London Taught Course on Spectral Theory Problems for week 4.

E. B. Davies

4 February 2013

1. Let H be the operator defined on the domain $C^{2}[-1, 1]$ in $\mathcal{H} = L^{2}((-1, 1), dx)$ by

$$(Hf)(x) = \frac{\mathrm{d}^2}{\mathrm{d}x^2} \left\{ (1-x^2)^2 \frac{\mathrm{d}^2 f}{\mathrm{d}x^2} \right\}$$

Prove that H is symmetric and find its associated quadratic form. Prove that if \mathcal{P}_n is the space of all polynomials of degree at most n then $H(\mathcal{P}_n) \subseteq$ \mathcal{P}_n for all n. Use the Gram-Schmidt method of the last lecture to find a series of eigenvalues of H.

2. Let $\mathcal{H} = \ell^2(\mathbf{N})$ and let

$$(Af)_n = a_n f_n$$

for all f on the usual maximal domain of A, where a_n is a complex-valued sequence. Prove that A is unitary if and only if $|a_n| = 1$ for all n and find the spectrum of A.

3. Prove that the map $U: L^2((-\pi, \pi), dx) \to \ell^2(\mathbf{Z})$ defined by $(Uf)_n = a_n$ where a_n is the Fourier coefficient

$$a_n = (2\pi)^{-1/2} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-inx} \,\mathrm{d}x$$

is unitary. What is the inverse of U?

4. Use Fourier series methods as in the last problem to find the spectrum of the differential operator H on $L^2((-\pi, \pi), dx)$ defined by Hf = af'' + bf' + cf, on the domain \mathcal{D} of C^2 functions f such that $f(-\pi) = f(\pi)$ and $f'(-\pi) = f'(\pi)$, where a, b, c are complex constants. Find the precise conditions that ensure that H is self-adjoint on an appropriate domain.