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Evidence for transformation of the response in regression often depends
on observations that are ill-fitted by the model for untransformed data. Such
observations appear to be outliers when the wrong model is fitted. We start
by comparing analyses of the same data transformed and not. We then
show how the FS can provide evidence about whether the data should be
transformed.

Choosing whether to transform the response is only one aspect of building
a statistical model. Section 4 describes the combination of the FS with added
variable t tests to determine which terms to include in a regression model.
The FS is then extended to determine the influence of individual observations
in the more general case that Mallows’ Cp is used to choose the model.

3 Transformations to Normality in Regres-

sion

3.1 Wool Data

The wool data, taken from Box and Cox (1964), give the number of cycles
to failure of a worsted yarn under cycles of repeated loading. The number
of cycles to failure (a non-negative response) ranges from 90, for the shortest
specimen subject to the most severe conditions, to 3,636 for observation 19
which comes from the longest specimen subjected to the mildest conditions.
In their analysis Box and Cox (1964) recommend that the data be fitted
after the log transformation of y. We compare analyses of the transformed
and untransformed data, to show some of the information provided by the
forward search.

Figure 20(a) shows, for the untransformed data, the plot of least squares
residuals e against fitted values ŷ. There is appreciable structure in this plot,
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Figure 20: Wool data: (a) least squares residuals e against fitted values ŷ;
(b) normal QQ plot of studentized residuals
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Figure 21: Transformed wool data: residual plots for log y: (a) least squares
residuals against fitted values; (b) normal QQ plot of studentized residuals
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Figure 22: Wool data: forward plot of least squares residuals scaled by the
final estimate of σ. The four largest residuals can be directly related to the
levels of the factors

unlike Figure 21(a) for the log transformed data which is without structure,
as it should be if model and data agree. The right-hand panels of the figures
are normal QQ plots. That for the transformed data is an improvement,
although there is perhaps one too large negative residual, which however
lies within the simulation envelope of the studentized residuals in panel (b).
This plot is also much better behaved than its counterpart being much more
nearly a straight line. We now consider the results of our forward searches
for these data.

The forward plot of scaled residuals for the untransformed data is in
Figure 22 with that for the transformed data in Figure 23. We have already
noted the four large residuals in the plot for the untransformed data and the
activity towards the end of the search. The plot for the transformed data
seems both more stable and more symmetrical, although observations 24 and
27 initially have large residuals. Do these observations have any effect on the
selection of the logarithmic transformation?

3.2 Transformation of the Response

The logarithmic is just one possible transformation of the data. Might the
square root or the reciprocal be better? We describe the parametric family
of power transformations introduced by Box and Cox that combines such
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Figure 23: Transformed wool data: forward plot of least squares residuals for
log y scaled by the final estimate of σ. Are observations 24 and 27 important
in the choice of transformation?

transformations in a single family.
For transformation of just the response y in the linear regression model,

Box and Cox (1964) analyze the normalized power transformation

z(λ) =

{

yλ
−1

λẏλ−1 λ 6= 0

ẏ log y λ = 0,
(1)

where the geometric mean of the observations is written as ẏ = exp(Σ log yi/n).
The model fitted is multiple regression with response z(λ); that is,

z(λ) = Xβ + ǫ. (2)

When λ = 1, there is no transformation: λ = 1/2 is the square root trans-
formation, λ = 0 gives the log transformation and λ = −1 the reciprocal.
For this form of transformation to be applicable, all observations need to be
positive. For it to be possible to detect the need for a transformation the
ratio of largest to smallest observation should not be too close to one.

The intention is to find a value of λ for which the errors in the z(λ)
(2) are, at least approximately, normally distributed with constant variance
and for which a simple linear model adequately describes the data. This
is attempted by finding the maximum likelihood estimate of λ, assuming a
normal theory linear regression model.
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Once a value of λ has been decided upon, the analysis is the same as that
using the simple power transformation

y(λ) =

{

(yλ − 1)/λ λ 6= 0
log y λ = 0

. (3)

However the difference between the two transformations is vital when a value
of λ is being found to maximize the likelihood, since allowance has to be made
for the effect of transformation on the magnitude of the observations.

The likelihood of the transformed observations relative to the original
observations y is

(2πσ2)−n/2 exp{−(y(λ) − Xβ)T (y(λ) − Xβ)/2σ2}J,

where the Jacobian

J =
n

∏

i=1

∣

∣

∣

∣

∂yi(λ)

∂yi

∣

∣

∣

∣

(4)

allows for the change of scale of the response due to transformation
For the power transformation (3),

∂yi(λ)

∂yi

= yλ−1
i

so that
log J = (λ − 1)

∑

log yi = n(λ − 1) log ẏ.

The maximum likelihood estimates of the parameters are found in two
stages. For fixed λ the likelihood (4) is maximized by the least squares
estimates

β̂(λ) = (XT X)−1XT z(λ),

with the residual sum of squares of the z(λ),

R(λ) = z(λ)T (I − H)z(λ) = z(λ)T Az(λ). (5)

Division of (5) by n yields the maximum likelihood estimator of σ2 as

σ̂2(λ) = R(λ)/n.

For fixed λ we find the loglikelihood maximized over both β and λ by sub-
stitution of β̂(λ) and s2(λ) into (4) and taking logs. If an additive constant is
ignored this partially maximized, or profile, loglikelihood of the observations
is

Lmax(λ) = −(n/2) log{R(λ)/(n − p)} (6)
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Figure 24: Wool data: profile loglikelihood Lmax(λ) (6) showing the narrow
95% confidence interval for λ

so that λ̂ minimizes R(λ). For inference about the transformation parameter
λ, Box and Cox suggest likelihood ratio tests using (6), that is, the statistic

TLR = 2{Lmax(λ̂) − Lmax(λo)} = n log{R(λ0)/R(λ̂)}. (7)

Figure 24 is a plot of the profile loglikelihood Lmax(λ), (6). It provides
very strong evidence for the log transformation, with the maximum likelihood
estimate λ̂ equal to −0.059. The horizontal line on the plot at a value
of Lmax(λ̂) −3.84/2 cuts the curve of the profile loglikelihood at −0.183
and 0.064, providing an approximate 95% confidence region for λ. This
plot, depending as it does solely on the value of the residual sum of squares
R(λ), is of course totally uninformative about the contribution of individual
observations to the transformation.

To find a test statistic that can readily reflect the contribution of individ-
ual observations, we first require some theory from regression on the effect
of the addition of an extra variable to a regression model.

3.3 Added Variables

The added-variable plot provides a method, in some circumstances, of assess-
ing the impact of individual observations on estimates β̂k of single parameters
in a multiple regression model. The starting point is to fit a model including
all variables except the one of interest, the “added” variable. The plot is
based on residuals of the response and of the added variable. To test for
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transformations the added variable is replaced by a “constructed” variable
derived from the data.

We extend the regression model to include an extra explanatory variable,
the added variable w, so that

E(Y ) = Xβ + wγ, (8)

where γ is a scalar. The least squares estimate γ̂ can be found explicitly from
the normal equations for this partitioned model

XT Xβ̂ + XT wγ̂ = XT y (9)

and
wT Xβ̂ + wT wγ̂ = wT y. (10)

If the model without γ can be fitted, (XT X)−1 exists and (9) yields

β̂ = (XT X)−1XT y − (XT X)−1XT wγ̂. (11)

Substitution of this value into (10) leads, after rearrangement, to

γ̂ =
wT (I − H)y

wT (I − H)w
=

wT Ay

wT Aw
. (12)

Since A = (I −H) is idempotent, γ̂ can be expressed in terms of the two sets
of residuals

e =
∗

y = (I − H)y = Ay

and
∗

w = (I − H)w = Aw (13)

as

γ̂ =
∗

w
T

e/(
∗

w
T ∗

w). (14)

Thus γ̂ is the coefficient of linear regression through the origin of the residuals
e on the residuals of the new variable w, both after regression on the variables
in X.

Because the slope of this regression is γ̂, a plot of e against
∗

w is often used
as a visual assessment of the evidence for a regression and for the assessment
of the contribution of individual observations to the relationship. Such a plot
is called an added variable plot.
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3.4 Constructed Variables for Transformations

In the likelihood ratio test (7) a numerical maximization is required to find
the value of λ̂. This is cumbersome when calculating deletion diagnostics
or when using the FS, since a maximization is required for each subset of
interest. For regression models a computationally simpler alternative test is
the extension of the added variable method to yield an approximate score
statistic derived by Taylor series expansion of (1) as

z(λ)
.
= z(λ0) + (λ − λ0)

∂z(λ)

∂λ

∣

∣

∣

∣

λ=λ0

= z(λ0) + (λ − λ0)w(λ0), (15)

which only requires calculations at the hypothesized value λ0. In (15) w(λ0)
is the constructed variable for the transformation. Differentiation of z(λ) for
the normalized power transformation yields

w(λ) =
∂z(λ)

∂λ

=
yλ log y

λẏλ−1
−

yλ − 1

λẏλ−1
(1/λ + log ẏ). (16)

The combination of (15) and the regression model y = xT β + ǫ leads to the
model

z(λ0) = xT β − (λ − λ0)w(λ0) + ǫ

= xT β + γ w(λ0) + ǫ, (17)

where γ = −(λ − λ0), which is of the form of (8). The two sets of residuals
in the constructed variable plot, analogously to (17) are

∗

z (λ) = (I − H)z(λ) = Az(λ)

and
∗

w (λ) = (I − H)w(λ) = Aw(λ). (18)

If λ̂ is close to λ0, γ will be close to zero and there will be no significant slope
in the constructed variable plot.

As an example, Figure 25 is the constructed variable plot for the wool
data when λ = 1. With its positive slope, the plot shows clear evidence of
the need for a transformation, evidence which seems to be supported by all
the data. The most influential points seem to be observations 20 and 19,
which are the two largest observations and 9, 8, 7 and 6, which are the four
smallest. The sequential nature of these sets of numbers reflects that the
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Figure 25: Wool data: constructed variable plot for λ = 1. The clear slope in
the plot indicates that a transformation is needed. The largest observations
are 19 and 20: the labelled points in the centre of the plot have the four
smallest values of y
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Figure 26: Wool data: constructed variable plot for λ = 0. The absence of
trend indicates that the log transformation is satisfactory
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data are from a factorial experiment and are presented in standard order.
The contrasting constructed variable plot for λ = 0 is in Figure 26. There is
no trend in the plot and the transformation seems entirely acceptable. The
residuals from the six observations that were extreme in the previous plot
now lie within the general cloud of points.

However the plot is one of residuals against residuals. As we have already
argued, points of high leverage tend to have small residuals. Thus, if some-
thing important to the regression happens at a leverage point, it will often
not show on the plot. Examples, for the constructed variable for transforma-
tion of the response, are given by Cook and Wang (1983) and by Atkinson
(1985, §12.3). Instead of the plot, these authors suggest looking at the effect
of individual observations on the t test for γ.

3.5 Approximate Score Test for Transformations

The approximate score statistic Tp(λ0) for testing the transformation is the t
statistic for regression on w(λ0) in (17). This can either be calculated directly
from the regression in (17), or from the formulae for added variables in §3.3
in which multiple regression on x is adjusted for the inclusion of an additional
variable. The t test for γ = 0 is then the test of the hypothesis λ = λ0. To
make explicit the dependence of both numerator and denominator of the test
statistic on λ we can write our special case of (14) as

γ̂(λ) =
∗

w
T

(λ)
∗

z (λ)/{
∗

w
T

(λ)
∗

w (λ)}.

The approximate score test for transformations is thus

Tp(λ) = −
γ̂(λ)

√

s2
w(λ)/{wT (λ)Aw(λ)}

= −
γ̂(λ)

√

s2
w(λ)/{

∗

w
T

(λ)
∗

w (λ)}

. (19)

The negative sign arises because in (17) γ = −(λ − λ0). The mean square
estimate of σ2 can be written in the form

(n − p − 1)s2
w(λ) =

∗

z
T

(λ)
∗

z (λ) − {
∗

z
T

(λ)
∗

w (λ)}2/{
∗

w
T

(λ)
∗

w (λ)}.

These formulae show how γ̂ is the coefficient for regression of the residuals
∗

z on the residuals
∗

w, both being the residuals from regression on X. If,
as is usually the case, X contains a constant, any constant in w(λ) can be

disregarded in the construction of
∗

w .
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Figure 27: Wool data: (a) score test for transformation during the forward
search and (b) the increasing value of the estimate s2

The two most frequently occurring values of λ in the analysis of data are
one and zero: either no transformation, the starting point for most analyses,
or the log transformation.

3.6 The Fan Plot in the Forward Search

We monitor the value of Tp(λ) during the forward search. Figure 27(a) is a
plot for the untransformed wool data of the value of Tp(1) during the for-
ward search. The null distribution is approximately normal. If the data do
not need transformation the values should lie within the 99% limits of ±2.58
shown on the plot. However, the value of the statistic trends steadily down-
ward, indicating that the evidence for a transformation is not confined to just
the last few large observations, but that there are contributions from all ob-
servations. The negative value of the statistic indicates that a transformation
such as the log or the reciprocal should be considered.

In contrast, Figure 28(a), is the forward plot of the approximate score
statisticTp(1), that is for the log transformation, when the data are log trans-
formed. The observations giving rise to large residuals, which enter at the
end of the search, have no effect whatsoever on the value of the statistic.
The plot of the parameter estimates in Figure 28(b) shows how stable the
estimates of the parameters are during this forward search.

For data sets of this size we find it satisfactory to base our analyses on five
values of λ : −1,−0.5, 0, 0.5 and 1. We perform five separate searches. The
data are transformed and a starting point is found for each forward search,
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Figure 28: Transformed wool data: (a) score test for transformation during
the forward search, showing that the log transformation is satisfactory and
(b) the extremely stable values of the parameter estimates

which then proceeds independently for each λ using the transformed data.
For the wool data we found the five initial subsets by exhaustive search of all
subsets. Figure 29 shows the values of the approximate score statistic Tp(λ)
as the subset size m increases. The central horizontal bands on the figure
are at ±2.58, containing 99% of a standard normal distribution. For obvious
reasons, we refer to this kind of forward plot as a fan plot.

Initially, apart from the very beginning when results may be unstable,
there is no evidence against any transformation. When the subset size m
equals 15 (56% of the data), λ = 1 is rejected. The next rejections are
λ = 0.5 at 67% and −1 at 74%. The value of λ = 0 is supported not
only by all the data, but also by our sequence of subsets. The observations
added during the search depend on the transformation. In general, if the
data require transformation and are not transformed, or are insufficiently
transformed, large observations will appear as outliers. Conversely, if the
data are overtransformed, small observations will appear as outliers. This
is exactly what happens here. For λ = 1 and λ = 0.5, working back from
m = 27, the last cases to enter the subset are 19, 20 and 21, which are
the three largest observations. Conversely, for λ = −1 and λ = −0.5 case
9 is the last to enter, preceded by 8 and 7, which are the three smallest
observations. For the log transformation, which produces normal errors,
there is no particular pattern to the order in which the observations enter
the forward search.

Similar results are obtained if Tp(λ) is replaced by the signed square root
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Figure 29: Wool data: fan plot – forward plot of Tp(λ) for five values of λ.
The curve for λ = −1 is uppermost; log y is indicated

of the likelihood ratio test (7).

3.7 Poison Data

The poison data from Box and Cox (1964) are like the wool data, well be-
haved: there are no outliers or influential observations that cannot be rec-
onciled with the greater part of the data by a suitable transformation. Our
fan plot and the other graphical procedures all clearly indicate the reciprocal
transformation. We then consider a series of modifications of the data in
which an increasing number of outliers is introduced. We show that the fan
plot reveals the structure.

The data are the times to death of animals in a 3 × 4 factorial experiment
with four observations at each factor combination. All our analyses use an
additive model, that is, without interactions, so that p = 6, as did Box and
Cox (1964) when finding the reciprocal transformation. The implication is
that the model should be additive in death rate, not in time to death.

Our analysis is again based on five values of λ : −1,−0.5, 0, 0.5 and 1.
The fan plot of the values of the approximate score statistic Tp(λ) for each
search as the subset size m increases is given in Fig 30 and shows that the
log transformation is acceptable as is the inverse square root transformation
(λ = −0.5). Initially, for small subset sizes, there is no evidence against
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Figure 30: Poison data: fan plot – forward plot of Tp(λ) for five values of
λ. The curve for λ = −1 is uppermost: both λ = −1 and λ = −0.5 are
acceptable

any transformation. During the whole forward search there is never any
evidence against either λ = −1 or λ = −0.5 (for all the data λ̂ = −0.75).
The log transformation is also acceptable until the last four observations are
included by the forward search. The plot shows how evidence against the
log transformation depends critically on this last 8% of the data. However,
evidence that some transformation is needed is spread throughout the data,
less than half of the observations being sufficient to reject the hypothesis that
λ = 1.

3.8 Modified Poison Data

For the introduction of a single outlier into the poison data we change obser-
vation 8, one of the readings for Poison II, group A, from 0.23 to 0.13. This
is not one of the larger observations so the change does not create an outlier
in the scale of the original data. The effect on the estimated transforma-
tion of all the data is however to replace the reciprocal with the logarithmic
transformation: λ̂ = −0.15. And, indeed, the fan plot of the score statistics
from the forward searches in Figure 31 shows that, at the end of the forward
search, the final acceptable value of λ is 0, with −0.5 on the boundary of the
acceptance region.

But, much more importantly, Figure 31 clearly reveals the altered obser-
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Figure 31: Modified poison data: fan plot – forward plot of Tp(λ) for five
values of λ. The curve for λ = −1 is uppermost: the effect of the outlier is
evident in making λ = 0 appear acceptable at the end of the search

vation and the differing effect it has on the five searches. Initially the curves
are the same as those of Figure 30. But for λ = 1 there is a jump due to the
introduction of the outlier when m = 41 (85% of the data), which provides
evidence for higher values of λ. For other values of λ the outlier is included
further on in the search. When λ = 0.5 the outlier comes in at m = 46,
giving a jump to the score statistic in favour of this value of λ. For the other
values of λ the outlier is the last value to be included. Inclusion of the outlier
has the largest effect on the inverse transformation. It is clear from the figure
how this one observation is causing an appreciable change in the evidence for
a transformation.

3.9 Doubly Modified Poison Data: An Example of

Masking

The simplest example of masking is when one outlier hides the effect of
another, so that neither is evident, even when single deletion diagnostics are
used. As an example we further modify the poison data. In addition to the
previous modification, we also change observation 38 (Poison I, group D)
from 0.71 to 0.14.

For the five values of λ used in the fan plot the five values of the approx-
imate score test for the transformation are:
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Figure 32: Doubly modified poison data: fan plot – forward plot of Tp(λ) for
five values of λ. The curve for λ = −1 is uppermost; the effect of the two
outliers is clear

λ −1 −0.5 0 0.5 1
Tp(λ) 10.11 4.66 0.64 −3.06 −7.27

It seems clear that the data support the log transformation and that all
other transformations are firmly rejected. However, diagnostics based on the
deletion of single observations fail to break the masking of the two outliers
(see Chapter 4 of Atkinson and Riani 2000).

The effect of the two outliers is clearly seen in the fan plot, Figure 32.
The plot also reveals the differing effect the two altered observations have on
the five searches. Initially the curves are similar to those of the original data
shown in Figure 30. The difference is greatest for λ = −1 where addition of
the two outliers at the end of the search causes the statistic to jump from an
acceptable 1.08 to 10.11. The effect is similar, although smaller, for λ = −0.5.
It is most interesting however for the log transformation. Towards the end of
the search this statistic is trending downwards, below the acceptable region.
But addition of the last two observations causes a jump in the value of the
statistic to a nonsignificant value. The incorrect log transformation is now
acceptable.

For these three values of λ the outliers are the last two observations to be
included in the search. They were created by introducing values that are too
near zero when compared with the model fitted to the rest of the data. For
the log transformation, and more so for the reciprocal, such values become
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extreme and so have an appreciable effect on the fitted model. For the other
values of λ the outliers are included earlier in the search. The effect is most
clearly seen when λ = 1; the outliers come in at m = 40 and 46, giving
upward jumps to the score statistic in favour of this value of λ. For the
remaining value of 0.5 one of the outliers is the last value to be included.

3.10 Distributions in the Fan Plot: Wool Data

We now investigate the null distribution of Tp(0). The score test is a t test
for regression on a constructed variable which is however a function of the
response. If this relationship between y and w is ignored, we would expect the
score statistic to have a t distribution, apart from any effect of the ordering of
observations due to the forward search. Fig.33 shows, for the logtransformed
wool data, the forward plot of Tp(0) during the forward search together with
the results of 1,000 simulations when the data are generated with λ = 0
using the parameter estimates for this value of λ and all n observations. The
simulated 90, 95 and 99 percentage points of the distribution of the statistic
show that the distribution of the statistic starts with longer tails than the
normal but that, by half-way through this search, the distribution is close to
the asymptotic standard normal distribution. The agreement is very good
until the end of the search when there is a slight spreading of the distribution,
recalling the bell of a trumpet. This slightly larger variance when m = n is
in line with the simulation results of Atkinson and Lawrance (1989).

3.11 Trumpets and Constructed Variables

In this section we look at the relationship between the simulation envelopes
and the parameter values used in the simulations. In envelopes of residuals
in regression (Atkinson 1985, p.35) the linear model used for simulation does
not matter and a sample of standard normal variables is used. What does
matter is the hat matrix of the model fitted to the data, which affects the
variances and covariances of the residuals. However, in transformation, the
parameters of the linear model can also have an effect. We now study the
effect of the dependence of the trumpet at the end of the search on the values
of these parameters.

The effect of the trumpet was small in Fig.33, for which the squared
multiple correlation coefficient R2 had the value 0.97 at the end of the search.
Analyses of other data sets with smaller values of R2 gave plots that were
more spread out at the end of the search.

Fig.34 shows, for the log transformed wool data, simulation envelopes in
which the linear model has the same constant and value of s2 as those in
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Figure 33: Logtransformed wool data: forward plot of Tp(0) with 90%, 95%
and 99% theoretical confidence bands and simulation envelopes using para-
meter estimates β̂(n) from the end of the search when λ = 0.

the data, but in which the values of the remaining three parameters b in the
linear model have been divided by ten, that is, b = β̂(n)/10. As a result, the
average value of R2 in the simulated data sets is reduced to 0.28. The effect
on the simulation envelopes, compared to those in Fig.33 is clear. Although
symmetrical, the envelopes are now too large throughout, especially towards
the end of the search, where there is an appreciable trumpet.

Atkinson and Riani (2002b) show that the fact that a low value of R2

accompanies wide simulation envelopes at the end of the search can be ex-
plained by considering the structure of the constructed variable plots, which
are scatter plots of residual transformed response against the residual con-
structed variable. The score statistic Tp(λ) is the t test for interceptless
regression in this plot. In the absence of evidence for a transformation, this
plot often looks like a random scatter of points. However, in simple cases,
the plots can have a near parabolic structure, even when there is no evidence
for a transformation. If there are several explanatory variables and strong
regression the parabolic pattern disappears. However if there is weak regres-
sion, giving a low value of R2, the parabolic structure remains, although in
a distorted form.

18



Subset size m

S
co

re
 te

st
 s

ta
tis

tic

5 10 15 20 25

-4
-2

0
2

4

Figure 34: Logtransformed wool data: forward plot of Tp(0) with 90%, 95%

and 99% simulation envelopes using parameter estimates b = β̂(n)/10. There
is now a trumpet towards the end of the envelopes

4 Model Building

Monitoring the t tests for individual regression coefficients in the “forward”
search fails to identify the importance of observations to the significance of
the individual regressors. This failure is due to the ordering of the data by
the search which results in an increase of s2 as m increases and a decrease
in the values of the t statistics. We use an added variable test which has the
desired properties since the projection leading to residuals destroys the effect
of the ordering. The distribution of the test statistic is investigated and an
example illustrates the effect of several masked outliers on model selection.

4.1 An Added Variable t Test

We now extend the added variable model of (8) from one variable to all
the variables in the model in turn. We write the regression model for all n
observations as

y = Qθ + ǫ = Xβ + wγ + ǫ, (20)

where Q is n × p, the errors ǫ satisfy the second-order assumptions with
variances σ2 and γ is a scalar. In turn we take each of the columns of Q as
the vector w, except for the column corresponding to the constant term in
the model.
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4.2 Orthogonality and the Properties of the t Statistic

Since the search orders the data using all the variables in Q, that is X and w,
the observations in the subset are the m + 1 smallest order statistics of the
residuals from the parameter estimate θ̂∗m. These observations yield small
estimates of σ2 and over-large values for the t statistics, especially at the
beginning of the search.

On the contrary, in searches using the added variable test, we fit the
reduced model E(Y ) = Xβ, the residuals from which are used to determine
the progress of the search. We do not include w in the model. The choice
of observations to include in the subset thus depends only on y and X.
However, the results of §3.3 show that the added variable test is a function

solely of the residuals
∗

w and
∗

y, which by definition are in a space orthogonal
to X. The ordering of observations using X therefore does not affect the
null distribution of the test statistic. If the errors were normally distributed,
the estimates γ̂ and s2 would be independent, and the null distribution of
the statistic would be Student’s t. Because, in the search, we are fitting
truncated samples, the errors have slightly shorter tails than normal, albeit
with no noticeable effect on the distribution of the statistic (§4.10).

4.3 Surgical Unit Data

Neter et al. (1996, pp.334 & 438) analyse 108 observations on the time of
survival of patients who had a particular kind of liver surgery. There are four
explanatory variables. The response is survival time. We follow Neter et al.
(1996) and use the logarithm to base ten of time as the response.

It seems clear when all 108 observations are fitted that the constant and
the first three explanatory variables are all highly significant, but that x4

need not be included in the model. We now investigate how this conclusion
depends on individual observations.

In order to use the method of added variables, each has to be omitted
in turn and be treated as the added variable w. Four forward searches are
therefore used, each using three of the four variables. The resulting plot of
the four forward t statistics is in Fig. 35. These curves behave as we would
hope: initially no variable is significant, although x3 is briefly significant at
the 1% level around m = 20. The curves then rise smoothly to their values
when m = n, with the nonsignificant value of t4 showing seemingly random
fluctuations.

In the figure we have included horizontal lines to indicate significance
levels. These are based on the normal distribution. Figure 36(a) repeats
the curve for t4 in Fig. 35 but with confidence limits calculated from the
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Figure 35: Transformed Surgical Unit data: forward plot of the four added-
variable t statistics, t1, t2, t3 and t4.

percentage points of the t distribution and found by simulation of 10,000
samples. Theory and simulation agree: despite the ordering of observations
by the searches, the statistics follow the t distribution. The conclusion is
that x4 should be dropped from the model.

4.4 Multiple Outliers: Theory

Multiple outliers can both be hard to detect and can completely alter infer-
ences about the correctness of individual models. We now suppose that the
data are contaminated by k mean shift outliers, which will enter the search
after the good observations. The model for these observations is

E(Y+) = X+β + w+γ + ∆, (21)

with X+ a k × (p − 1) matrix and the other vectors k × 1; ∆ is a vector of
arbitrary shift parameters.

The effect of the vector of shift parameters may be either to increase or
to decrease E(γ̂) depending on the signs of γ, ∆ and of w∗

+. As different
variables are selected to be the added variable, the effect of ∆ will change
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Figure 36: Transformed Surgical Unit data: (a) forward plot of added-
variable t statistic for x4, percentage points of the t distribution and averages
of 10,000 simulations; (b) correlation between predictions from fitting X and
the excluded variable ignore

depending on the various vectors w∗

+. However, the effect of ∆ is always
modified by projection into the space orthogonal to X.

The effect of the outliers on the estimate of σ2 is to cause it to increase.
There will thus be a tendency for the t statistics to decrease after the in-
troduction of the outliers even if γ̂ increases. Fig. 37 shows evidence of this
decrease.

4.5 Modified Surgical Unit Data

We now modify the surgical unit data to show the effect of masked outliers
on the forward plot of t statistics.

We contaminate up to 12 observations in two different ways in order to
produce two different effects. The resulting forward plots of the t tests are
in Fig. 37. In Fig. 37(a) the effect of the modification has been to make x1

non-significant; previously it was the most important variable. Since x1 is
the added variable, the search orders the observations using the regression
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Figure 37: Modified Transformed Surgical Unit data: both panels show for-
ward plots of added-variable t statistics, t1, t2, t3 and t4. (a) outliers render
x1 non-significant; (b) now the outliers make x4 significant.

model in only x2, x3 and x4. The plot very dramatically shows that, for
this search without x1, the observations have been ordered with the outliers
at the end and that this group of observations has a dramatic effect on the
added variable t test for x1.

These plots very clearly show the effect of the outliers on the t tests for
regression. Variable selection using t tests in the first example would lead to
the incorrect dropping of x1; in the second case it would lead to the incorrect
inclusion of x4 in the model.

The outliers are easily found using the forward plots of statistics, parame-
ter estimates, Cook distances and the other diagnostic measures exemplified
in Atkinson and Riani (2000, ch.3), but this is not the point. The purpose of
our method is to discover precisely the effects of individual observations on
the t tests for the variables included in the model. The plots in Fig. 37 do
exactly that. It is clear that a subset of observations are indicating a different
model from the majority of the data. The identities of these observations
follow from the order in which the observations enter the search. In both
examples the contaminated observations were the last to enter the searches
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in which inferences were changed. For further discussion see Atkinson and
Riani (2002a).

4.6 Ozone Data

With four explanatory variables the forward plot of added variable t statistics
provided a clear indication of the model. However, with more variables, the
situation can be less clear. One particular difficulty is that, with correlated
explanatory variables, deletion of one variable can cause large changes in the
values of the other t statistics.

As an illustration of this point, §3.4 of Atkinson and Riani (2000) presents
a forward analysis of data on ozone concentration in which there are eight
potential explanatory variables. The regression model is chosen using a stan-
dard analysis based on t statistics when all observations are fitted. A forward
search is then used to explore the properties of the chosen model. We now
supplement this analysis by use of forward plots of added variable t tests.

The data are the first 80 observations on a series of daily measurements,
from the beginning of the year, of ozone concentration and meteorological
variables in California. The values of the non-negative response range from
2 to 24 and techniques like those of §3 indicate the log transformation. In
addition, there is an upwards trend in the residuals from the fitted model
with log y as response, so that we include a linear term in time in our model.
The observations that lie furthest from this trend are 65, 56, 53 and 31.

There are now nine explanatory variables including the trend. Figure 38
is the forward plot of added-variable t statistics for this model. The trend
and x5 are significant at the 1% level. In most cases there is an appreciable
decrease in significance in the last few steps of the search; t4 is the most
extreme example, changing from significant to not so. Each of these curves
corresponds to a forward search in which X is different, so the units may
enter in a different order. However, working backwards, the units that enter
in the last few steps in virtually all searches are 65, 56, 31 and 53. These are
precisely the units that were found to be outlying from the time trend. Our
forward plot makes clear their influence on inferences drawn from the data.

A second feature of Figure 38 is the jagged nature of the curves. This is
a symptom of overfitting; there are so many explanatory variables that the
values of the coefficients are responding to slight fluctuations in the data.

Initially we used a backwards procedure to select variables, based on the
t statistics at the end of the search, but augmented by plots of the added-
variable t statistics to ensure that this summary value was representative
of behaviour for all S∗(m). Proceeding in this way, always dropping the
least significant variable, led, in turn, to the removal of x7, x3 and x1. This
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Figure 38: Logged ozone data: forward plot of added-variable t statistics;
horizontal band contains 99% of the normal distribution. The trend and x5

are most significant. The plot reflects overfitting

analysis parallels that on p. 70 of Atkinson and Riani (2000), who however
do not plot the t statistics. As the result of this process we obtain a model
with a logged response, that includes a trend and terms in x2, x4, x5, x6, and
x8. The forward plot of the added-variable t statistics is in Figure 39.

At this point x4 has the smallest t statistic, −1.64 and Atkinson and
Riani (2000) next delete this variable. However, Figure 39 shows that there
are rapid changes in the values of the t statistics in the last few steps of
the search as the four observations we identified as potential outliers enter
S∗(m). In particular, the significance of x8 is highest at the end of the search,
but still remains within the 99% band as it has for the whole search. On
the contrary, the statistic for x4 increases steadily in significance throughout
much of the search, lying outside the 99% region for several values of m just
before inclusion of the final observations appreciably reduces its significance.
We accordingly remove x8 from the model.

Figure 40 is the forward plot of added-variable t statistics for this model
including four explanatory variables and the trend. As the figure shows,
all variables and the trend are either significant at the end of the search or
have been so for a part of the search just before the inclusion of the last
observations. This then is our final model, with a logged response, the five
variables shown in the plot and, of course, a constant term. This has been
highly significant throughout and so has not been included on the plots.
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Figure 39: Logged ozone data: forward plot of added-variable t statistics;
horizontal band contains 99% of the normal distribution. The least significant
variable at the end of the search is x4, but it is appreciably more significant
than x8 for most of the search.

Subset size m

D
el

et
io

n 
t−

st
at

is
tic

s

20 40 60 80

−
5

0
5

trend
t2
t4

t5
t6 trend

t2

t4

t5

t6

Figure 40: Logged ozone data: forward plot of added-variable t statistics;
horizontal band contains 99% of the normal distribution. All five terms are
either significant at the 1% level at the end of the search or have been so
earlier
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4.7 Aggregate Statistics: Cp

The analysis above augmented the standard procedure of backward elimina-
tion of regression variables with a forward search for each considered model.
This backward procedure leaves unexplored the vast majority of models found
by dropping each variable in turn. The comparison of this large number of
models often uses a model selection criterion such as Mallows Cp, a function
solely of an aggregate statistic for each model, in this case the residual sum
of squares. The extension of our forward procedure to determine the effect of
individual observations on model selection raises appreciable problems in the
cogent presentation of the large amount of information that can be generated.

We are interested in the linear multiple regression model y = Xβ + ǫ,
in which X is an n × p full-rank matrix of known constants, with ith row
xT

i . As before, the normal theory assumptions are that the errors ǫi are i.i.d.
N(0, σ2). The residual sum of squares from fitting this model to the data is
Rp(n). The purpose is to compare various sets of explanatory variables and
so various forms of the matrix X, over a range of values of p.

In the selection of regression variables using Cp, σ2 is estimated from
a large regression model with n × p+ matrix X+, p+ > p, of which X is
submatrix. The unbiased estimator of σ2 comes from regression on all p+

columns of X+ and can be written

s2 = Rp+(n)/(n − p+). (22)

That model is chosen which minimizes

Cp = Rp(n)/s2 − n + 2p = (n − p+)Rp(n)/Rp+(n) − n + 2p. (23)

One derivation of Cp (Mallows 1973) is that it provides an estimate of the
mean squared error of prediction at the n observational points from the model
with p parameters provided the full model with p+ parameters yields an
unbiased estimate of σ2. Then E{Rp(n)} = (n−p)σ2, E(s2) = σ2 and E(Cp) is
approximately p. An intuitive interpretation of (23) is that when comparing
models the reduction in the residual sum of squares from the addition of
extra parameters is penalized by twice the number of extra parameters.

In the standard application of model selection procedures both n and s2

are fixed, the variable factors being the value of p and the regressors that are
being considered.

Models with small values of Cp are preferred. Statements are often made
that those models with values of Cp near p are acceptable. In §4.10 we
consider the distribution of values of Cp and try to make this statement
more precise.
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Figure 41: Cp plot for the ozone data. The combination of the two best
models for p = 6 yields the best model for p = 7

4.8 The Ozone Data

Figure 41 is a Cp plot for the ozone data in which the smaller values of Cp for
subset models are plotted against p. It shows a typical shape. Initially, for
small p, all models have values of Cp much greater than p, and so these small
models are not satisfactory. The best relatively small models are for p = 6,
and 7. All models include a constant and the time trend. The model with
smallest Cp for p = 6 also includes variables 2, 5, 6 and 8. This is the model
selected by Atkinson and Riani (2000, p. 70). In the second-best model for
p = 6, variable 4 replaces variable 6, giving the model including variables 2,
4, 5 and 8. The best model for p = 7 includes both these variables. Good
models for larger values of p add further variables to the model for p = 7,
giving rise to larger values of Cp.

Above we argued for variables 2, 4, 5 and 6. The model with minimum Cp

in Figure 41 is for p = 7 and includes the constant, the trend and variables
2, 4, 5, 6 and 8. However, this model may be too large, since the t values for
x4 and x6 are respectively −1.64 and 1.71. Our purpose is to determine how
the choice of model is influenced by outliers or other unsuspected structure.
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Figure 42: Wool data: three explanatory variables plus 1 noise variable.
Forward plots of AIC(m) and Cp(m) for p = 4

4.9 Forward Cp

The information criterion (23) for all observations is a function of the residual
sums of squares Sp(n) and Sp+(n). For a subset of m observations we can
then define the forward value of this criterion as

Cp(m) = (m − p+)Rp(m)/Rp+(m) − m + 2p. (24)

For each m we calculate Cp(m) for all models of interest. However, some
care is needed in interpreting this definition. For each of the models with
p parameters, the search may be different, so that the subset S∗(m) will
depend on which model is being fitted. This same subset is used to calculate
Rp+(m), so that the estimate s2 in (22) may also depend on the particular
model being evaluated as well as on m.

4.10 The Distribution of Cp in the Forward Search

The distribution of Cp is given, for example, by Mallows (1973) and by
Gilmour (1996). From (23) we require the distribution of the ratio of two
nested residual sums of squares. It is straightforward to show that the re-
quired distribution is

Cp ∼ (p+ − p)F + 2p − p+, where F ∼ Fp+−p,n−p+ . (25)

Gilmour comments that when n − p+ is small, E(Cp) can be appreciably
greater than p. In our example, with n = 80, this is not the case.

These results apply to Cp which is calculated from the full sample. How-
ever, in the forward search with m < n we take the central m residuals to
calculate the sums of squares Rp+(m) and Rp(m). These sums of squares
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Figure 43: Comparison between empirical and theoretical envelopes for
Cp(m) based on the F distribution (25) when n = 80, p = 6 and p+ = 10:
1%, 10%, 50%, 90% and 99% quantiles

are accordingly based on truncated samples and will have smaller expec-
tations than those based on a full sample of m observations. Specifically
E{s2(m)} < σ2. We conducted a small simulation study to check the effect
of this truncation on the distribution of Cp(m).

Figure 43 shows a forward plot of the empirical distribution from 10,000
simulations of 80 observations with p = 6 and p+ = 10. We give the empirical
1%, 10%, 50%, 90% and 99% points as n varies from 12 to 80, together
with those calculated from the full sample distribution of Cp defined in (25).
Amazingly, the distribution of Cp(m) during the search is indistinguishable
from that of the full sample statistic for sample size m. Accordingly, we can
use (25) directly to provide envelopes for our forward plots.

4.11 Forward Cp Plots for the Ozone Data

We examine model selection by a forward plot for each plausible value of p.
From Figure 41 it seems that p = 6 is a good choice, that is a constant, the
trend and four explanatory variables. We also check other values of p.

Figure 44 shows the forward plots of Cp(m) from m = 59 for p from 4 to
7, including only those models that have small values of Cp(m) in this region
of the search. These plots confirm our earlier choice of p = 6. However, a
feature for all values of p is that many of the curves increase in the last two
steps. The plot for p = 6 shows that, when m = 78, minimising the value
of Cp leads to the choice of model with terms in x2, x4, x5 and x6, although

30



Subset size

60 65 70 75 80 85

5
10

15
20

25

Time,x1,x2 Time,x2,x5

Time,x4,x5

Time,x4,x7

Time,x7,x8p=4    K=10

Subset size

60 65 70 75 80 85

5
10

15
20

25

Time,x1,x2,x5

Time,x2,x3,x5

Time,x2,x4,x5

Time,x2,x5,x6

Time,x2,x5,x7

Time,x2,x5,x8

Time,x2,x5,x8 Time,x3,x4,x5

Time,x4,x5,x6

p=5    K=10

Subset size

60 65 70 75 80 85

5
10

15
20

25

Time,x2,x3,x4,x5

Time,x2,x4,x5,x8
Time,x2,x5,x6,x8

Time,x4,x5,x6,x7
Time,x4,x5,x6,x8

Time,x2,x4,x5,x6

p=6    K=10

Subset size

60 65 70 75 80 85

5
10

15
20

25

Time,x1,x2,x4,x5,x6

Time,x1,x2,x5,x6,x8

Time,x2,x3,x4,x5,x6
Time,x2,x4,x5,x6,x7

Time,x2,x4,x5,x6,x8

Time,x4,x5,x6,x7,x8

p=7    K=10

Figure 44: Ozone data: forward plots of Cp(m) when p = 4, 5, 6 and 7. The
last two observations to enter the subset have a clear effect on model choice

this is only the third best model of this size when m = n. This plot clearly
and elegantly shows how the choice of model is being influenced by the last
two observations to enter the forward search.

4.12 Outlier Detection

The last two observations to enter S∗(m) are 56 and 65; these also seem to
be outlying in the plot of residuals against trend in Figure 3.36 of Atkinson
and Riani (2000). To detect outliers we calculate the deletion residual for

the n − m observations not in S
(m)
∗ . These residuals are

ri∗(m) =
yi − xT

i β̂∗(m)
√

s2
∗
(m){1 + hi∗(m)}

=
ei∗(m)

√

s2
∗
(m){1 + hi∗(m)}

, (26)

where hi∗(m) = xT
i {X∗(m)T X∗(m)}−1xi; the leverage of each observation

depends on S
(m)
∗ . Let imin denote the observation with the minimum absolute

deletion residual among those not in S
(m)
∗ , that is

imin = arg min
i/∈S

(m)
∗

|ri∗(m)|.
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Figure 45: Ozone data: monitoring the minimum deletion residual (27).
Left-hand panel, n = 80, right-hand panel n = 78. There are two outlying
observations

To test whether observation imin is an outlier we use the absolute value of
the minimum deletion residual

rimin∗(m) =
eimin∗(m)

√

s2
∗
(m){1 + himin∗(m)}

, (27)

as a test statistic. If the absolute value of (27) is too large, the observation
imin is considered to be an outlier, as well as all other observations not

in S
(m)
∗ . Riani and Atkinson (2007) give further details and discuss the

calculation of approximations to the distribution of the test statistic (27).
We use simulation to find envelopes for the small value of n for the ozone
data.

The left-hand panel of Figure 45 shows a forward plot of the minimum
deletion residual for all 80 observations when the model contains variables
2,4 5 and 6, together with 1%, 50% and 99% simulation envelopes. The last
two observations are clearly revealed as outlying. If they are removed and
the envelopes recalculated for n = 78 we obtain the plot in the right-hand
panel of Figure 5. There is no evidence of any further outlying observations.

We now return to model selection. Figure 46 gives the last part of the
forward plot of Cp(m) for n = 78 when p = 6, together with 2.5%, 50%
and 97.5% quantiles calculated from (25). We give the curves only for those
models that are one of the three best at some point for the last ten values of
m. The model with variables 2, 4, 5 and 6 is clearly the best; unlike any other
model its value of Cp(m) lies in the lower half of the distribution for m > 63.
There are many alternative six-parameter models with values of Cp(78) lying
below the 97.5% quantile. Plots for five such are shown in Figure 46. All
however fall in the upper half of the distribution.
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Figure 46: Ozone data without outliers: forward plots of Cp(m) when p = 6,
together with 2.5%, 50% and 97.5% quantiles from (25). The model including
variables 2, 4, 5 and 6 is preferred

Table 1: Ozone data: effect of deletion of outliers on significance of terms in
model with variables 2, 4, 5 and 6

All 80 observations n = 78

Term t p-value t p-value

Constant -4.83 0.000 -5.74 0.000
Time 7.16 0.000 8.99 0.000
x2 - 3.34 0.001 -2.57 0.012
x4 -1.79 0.077 -3.01 0.004
x5 5.75 0.000 6.80 0.000
x6 1.60 0.114 2.39 0.019
R2 0.67 0.74
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Figure 47: Cp plot for the ozone data after deletion of the two outliers. One
model with p = 6 is now clearly best. In comparison, the best model in
Figure 41, which had p = 7, was less sharply revealed

It is also interesting to consider the effect of deleting observations 56 and
65 on the properties of the final model. Table 1 lists the t-statistics for the
six terms in the model and their significance both for all observations and for
the 78 observations after deletion of the two outliers. When n = 80 neither
x4 nor x6 are significant when they are both in the model. But deletion of
the outliers causes the variables to be jointly significant, one at 2% and the
other well past the 1% level.

We have based our argument on the plot for p = 6. So, finally we re-
produce the Cp plot of Figure 41 for all values of p after the two outliers
have been removed. The comparison is instructive. Now the model with
variables 2, 4, 5 and 6 has an appreciably smaller value of Cp than the next
best six-parameter model. In addition, this value is less than that for the
best seven-parameter model. By detection and deletion of the outliers we
have not only changed the selected model but have sharpened the choice of
the best model

The distributional results in Figure 46 indicate some other potential mod-
els. Whether we need to be concerned to have more than one model depends
on the purpose of model fitting. If the model is to be used to predict over
the region over which the data have been collected and the system is unlikely
to change, so that the correlations between the explanatory variables remain
sensibly constant, then any of these models will give almost equally good pre-
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dictions. If however the relationships between the variables may change, or
predictions are needed in new regions where data are sparse or non-existent,
then the outcomes of all satisfactory models, as selected here by Cp(m), must
be taken into account. The possible effects of climate change on ozone con-
centration in the Californian desert indicate that the consequences of several
well-fitting models should be explored.

For further details of this analysis see Atkinson and Riani (2008).
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