
ln |fn(z)| .

A simple estimate shows that fn(z) has no zeros outside the disk |z| ≤ 2 for
any n. Indeed, suppose that z0 is a zero of fn(z) and |z0| > 1. Then

nn|z0|n

n!
≤

n−1∑
j=0

nj|z0|j

j!
≤ nn−1|z0|n−1

(n− 1)!

n−1∑
j=0

(n− 1)!

(n− 1− j)!nj
1

|z0|j

≤ nn−1|z0|n−1

(n− 1)!

n−1∑
j=0

1

|z0|j
≤ nn−1|z0|n−1

(n− 1)!

|z0|
|z0| − 1

.

It follows from this that |z0| ≤ 2.
Thus the zero counting measure µn has support inside the disk |z| ≤ 2

for all n. Our strategy will be to evaluate the potential pn of µn in the limit
n→∞ and then apply Widom’s lemma.

Note the following identity (which is easy to verify by binomial expansion
(recall Euler’s integral n! =

∫∞
0
sne−s ds),

n∑
j=0

xj

j!
=

1

n!

∫ ∞
0

(x+ s)ne−s ds =
ex

n!

∫ ∞
x

tne−t dt ,
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It follows from it that

fn(z) = nenz
∫ +∞

z

sne−ns ds = nenz
∫ +∞

z

en(ln s−s) ds .

This is in a form convenient for a saddle point analysis (steepest descent)
of the integral

∫ +∞
z

exp(n(ln s− s)) ds. The saddle point equation is the
equation (ln s−s)′ = 0 and there is only one solution s0 = 1. If Re(ln z−z) <
−1 and Re z < 1 the integration path can be deformed to pass through the
saddle point and the integral is dominated by a neighbourhood s0. This gives∫ +∞

z

en(ln s−s) ds ∼
√

2π

n
en(ln s0−s0) =

√
2π

n
e−n .

On the other side if Re(ln z− z) > −1 or Re z > 1 then the integration path
cannot be deformed to path through s0 = 1 and the integral is dominated by
the end point s = z of the integration path. This gives∫ +∞

z

en(ln s−s) ds ∼ 1

n
en(ln z−z) .

Collecting these two results together,

fn(z) ∼

{√
2πnen(z−1) if ln |z| − Re z < −1 and Re z < 1

1
n
en ln z if ln |z| − Re z > −1 or Re z > 1

The equation ln |z| − Re z = −1,or equivalently, |ze1−z| = 1, defines a curve
which is symmetric about the real axis and intersects itself once at z = 1.
The part of this curve in the half plane Re z ≤ 1 is called the Szegö curve. It
is a closed curve and its interior is the set of points in the half plane Re z ≤ 1
where |ze1−z| < 1.

From the above asymptotic formula for fn it is apparent that the limit of
pn(z) = 1

n
ln |fn(z)| exists everywhere off the Szegö curve:

p(z) = lim
n→∞

1

n
ln |fn(z)| =

{
Re z − 1 inside the Szegö curve

ln |z| outside the Szegö curve

The Szegö curve has measure zero, so we have established a.e. convergence
of the potentials. Applying Widom’s lemma, the normalised zero counting
measure of truncated exponential series weaklyy converges to µ = 1

2π
∆p. As

p is harmonic everywhere except on the Szegö curve, we conclude that the
limiting counting measure of scaled zeros of the truncated exponential series
is supported by the Szegö curve. The density of the distribution of zeros
with respect of the arc-length can be found by evaluating the jumpo in the
normal derivative of the potential across the curve.
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4 The Dirichlet Problem and Harmonic Mea-

sure

Let D be a bounded domain of C, and φ : ∂D → R be a continuous function.
The associated Dirichlet problem is to find a function h such that

∆h = 0 (on D) (4.1)

lim
z→ζ

h(z) = φ(ζ) (for every ζ ∈ ∂D) . (4.2)

Of course, the Dirichlet problem makes sense for unbounded subdomains of
C as well (and for other differential operators) but we shall focus on bounded
domains here.

The Dirichlet problem (for bounded domains) can have no more than one
solution. This follows from the maximum principle for harmonic functions.
Indeed, if h1 and h2 are solutions then h = h1 − h2 is harmonic on D and
h = 0 on ∂D, hence h1 ≤ h2 on D. Reversing the order of h1 and h2, one
obtains h1 ≥ h2, hence h1 = h2. For unbounded domains one can have more
than one solution, e.g. h = Re z is harmonic on the right half of the complex
plane Re z ≥ 0.

4.1 Perron Function

Definition (Perron Function) Let D be a bounded domain of C and φ :
∂D → R be a bounded function. The associated Perron function HDφ :
D → R is defined as

HDφ = sup
u∈U

u

where the supremum is taken over the set U of all subharmonic onD functions
u such that lim supz→ζ u(z) ≤ φ(ζ) for every ζ ∈ ∂D.

The Perron function is harmonic on D. In order to prove it we shall need
two technical lemmas.

Lemma 48. (Glueing Theorem) Let U and V be two open sets in C, V ⊂
U . Suppose that u and v are subharmonic on U and V , respectively, and
lim supz→ζ v(z) ≤ u(ζ) for every ζ ∈ U ∩ ∂V . Then the function

ũ =

{
max(u, v) on V ;

u on U\V

is subharmonic on U .
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Proof. The condition lim supz→ζ v(z) ≤ u(ζ) ensures that ũ is upper semi-
continuous. One can easily check the local submean property on V , so ũ
is subharmonic on V . If w ∈ U\V then ũ(w) = u(w) and hence ũ(w) ≤
1

2π

∫ 2π

0
u(w+reit) dt by the local submean property for u. As u ≤ ũ, the local

submean property for ũ follows.

We defined the Poisson integral

P∆φ(z) =
1

2π

∫ 2π

0

ρ2 − |z − w|2

|z − w − ρeiθ|2
φ(w + ρeiθ)dθ (z ∈ ∆),

with ∆ = ∆(w, ρ), for continuous functions φ. Of course, if φ is only inte-
grable then the integral above still makes sense and is a harmonic function
on ∆ (as the real part of a holomorphic function). In particular, if u is sub-
harmonic on a neighbourhood of ∆ and not identically −∞ then u(w+ ρeit)
is integrable, and, hence, P∆u is harmonic on ∆. With this observation in
hand:

Lemma 49. (Poisson Modification) Let D be a bounded domain in C and
∆ be an open disk about a point in D such that ∆̄ ⊂ D. Suppose that u is
subharmonic on D with u 6≡ −∞. Define the function

ũ =

{
P∆u on ∆;

u on D\∆.

Then ũ is subharmonic on D, harmonic on ∆ and ũ ≥ u on D.

Proof. P∆u is harmonic on ∆, and, by the Poisson integral inequality, Thm
24, u ≤ P∆u there, hence u ≤ ũ on D.

Since u is upper semi-continuous, by Thm 20 we can find continuous
functions ψn such that ψn ↓ u on ∂∆ as n→∞. Then for every ζ ∈ ∂∆,

lim sup
z→ζ

P∆u(z) ≤ lim
z→ζ

P∆ψn(z) = ψn(ζ) .

By letting n→∞, lim supz→ζ P∆u(z) ≤ u(ζ). We can now apply the Glueing
theorem with v = P∆u which proves that ũ is subharmonic.

Now we can prove the key fact about the Perron function.

Thm 50. Let D be a bounded domain of C and φ : ∂D → R be a bounded
function. Then the Perron function HDφ is harmonic on D and

sup
D
|HDφ| ≤ sup

∂D
φ .
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Proof. The desired inequality is straightforward. Let M = supD |φ| and U
be the set of subharmonic functions on D such that lim supz→ζ u(z) ≤ φ(ζ)
for ζ ∈ ∂D. If u ∈ U , then lim supz→ζ u(z) ≤ M , and, by the maximum
principle, u ≤ M on D. Hence HDφ ≤ M . On the other hand, the constant
function −M is in U . Therefore −M ≤ HDφ. Thus supD |Hdφ| ≤M .

It remains to show that HDφ is harmonic. Since this property local, it
will suffice to prove that HDφ is harmonic on any open disk ∆ with ∆̄ ⊂ D.
Fix such a ∆.

Let w0 ∈ ∆. By definition of HDφ, there exists a sequence (un) of func-
tions in U such that un(w0) → HDφ(w0). Replacing un by max(u1, . . . , un),
we may suppose that (un) is non-decreasing3 Now applying the Poisson mod-
ification to each of un to obtain a non-decreasing sequence ũn (the Poisson
kernel is positive, hence P∆un is non-decreasing). Let ũ = limn→∞ ũn. Then:

(i) ũ ≤ HDφ on D. Indeed, each ũn is subharmonic on D. Since ũn = un
sufficiently close to the boundary of D, it follows that ũn ∈ U , and,
hence, ũn ≤ HDφ and so is the limit.

(ii) ũ(w0) = HDφ(w0). Indeed, by the Poisson modification lemma ũn(w0) ≥
un(w0). As un(w0)→ HDφ(w0), we have that ũ(w0) ≥ HDφ(w0). And
by (i) ũ(w0) ≤ HDφ(w0).

(iii) ũ is harmonic on ∆ (as (ũn) non-decreasing and each ũn harmonic on
∆ (Harnack’s theorem).

Now we shall prove that ũ = HDφ on ∆. To this end, fix an arbitrary
point w and choose (vn) ∈ U such that vn(w) → HDφ(w). Replacing vn by
max(u1, . . . , un, v1, . . . , vn), we may suppose that (vn) is non-decreasing and
vn ≥ un. Let ṽn be the Poisson modification of vn. Then as before

(i) ṽ ≤ HDφ on D.

(ii) ṽ(w) = HDφ(w).

(iii) ṽ is harmonic on ∆

It follows from (i) that ṽ(w0) ≤ HDφ(w0) = ũ(w0). On the other hand,
ṽn ≥ ũn for all n, hence ṽ ≥ ũ. Thus the function ũ− ṽ, which is harmonic
on ∆, attains a maximum value 0 at w0, which means, by the maximum
principle that ṽ = ũ on ∆. By (ii), ṽ(w) = HDφ(w), and so ũ(w) = HDφ(w).
As w is arbitrary, ũ = HDφ on ∆, and as ũ is harmonic on ∆, so is HDφ.

3Obviously fn = max(u1, . . . , un) ∈ U , hence fn(w) ≤ HDφ(w) for any w ∈ D. On the
other hand, fn(w0) ≥ un(w0)→ HDφ(w0). Hence fn(w0)→ HDφ(w0).
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The importance of the Perron function for the Dirichlet problem is in
the following. If the Dirichlet problem has a solution then it is given by
the Perron function. Indeed, if h is harmonic and limz→ζ h(z) = φ(ζ) on
∂D, then h ∈ U . Therefore, h ≤ HDφ. On the other hand if u ∈ U then
lim supz→ζ(u− h)(z) ≤ 0 for ζ ∈ ∂D, and by the maximum principle u ≤ h
on D, which implies that HDφ ≤ h. Hence HDφ = h.

However, the existence of a solution is not a foregone conclusion as the
following example shows. Consider the Dirichlet problem corresponding to
D = ∆(0, 1)\{0} (punctured disk) and the function φ given by φ(ζ) = 0 for
|ζ| = 1 and φ(0) = −1. If h ∈ U then by the maximum principle h ≤ 0 on
D, so HDφ ≤ 0. Note that ε ln |z| ∈ U for every ε > 0, by letting ε → 0 we
conclude that HDφ = 0, which obviously doesn’t solve the Dirichlet problem.

Definition Let D be a bounded domain in C. A point ζ ∈ ∂D is called
regular if limz→ζ HDφ(z) = φ(ζ) for every continuous φ : ∂D → R. Domains
whose boundaries consist of regular points only are called regular (so that the
solution to the Dirichlet problem exists for continuous boundary conditions).

The class of regular domains is broad. We don’t have time to go through
derivations and only state a key result.

A simply connected domain bounded by a finite number of smooth boundary
curves and such that its boundary is a simple closed curve is called a Jordan
domain.

Thm 51. Every Jordan domain is regular.

More generally:

Thm 52. If D is a simply connected domain such that C∞\D contains at
least two points then D is a regular domain; here C∞ is the Riemann sphere.

And

Thm 53. Let D be a subdomain of C∞, ζ0 ∈ ∂D, and C be the component
of ∂D containing ζ0. If C 6= {ζ0} then ζ0 is regular.

The set of irregular points is a polar set. This statement is known as
Kellogg’s theorem.
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4.2 Harmonic Measure

The Perron function is a good theoretical concept but it does not give a
clear recipe for solving the Dirichlet problem. Today we will briefly survey
another approach which is based on a generalization of the Poisson integral
and conformal mappings.

Definition (Harmonic Measure) Let D be a proper subdomain of C with a
regular boundary (i.e. the Dirichlet problem has a solution), and let B(∂D)
be the Borel σ-algebra on ∂D. A harmonic measure for D is a function
ωD : D×B(∂D)→ [0, 1], such that for every z ∈ D, ωD(z, ·) is a probability
measure on B(∂D) and such that if φ : ∂D → R is a bounded continuous
function on the boundary of D then the Perron function HDφ (i.e. solution of
the Dirichlet problem with boundary condition φ) is the generalized Poisson
integral

HDφ(z) =

∫
∂D

φ(ζ)dωD(z, ζ) .

It can be shown, see e.g. Ransford’s book, that if D is a proper subdomain
of C whose boundary is regular then there exists a unique harmonic measure
for D.

Let ∆ be the unit disk ∆(0, 1) and φ(eit) is continuous. Then the Poisson
integral theorem asserts that the function

h(z) =
1

2π

∫ 2π

0

φ(eit)
1− |z|2

|eit − z|2
dt

is harmonic in ∆ and limz→ζ h(z) = φ(ζ) for |zeta| = 1, so that it solves
the associated Dirichlet problem. In other words, h = H∆φ. Hence, by
inspection,

dω∆(z, ζ) =
1

2π

1− |z|2

|eit − z|2
dt

is the harmonic measure for the unit disk.

Recall that a domain D is called Jordan if it is simply connected and is
bounded by a finite number of smooth curves such that ∂D is a simple closed
curve. Every Jordan domain is regular, so its harmonic measure is unique.
It turns out that the harmonic measure for a Jordan domain D can be found
by making use of a conformal map f : D → ∆ and the Poisson integral.

The following theorem provides the necessary technical statement.
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Thm 54. (Caratheodory’s Theorem) Let D be a Jordan domain and let f :
∆ → D be a conformal map from the unit disk ∆ to D. Then f has a
continuous extension to the boundary of ∆, and this extension is one-to-one
from ∆̄ to D̄.

The existence of a conformal map form ∆ to D is guaranteed by the
Riemann mapping theorem. Its continuous extension to the boundary is
useful, of course, in the context of the Dirichlet problem.

Thm 55. If D is a Jordan domain and φ : ∂D → R is continuous and
bounded, and, also, f is a conformal map from D to ∆, extended by Caratheodory’s
theorem, then the function g(z) = h(f(z)) where

h(w) =
1

2π

∫ 2π

0

φ(f−1(eit))
1− |w|2

|eit − w|2
dt

solves the Dirichlet problem on D with boundary condition φ.

Proof. The function φ(f−1(eit)) is continuous, so by the Poisson integral the-
orem h is harmonic on ∆ and h(eit) = φ(f−1(eit)). Consequently, h(f(z)) =
φ(z) for every z ∈ ∂D. So it remains to prove that g(z) = h(f(z)) is harmonic
on D.

Since ∆ is simply connected, there exists a holomorphic function F on ∆
such that h = ReF , and g = h◦f = ReF ◦f . Obviously F ◦f is holomorphic,
so its real part is harmonic. Thus g is harmonic.

The theorem above has an immediate consequence for determining the
harmonic measure for Jordan domains.

Thm 56. (Conformal Invariance of Harmonic Measure) Let D be a Jordan
domain, f be a conformal map from D onto the unit disk ∆ (extended by
Caratheodory’s theorem), and B is a Borel measurable set of ∂D. Then

ωD(z, B) = ω∆(f(z), f(B)) =

∫
B

1− |f(z)|2

|eit − f(z)|2
dt

2π
.

Example. Let D be the upper half of the complex plane, and f(z) = z−i
z+i

,
then f a conformal map of D onto ∆. By conformal invariance

ωD(z,B) = ω∆(f(z), f(B)) =

∫
B

1− |f(z)|2

|f(s)− f(z)|2
|f ′(s)| ds

2π
=

∫
B

Im z

|z − s|2
ds

π
.

With z = x+ iy,

ωD(x+ iy, B) =

∫
B

y

(x− s)2 + y2

ds

π
.

This is the Poisson kernel for the upper half of the complex plane.
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5 Capacity and Transfinite Diameter

Recall the concept of equilibrium measure. For any finite Borel measure µ
with compact support, its energy I(µ) is

I(µ) =

∫ ∫
ln |z − w| dµ(z) dµ(w) .

We have proved that if E is compact then there exist at least one Borel
probability measure µE such that

I(µE) ≥ I(µ) for any other Borel probability measure µ on E.

If, in addition, E is non-polar then this measure is unique.

Definition (Logarithmic Capacity) Let E be a compact subset of C and µE
be its equilibrium measure. The logarithmic capacity of E is defined by

cap(E) = eI(µE) .

If E is polar then I(µE) = −∞ for every equilibrium measure, so that
cap(E) = 0 for polar sets (polar sets hold no charge). Equally, if cap(E) = 0
then E is polar.

For non-compact sets E capacity is defined by as the supremum of cap(K)
over all compact subsets K of E. By definition 0 ≤ cap(E) ≤ +∞, however
compact sets have finite capacity. It is a straightforward consequence of
definition that cap(E1) ≤ cap(E2) if E1 ⊂ E2.

Somewhat surprisingly, capacity is related to geometry.

Definition (n-th Diameter) Let E be a compact set in C. Then its n-th
diameter is given by

δn(E) = sup
z1,...,zn∈E

( ∏
1≤j<k≤n

|zk − zj|

) 2
n(n−1)

, (n ≥ 2) (5.1)

where the supremum is taken over all n-tuples of E.
Since E is compact, the supremum in (5.1) is always attained on some

n-tuple. Any such n-tuple (z
(n)
1 , . . . , z

(n)
n ) is called an n-point Fekete set for

E, and the points z
(n)
j are called Fekete points. The maximization in (5.1)

has geometric meaning – we want to place n points on E in such a way that
the geometric mean of the pairwise distances was the greatest. There are
n(n− 1) distinct pairs among n points, hence the power in (5.1).
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If n = 2 then the maximization problem in (4.1) gives the diameter of
E, δ2(E) = maxz1,z2∈E |z1 − z2|. Obviously, any Fekete points lie on the
boundary of E. This is also true in the general case n ≥ 2, all Fekete points
lie on the outer boundary ∂eE of E, that is, the boundary of the unbounded
component of the complement of E (follows from the maximum modulus
principle for holomorphic functions?).

The product in (5.1) is related to the Vandermonde determinant

det(zk−1
j )nj,k=1 =

∏
1≤j<k≤n

(zk − zj) , (5.2)

hence an n-point Fekete set maximizes the modulus of the Vandermonde
determinant over all n-tuples of E. This observation helps to compute the
n-diameter of a disk.

Lemma 57. Let ∆̄ be the closed unit disk about the origin. Then the set of
n-th roots of unity is a Fekete set for ∆̄ and δn(∆̄) = n1/(n−1).

Proof. It follows from Hadamard’s inequality for determinants | det(bjk)| ≤∏
j

( ∑
k |bjk|2

)1/2
and relation (5.2) that

sup
z1,...,zn∈∆̄

∏
1≤j<k≤n

|zk − zj| ≤ nn/2 .

We shall now show that the supremum is attained on n-th roots of unity
z

(n)
j = ei2πj/n, j = 1, . . . , n. To this end, note that

| det(zk−1
j )nj,k=1|2 = det((zk−1

j ))T det(z̄k−1
j ) = det

( n∑
l=1

zl−1
j z̄l−1

k

)n
j,k=1

, (5.3)

where (...)T stands for matrix transpose. Since powers of the roots of unity
are orthogonal,

∑n−1
l=0 (ei2πj/n)l(e−i2πk/n)l = nδj,k , the determinant on the

right in (5.3) is diagonal and easy to compute, leading to∏
1≤j<k≤n

|ei2πk/n − ei2πj/n| = | det((ei2πj/n)k−1)| = nn/2 .

Hence the n-th roots of unity is a Fekete set, and δn(∆̄) = n1/(n−1).

On taking the log , it is apparent that the maximization problem in (5.1)
one obtains an equivalent maximization problem

En(E) = sup
z1,...,zn∈E

∑
1≤j<k≤n

ln |zk − zi| . (5.4)

41



Obviously,

En(E) =
n(n− 1)

2
ln δn(E) . (5.5)

Changing the sign in front of the logarithm, the optimization problem in (5.4)
can be interpreted as finding the configuration of n equal charges confined
to E which has minimal energy. In this context, a Fekete set represents an
equilibrium configuration (as the energy of such configuration is minimal),
and it is a natural question to ask about the distribution of the equilibrium
configuration in the limit of large number of charges, n→∞.

Lemma 58. (Transfinite Diameter) The sequence δn(E) is decreasing (non-
increasing), i.e. δ1(E) ≥ δ2(E) ≥ δ3(E) . . ., and, hence, has a limit,

τ(E) = lim
n→∞

δn(E) .

This limit is called the transfinite diameter of E.

Proof. It is instructive to consider first δ2(E) and δ3(E), or equivalently,

E2(E) and E3(E). If (z
(3)
1 , z

(3)
2 , z

(3)
3 ) is a Fekete 3-tuple, then

E3(E) = ln |z(3)
3 − z

(3)
1 |+ ln |z(3)

3 − z
(3)
2 |+ ln |z(3)

2 − z
(3)
1 |

and, as ln |z(3)
3 − z

(3)
2 | ≤ E2(E),

E3(E) ≤ ln |z(3)
3 − z

(3)
1 |+ ln |z(3)

2 − z
(3)
1 |+ E2(E) .

Similarly,

E3(E) ≤ ln |z(3)
3 − z

(3)
2 |+ ln |z(3)

2 − z
(3)
1 |+ E2(E) ,

and
E3(E) ≤ ln |z(3)

3 − z
(3)
2 |+ ln |z(3)

3 − z
(3)
1 |+ E2(E) ,

Adding the three inequalities together, 3E3(E) ≤ 2E3(E) + 3E2(E). Hence
E3(E) ≤ 3E2(E), and ln δ3(E) ≤ ln δ2(E), in view of (5.5)

The general case of arbitrary n can be tackled along similar lines. Let
(z

(n)
1 , z

(n)
2 , . . . , z

(n)
n ) is a Fekete n-tuple. For each k = 1, . . . , n

En(E) ≤
∑
j,j 6=k

ln |z(n)
k − z

(n)
j |+ En−1(E) .

Adding these n inequalities together, (n− 2)En(E) ≤ nEn−1(E), so dividing
through by n(n− 1)(n− 2) we get the result.
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For the closed unit disk, δn(∆̄) = n1/(n−1). By letting n → ∞ one con-
cludes that the transfinite diameter of the closed unit disk is τ(∆̄) = 1. By
examining the proof of Lemma 57, it is apparent that the roots of unity are
also Fekete points for the unit circle. Thus δn(∂∆̄) = n1/(n−1) and τ(∂∆̄) = 1.

Let µn be the normalised counting measure of the n-th roots of unity.
Its log-potential is pn(z) = 1

n

∑n
j=1 ln |z − ei2πj/n|. We recognise this as an

integral sum. Thus, in the limit n→∞, for |z| 6= 1,

pn(z)→ 1

2π

∫ 2π

0

ln |z − eit| dt =

{
1

2π
ln |z|, if |z| > 1,

0, if |z| < 1.

By Widom’s lemma, µn → 1
2π
dt in the sense of weak convergence of measures,

so that the limiting distribution of Fekete points (or the limiting equilibrium
charge distribution) is uniform on the unit circle. By continuity p(z) = 0 on
the unit circle, hence cap(∆̄) = τ(∆̄). This is part of a more general picture.

Thm 59. (Fekete-Szegö Theorem) For any compact set E in C,

cap(E) = τ(E) .

Moreover, if E has positive capacity, then in the limit n→∞ the normalised
counting measure µn = 1

n

∑n
j=1 δz(n)

j
of a Fekete set (z

(n)
1 , z

(n)
2 , . . . , z

(n)
n ) con-

verges weakly to the equilibrium measure µE of E.

Proof. Consider the function F (z1, . . . , zn) =
∑

1≤j<k≤n ln |zk − zj|. The
equilibrium measure has unit mass and F (z1, . . . , zn) ≤ En(E), hence∫

. . .

∫
F (z1, . . . , zn)dµE(z1) · · · dµE(zn) ≤ En(E) =

n(n− 1)

2
ln δn(E) .

But ∫
. . .

∫
F (z1, . . . , zn)dµE(z1) · · · dµE(zn) =

n(n− 1)

2
I(µE) .

Therefore
cap(E) ≡ eI(µE) ≤ τ(E) . (5.6)

On the other hand, by the Helly-Bray selection principle, we can always
find a weakly converging subsequence of (µn)n (as these measures have unit
mass and supported on a compact set). To simplify the notation, let µn → µ̃
as n→∞. On regularizing the log-function

fε(z) =

{
ln |z|, if |z| ≥ ε,

ln ε, if |z| < ε,
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we have, by the monotone convergence theorem,

I(µ̃) =

∫ ∫
ln |z − w|dµ̃(z)dµ̃(w) = lim

ε↓0

∫ ∫
fε(z − w)dµ̃(z)dµ̃(w).

Recalling the Stone-Weierstrass approximation theorem, by the weak con-
vergence of measures,∫ ∫

fε(z − w)dµ̃(z)dµ̃(w) = lim
n→∞

∫ ∫
fε(z − w)dµn(z)dµn(w)

The right-hand side can be written in terms of the Fekete n-tuples,∫ ∫
fε(z − w)dµn(z) =

1

n2

n∑
j,k=1

fε(z
(n)
j − z

(n)
k )

=
2

n2

∑
1≤j<k≤n

fε(z
(n)
j − z

(n)
k ) +

n

n2
ln ε

≥ 2

n2
En(E) +

1

n
ln ε.

Therefore, for any ε > 0,∫ ∫
fε(z − w)dµ̃(z)dµ̃(w) ≥ lim

n→∞

( 2

n2
En(E) +

1

n
ln ε
)

= ln τ(E) ,

and, hence, I(µ̃) ≥ ln τ(E). Since ln τ(E) ≥ I(µE), see (5.6), one concludes
that I(µ̃) ≥ I(µE), hence, by definition of equilibrium measure, µ̃ = µE.

Thus we have proved that I(µ̃) ≥ ln τ(E) and I(µ̃) ≤ ln τ(E). Hence one
conclude that I(µ̃) = ln τ(E), and cap(E) = τ(E).

An immediate consequence of this theorem, the uniqueness of the equi-
librium measure, and our calculations of the limiting counting measure of
the n-th roots of unity is the conclusion that the equilibrium measure of the
closed unit disk is nothing else as the Lebesgue measure on the unit circle
normalised to have arc-length one.
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