Methods of Industrial Mathematics - Problem Sheet on Session 4.

Issue No:
 Prepared By: DrJohn Curtis
 Date: 08/03/2018

1. Find the stationary points of

$$
f(x)=x^{2}\left(1-x^{2}\right)
$$

and determine if they are maxima or minima and what the maximum and minimum values are.
2. (i) Prove that

$$
f(x, y)=(x-2)^{2}+(y-3)^{2}
$$

is a minimum at $x=2, y=3$ (as is obvious by inspection!) by finding the stationary point and applying the criteria for second derivatives.
(ii) Now in two separate ways including one using a Lagrange multiplier show that minimising $f(x, y)$ subject to the constraint $y=2 x$ yields a stationary (minimum) value of $\frac{1}{5}$.
3. Minimise $f(x)=(x-7)^{2}$ subject to $0 \leq x \leq 4$.
4. Prove that $f(x)=x^{4}+x^{2}+1$ takes a minimum value of 1 at $x=0$. Now form

$$
g(x, y ; \lambda)=y^{2}+y+1+\lambda\left(y-x^{2}\right)
$$

and show that with respect to variation of x, y it takes the stationary value

$$
d_{\lambda}=1-\frac{1}{4}(\lambda+1)^{2}
$$

It is apparent that this is a lower bound on the minimum of $f(x)$, which takes a maximum value of 1 . This is a simple example of a complementary extremum principle.
5. Challenge Question. Perform the orthogonality of axes analysis done in the slides for two dimensions this time in three dimensions.

