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SOLUTIONS 1

Q1.
(i) Area of a triangle: A = 1

2
bh: area = half base times perpendicular height.

Proof: In the acute-angled case, drop a perpendicular from the vertex to the
base. The rectangle on this base with this height has area bh. Its area is that
of four triangles, similar in pairs. One of each pair gives the triangle, which
thus has area a half this, as required.

In the obtuse-angled case, divide the triangle into elements parallel to the
base. Push these over to make the triangle acute-angled, without change of
area, and use the above result.
(ii) Area of a polygon: Triangulate, and use (i).
(iii) Area of a circle.
(a) Without calculus (as the Greeks did it): divide the circle into a large
even number of equi- angular segments. Re-arrange into a pile, with the
even-numbered segments pointing one way and the odd-numbered ones the
other. The pile is approximately a rectangle, with base the radius r, and with
height approximately πr (by symmetry, half the circumference 2πr is on each
side). This gives A ∼ r.πr = πr2, and the approximation can be made as
accurate as we like by taking the subdivision of the circle fine enough.
(b) With calculus: use plane polar co-ordinates, with element of area dA =
dr.rdθ = rdrdθ. Then A =

∫ ∫
rdrdθ =

∫ r
0 udu.

∫ 2π
0 dθ = 1

2
r2.2π = πr2.

(iv) Area of an ellipse. Use plane cartesians, element of area dA = dx.dy. If
the ellipse is round (semi-axes a = b), it is a circle and A = πa2 by (iii). If not,
squash it to make it round, with radius a (a < b say). Then dA → (a/b)dA,
giving ‘squashed area’ πa2. ‘Unsquashing’ blows this up by a factor of b/a,
giving area A = (b/a).(πa2) = πab.

Q2. In Q1, we have exhausted our available plane co-ordinate systems, and
so there are no more easy examples to hand!

In general, we must sub-divide, by super-imposing a square grid (‘graph
paper’), and counting squares, (a) inside, (b) round the edge.

Q3. We should not expect the general region in the plane to have an area.
The above square-counting method fails with regions that are ‘all edge and
no middle’, and we can make the edge as badly behaved as we like.

Q4. (i) The integral does not exist as a Riemann integral. Between any
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two reals there are both (infinitely many) rationals and (infinitely many) ir-
rationals. So all upper Riemann sums – on [0, 1] say – are 1 and all lower
Riemann sums are 0, regardless of how fine we make the partition.
(ii) The integral exists as a Lebesgue integral, and is 0. For, almost all reals
are irrational. So the indicator of the rationals is a.e. 0, so integrates to
0 (we can change an integrand on a set of measure 0 without changing the
integral.

The contrast here indicates how vastly more general the Lebesgue inte-
gral is than the Riemann integral. Recall also that a function f is Riemann
integrable iff it is continuous a.e. The indicator of the rationals is discontin-
uous everywhere, so as far from being Riemann integrable as it could be.
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