London Taught Course on Spectral Theory Problems for weeks 1 - 3.

E. B. Davies

29 January 2013

The following problems are similar to those that might be asked in the question that I am expected to produce for a final test. You may send me written work, but please only do so when you do not feel confident about your solution for a problem. Also make sure that what you send me is easily readable.

1. Let $\mathcal{B} = C[0, a]$ and define the Volterra operator V by

$$(Vf)(x) = \int_0^x f(s) \,\mathrm{d}s.$$

Prove that V is a bounded operator and that it has no eigenvalues. Prove also that $0 \in \text{Spec}(V)$.

2. Prove that if A is a bounded operator on \mathcal{B} and $\lambda, \mu \notin \operatorname{Spec}(A)$ then

$$R(\lambda, A)R(\mu, A) = R(\mu, A)R(\lambda, A),$$

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\mu, A)R(\lambda, A).$$

3. Let $\theta \in \mathbf{R}$ and let $\mathcal{H} = L^2(0, 2\pi)$. Define the operator A by (Af)(x) = if'(x) on the domain

$$\mathcal{D} = \{ f \in C^1[0, 2\pi] : f(2\pi) = e^{i\theta} f(0) \}.$$

Find all of the eigenvalues of A and use Lemma 1.2.2 to prove that A is essentially self-adjoint on \mathcal{D} .

4. Let $\mathcal{H} = L^2(0, 1)$ and define A by

$$(Af)(x) = a(x)f''(x) + b(x)f'(x) + c(x)f(x)$$

on the domain

$$\mathcal{D} = f \in C^2[0,1] : f(0) = f(1) = 0\}.$$

Assuming that a, b, c are all sufficiently differentiable, real-valued functions on [0,1], use integration by parts to find the precise conditions that ensure that A is a symmetric operator.

- 5. Let \mathcal{H} be a Hilbert space and let $P : \mathcal{H} \to \mathcal{H}$ be a bounded operator satisfying $P = P^* = p^2$. Prove that $\mathcal{L} = \text{Ker}(P)$ and $\mathcal{M} = \text{Ran}(P)$ are orthogonal linear subspaces and that $\mathcal{H} = \mathcal{L} + \mathcal{M}$ as an algebraic direct sum.
- 6. Let $\mathcal{H} = L^2(0, 1)$ and define A by (Af)(x) = a(x)f(x) where $a : [0, 1] \to \mathbb{C}$ is a bounded continuous function. Use the definition of spectrum to determine Spec(A). Can A have any eigenvalues?
- 7. Let $\mathcal{H} = \ell^2(\mathbf{N})$ where **N** is the set of all natural numbers and define the bounded operator A by

$$(Af)(n) = \cos(n)f(n)$$

Find the set of all eigenvalues of A and prove that Spec(A) = [-1, 1].

8. Let $\mathcal{H} = \ell^2(\mathbf{N})$ and define the bounded operators A_m on \mathcal{H} by

$$(A_m f)(n) = \begin{cases} f(n) & \text{if } n \ge m, \\ 0 & \text{otherwise.} \end{cases}$$

Prove that $||A_m|| = 1$ for all $m \in \mathbb{N}$ but that $\lim_{m \to \infty} ||A_m f|| = 0$ for all $f \in \mathcal{H}$. In other words A_m converge to 0 strongly but not in norm.

9. Let $\mathcal{H} = \ell^2(\mathbf{N})$ and define the bounded 'left shift' operator L by

$$(Lf)(n) = f(n+1).$$

Prove that ||L|| = 1 and that every $\lambda \in \mathbf{C}$ such that $|\lambda| < 1$ is an eigenvalue of L. Find Spec(L).