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Overview
• Introduction to Proteomics and an Application

• Introduction to Classification and Regression

• Linear models
• Linear regression: least squares
• Penalised linear regression
• Classification: logistic regression

• Prediction error and cross-validation

• Other models
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Proteomics

Overall aim in molecular biology is
the understanding of proteins and
their functions in living organisms.

Proteomics is the large-scale study
of proteins. We will be discussing
the particular problem of inferring
which proteins are present in par-
ticular groups of samples.

Aim to infer which proteins are im-
portant in particular biological pro-
cesses.
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Proteomics - Mass Spectrometry

Proteins ionized by laser, accelerated in electric field.

Measure time-of-flight t to infer mass to charge ratio.

t2 ∝ m/z

Image from http://biochemistry.wur.nl/Biochem/educatio/images/Maldi.jpg
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Proteomics - Mass Spectrometry

Mass spectrum is the distribution of
counts per time interval:

intensity v. m/z

Intensity ∼ relative abundance of
ions

Protein identified by presence
of peaks with m/z corresponding
to peptides contained in the protein.

Pre-processing of data: spectra
from different samples are aligned;
keep only the peaks which appear
in more than a certain number of
samples.
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Application: HAM/TSP vs. AC

Human T-Lymphotropic Virus type 1 (HTLV-1) is a human RNA
retrovirus that causes T-cell leukaemia and T-cell lymphoma.

HTLV-1 infection is also the cause of a debilitating disease called
HAM/TSP.

The vast majority of infected individuals (∼ 90% ) remain lifelong
asymptomatic carriers (ACs).

• Blood plasma samples were taken from 34 HAM/TSP individuals
and 34 ACs.

• SELDI mass-spectrometry was used to investigate the protein
content of these samples.

We seek to identify peaks in the spectra whose heights enable us to
distinguish between the 2 classes of individuals.
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Application: HAM/TSP vs. AC

Aim is to find a way to predict whether a new patient will go on to
develop HAM/TSP or remain AC.

Select small number of proteins to base the classification on.

• Easier to measure smaller number of biomarkers for future
diagnosis

• Interpretation of model (want to find proteins which are really
involved in the biological process)
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Introduction to Classification and
Regression
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Notation

n = number of individuals
p = number of input variables (here spectrum peaks)

Label individuals by i, where i = 1, · · · , n
Label peaks by j, where j = 1, · · · , p

There are two types of data for each individual:

• The outcome variable yi is the class of individual i (eg. HAM or
AC). This can also be called the response.

• Input variables are those we use to try to make the prediction (in
this case peak intensities). Call these xij .

Input variables can also be called covariates, features, predictors or
simply ‘variables’.

We try to pick a small number of the input variables for the classifier,
hence variable selection or feature selection.
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Classification Rules

Now consider a new individual, labelled by i = 0.

• Know the peak intensities x0j for the new individual.

• Don’t know which group the new individual belongs to (HAM or
AC).

Example of a prediction rule could be:

(x02 > 0.08 and x05 > 0.06 ) ⇒ y∗0 = HAM

Here we use a star in y∗0 to indicate that this is a predicted quantity.
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Relation to univariate analysis

Consider a problem with 2 classes (eg. two types of leukaemia: ALL
and AML often studied with gene expression)

We could consider this as a differential expression problem:

1) Perform a test for each gene to see if its expression differs
significantly between the classes. (eg. a modified t-test or permutation
test).

2) Account for multiple testing.

This produces a list of genes whose expression differs between
classes.

But,

• Treats each gene separately

• Takes no account of correlation between genes.

• Doesn’t produce a prediction or classifier.
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Relation to univariate analysis

Toy example: 400 individuals in
each of 2 classes. Expression for 2
genes.

Neither gene alone can completely
separate the 2 classes. But a com-
bination of the two genes can sepa-
rate all but outlying points.
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Classifier using only gene 1 would be something like this:
x01 < 0.4 ⇒ y∗0 = 2
x01 > 0.4 ⇒ y∗0 = 1
But see that many points in class 1 would be mis-classified by this rule.

Same thing happens for a rule using only gene 2.

But using both genes, we can find a rule which separates the classes:
x01 + x02 < 0.85 ⇒ y∗0 = 2
x01 + x02 > 0.85 ⇒ y∗0 = 1
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Classification

Decision boundaries don’t have to be linear:
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Logistic regression finds a straight line separating classes.

1-nearest neighbour classifies points to the class of the nearest point
in data set.
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Classification

Choice of shape/smoothness of decision boundary: balance between

• too smooth may be too simple to separate classes well

• too wiggly will be sensitive to individual points in the data set used
to find the boundary

Trade-off between mis-classifying points in this data set and making
bad predictions for future points.
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Introduction to Regression

If outcome variable is continuous, process is called regression.

For example, in the HAM/TSP v. AC example, the proviral load has
been measured for all individuals in the study. May wish to find
proteins peaks whose intensity correlates with proviral load.

Find a surface which describes
the relationship between the
outcome and predictor vari-
ables.
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Introduction to Regression

As with classification, there are two types of variable for each
individual:

• The outcome variable yi is now the continuous variable which is to
be modelled in terms of the predictors.

• Input variables as before

Here we try to pick a small number of the input variables which explain
the variability of the outcome variable.
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Introduction to Regression

Here we have to choose how smooth to make the surface.
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Choice of shape/smoothness of surface: balance between

• too smooth may give high errors on this data set

• too wiggly will be sensitive to individual points in the data set

Trade-off between high errors for points in this data set and high errors
for future data.
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Regression - linear models
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Linear Regression: Ordinary Least Squares
Define random variables Y the outcome variable (here continuous)
and Xj the input variable j. These correspond to observed yi and xij

for individual j.

Simple linear model:

yi = β0 +

p
∑

j=1

βjxij + ǫi

β0 is the intercept term representing the expectation of Y for an
individual with all variables Xj zero.

Each variable j has its own regression coefficient βj : this represents
the effect that variable j has on the outcome, when all other variables
are held constant.

(Linear model → variable has same effect whatever values of other
variables.)
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Linear Regression: Ordinary Least Squares

ǫi is the residual error for individual i, after the effect of variable j has
been taken into account.

Fit the model by minimising the sum of squared residuals:

RSS =
n
∑

i=1

ǫ2i =
n
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2

Solution can be written in matrix format.

Straightforward and quick computationally.
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Details of matrix solution

Write the model as

y = Xβ + ǫ

Here y and ǫ are the n-vectors of the outcomes and residual errors for
all individuals.

β is the (p+ 1)-vector of all regression coefficients, including β0.

X is the n× (p+ 1) matrix of input variables for all individuals, where
row i is (1, xi1, ..., xip) - the 1 corresponds to β0.

In matrix format, the solution for β minimising the residual sum of
squares is

β̂OLS = (XTX)−1XTy

This involves matrix inversion of a (p+ 1)× (p+ 1) matrix.

Proteomics and Variable Selection – p. 21/55



Large p, small n problem

However, in most biomarker selection problems, p is much larger than
n. In this case the solution for the βj is not unique. (There are many
different ways to write Y as a linear function of the Xj .)

This is known as the large p, small n problem. Present for all
supervised learning models, not only linear models.

Hence we need variable selection. Some possibilities:

• filter the input variables

• subset selection

• penalisation methods shrink the regression coefficients or set
some of them to zero.
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Penalised linear regression

gene 1
gene 2

outcome

−1.0

−0.5

0.0

0.5

1.0

Proteomics and Variable Selection – p. 23/55



Penalised Linear Regression: Ridge regression

Penalised methods shrink the regression coefficients by imposing a
penalty on their size.

Ridge regression uses the same linear regression model as before, but
minimises a different quantity:

n
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2 + λ

p
∑

j=1

β2
j

Parameter λ controls the amount of shrinkage. Larger λ gives more
shrinkage: larger λ ⇒ second term more important ⇒

∑p

j=1 β
2
j must

be smaller.

An equivalent way to think of it is that βj minimises the residual sum of
squares subject to the constraint

∑p

j=1 β
2
j ≤ s, where s has a

one-to-one correspondence with λ.
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Details of matrix solution

The solution in matrix format is

β̂ridge = (XTX + λIp)
−1XTy

where Ip is the p× p identity matrix.

Use centred and scaled variables in X and y, and no intercept, so X

is p× p.

So the ridge regression solution is also straightforward and reasonably
quick computationally.
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Penalised Linear Regression: Lasso

In ridge regression, regression coefficients are shrunk towards zero,
but are not actually zero. Lasso is a method which produces zeros for
most regression coefficients.

Lasso minimises:

n
∑

i=1

(yi − β0 −

p
∑

j=1

βjxij)
2 + λ

p
∑

j=1

|βj |

This time βj minimises the residual sum of squares subject to the
constraint

∑p

j=1 |βj | ≤ t, where t has a one-to-one correspondence
with λ.

This modified penalty produces many zero regression coefficients, so
the lasso performs a type of subset selection.
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Penalised Linear Regression: Lasso

Lasso tends to pick one of a group of correlated predictors. Ridge
gives the whole group smaller coefficients than if only one of the group
was available.

The solution to the lasso minimisation is not linear in the y, so β̂lasso

cannot be written down as with ordinary least squares and ridge
regression.

Several methods have been proposed for fitting the lasso: quadratic
programming, least angle regression and co-ordinate descent. The
last two involve step-wise procedures, starting with one predictor in the
model and successively adding the next best in when required. They
calculate the solutions for all values of λ at once.
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Connections between fitting methods

Ordinary least squares for linear regression is equivalent to maximum
likelihood (assuming the outcome Y comes from a Normal distribution)

• Log likelihood for the mean of a Normal distribution is the sum of
squares.

Penalised methods for linear regression are equivalent to Bayesian
methods for estimating the regression coefficients (assuming Y is
Normal)

• Sum of squares is the log likelihood term.

• Penalty terms correspond to a prior on the regression coefficients
(Normal for ridge regression, Laplace or double exponential for
lasso).

• But ridge/lasso find the maximum of the posterior distribution only.
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Classification - generalised linear
models
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Classification: generalised linear models

Suppose there are G classes. Our aim is to model the probabilities of
being in each class, given the values of the input variables
P( class g|xi), g = 1, · · ·G.

Probabilities sum to one:
∑G

g=1 P( class g|xi) = 1 so there are G− 1

quantities to estimate.

Cannot model the probabilities as linear because probabilities must be
between 0 and 1. But we can transform:

log

(

P( class 1|xi)

P( class G|xi)

)

= β
(1)
0 +

p
∑

j=1

β
(1)
j xij

...

log

(

P( class G− 1|xi)

P( class G|xi)

)

= β
(G−1)
0 +

p
∑

j=1

β
(G−1)
j xij

So here we have G− 1 linear functions (unlike in the continuous
outcome case, where there is just one).
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Classification: logistic regression

When there are only 2 classes, often label them by 0 and 1.

Here we have just one function to model:

log

(

P( class 1|xi)

P( class 0|xi)

)

= log

(

P( class 1|xi)

1− P( class 1|xi)

)

It is usual to write p(xi) = P( class 1|xi), and then the model is

logit(p(xi)) = β0 +

p
∑

j=1

βjxij

where logit(p) = log(p/(1− p)). This is called the logistic function -
hence this model is called the logistic regression model.
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Classification: logistic regression
Usually fit logistic regression models using maximum likelihood. The
likelihood function is multinomial (assuming individuals are
independent): L =

∏n

i=1 P( class yi|xi).

Here yi is 0 or 1.

logL =
n
∑

i=1

logP( class yi|xi)

=
n
∑

i=1

(yilog(p(xi,β)) + (1− yi)log(1− p(xi,β)))

=
n
∑

i=1



yi

p
∑

j=0

βjxij − log(1 + e
∑p

j=0
βjxij )





So now we have the log Likelihood in terms of the observed yi, xi and
the parameters βj .

To find β̂j , solve ∂ logL/∂βj = 0. These equations are non-linear in βj ,
so an iterative method (iteratively weighted least squares) is used to
solve them. Proteomics and Variable Selection – p. 32/55



Penalised Classification
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Classification: logistic regression

As with linear regression, logistic regression can be penalised, eg. with
ridge or lasso penalties.

Maximise the penalised log likelihood:

logL − λ

p
∑

j=1

β2
j

or

logL − λ

p
∑

j=1

|βj |

Note the minus sign in front of the penalty, since maximising not
minimising.

Fitting method for ridge logistic regression is iteratively weighted least
squares, for lasso logistic regression the methods are similar to those
for lasso linear regression. Proteomics and Variable Selection – p. 34/55



Application: HAM/TSP vs. AC

34 HAM/TSP individuals and 34 ACs.

For each person, have 650 peak intensities.

Use logistic regression (classification) with lasso penalty to select
small number of peaks:

logit(P( class HAM | peaks for person i )) = β0 +

p
∑

j=1

βjpeakij

(i labels the 68 people, j labels the 650 peaks)

Lasso penalty maximises
logit(P( class HAM | peaks for person i ))− λ

∑p

j=1 |βj |.
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Regularisation Paths for HAM v. AC

Plot βj v. λ for each j (one line per variable).

For small L1 norm (large λ), very few coefficients are non-zero. As λ
decreases, more variables enter the model.
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Prediction error and
cross-validation
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Separation of Classes (HAM v. AC)

Disease status in terms of the top 2 peaks:

Good but not perfect separation. Can we separate the classes if we
include more peaks?
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Misclassification Error (HAM v. AC)

Look at numbers of misclassifications for different numbers of peaks.

Error rate decreases as we include more peaks - where do we stop?
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Use prediction error to choose model complexity

Decreasing λ ⇒ less penalised ⇒ more variables included in model
(more terms in f̂ ) ⇒ more complex model ⇒ better fit to the current
data set

But if the model fits too well to the current data, we may be fitting to
small details of the current data set which will not be present in future
data.
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Cross Validation

We seek a balance between the fit on current data and on future data.

Look at this within the one data set we have, by splitting it into training
data and test data.

Fit the model to the training data (i.e. find the best fitting β̂lasso).

Calculate the error in the model using the test data (using fixed β̂lasso).

Important: this means that different data points are used for fitting the
model and estimating the prediction error.
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Prediction error for linear regression

Regression models attempt to find a function which describes the
behaviour of the outcome Y in terms of the predictors {X1, · · ·Xp}.

Write xi for the vector of predictor variables for individual i. Then we
write the function in general as

yi = f(xi) + ǫi

For example, in penalised linear regression, f(xi,β) = β0+
∑p

j=1 βjxij

Recall the estimate (best fit) of β is denoted by β̂. The function of xi

using the best fit values of the regression coefficients is
f̂(xi) = f(xi, β̂).
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Prediction error for linear regression

Prediction error is the error we find when we compare the best fit
predictions from the model with the actual observed data.

For continuous outcomes the error usually used is the average squared
error between the observed values and the predictions from the model:

err =
1

n

n
∑

i=1

(yi − f̂(xi))
2
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Prediction error for classification

Binary classification models in general can be written as

P(yi = 1|xi) = f(xi)

For the generalised linear models we have discussed so far,
f(xi,β) = β0 +

∑p

j=1 βjxij , and as before, the best fit function is that

found using the best fit parameters, f̂(xi) = f(xi, β̂).

Make a class prediction for each point:

y∗i =

{

1, f̂(xi) > 0.5;

0, f̂(xi) < 0.5.
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Prediction error for classification

How do we characterise prediction error (comparing y∗i with yi)?

One possibility is simply to count the number of misclassifications:

1

n

n
∑

i=1

I [y∗i 6= yi] (1)

Notation: I [ ] is an indicator function: it takes value 1 if the
expression inside [ ] is true, 0 otherwise. (So the misclassification error
is simply the proportion of misclassifications.)

Proteomics and Variable Selection – p. 45/55



Cross-validation

We can use cross-validation
to get a better estimate of the
prediction error.

Here we average the test error
over several splits of the data.

TEST

TRAIN

TRAIN

TEST

TRAIN

TRAIN

TEST

TRAIN

TRAIN

TEST

TRAIN

TRAIN

TEST

Example: 5−fold cross−validation

With 5 splits, we obtain 5 different best estimates f̂k, k = 1, · · · 5, one
on each training set.

If we take the first split, the test error is

err1 =
1

(n/5)

∑

i∈TEST1

(yi − f̂1(xi))
2
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Cross-validation

Each individual appears in 4 training sets, but only 1 test set. We
evaluate the prediction error for individual i using f̂k for the split in
which individual i appears in the test set and not the training set.

So if we label the test set for individual i by k(i), we use f̂k for the
prediction error. The overall cross-validation prediction error for the
model is then

CV err =
1

n

n
∑

i=1

(yi − f̂k(i)(xi))
2

It can be seen that this is the average of the test errors of the 5 sets:

CV err =
1

5

(

1

(n/5)

∑

i∈TEST1

(yi − f̂1(xi))
2 + · · ·+

1

(n/5)

∑

i∈TEST5

(yi − f̂5(xi))
2

)
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Cross-validation

Cross-validation error can be used to find the optimal value of λ:
calculate the prediction error on test data for a range of λ: the optimal
λ minimises the prediction error.

Can also be used to compare models, eg. ridge v. lasso.

The split into groups for cross-validation must be chosen at random,
not based on order of individuals in the study. (Picture shown above is
just for convenience).

Also possible to average over many more random splits (so each
individual appears in more than one test set, though never in the
corresponding training set).
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HAM v. AC example: Cross-validation outline

Data set contains 34 HAM, 34 AC.

Sample 100 subsets of 17 HAM, 17 AC.

Cross Validation:

Set λ.
Run model 100 times (once for each subset).
Get 100 test errors (on the left-out individuals).
Average over the 100 subsets to get CV err(λ).

Repeat for range of λ, find λmin which has the minimum
CV err(λ).

Set λ = λmin.

Run model once on whole data set to get final model and peak
selection.
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Misclassification Error (HAM v. AC)

Look at numbers of misclassifications for different numbers of peaks.

The best validation misclassification rate is 18% errors, achieved using
3 peaks.
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Final model (HAM v. AC)

Run lasso on all data, selecting the top 3 peaks.

logit(P( class HAM | peaks for person i )) = 0.23 + 2.07Intensity(peak11.7)

+ 1.65Intensity(peak13.3)

− 1.34Intensity(peak2.1)

The cross-validation error of 18% does not correspond exactly to these
3 peaks: it’s an average over the results for the 100 subsets.

To find a good estimate of prediction error, obtain a separate validation
data set, make class predictions using the above model and compare
with the true classes (future work for this application).
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Other methods
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Some other methods for prediction

Many different methods available for prediction/discrimination:

• Decision trees: fit interaction terms; interpretable.

• Boosted trees: fit an average over many small trees, but iterative
method to gradually improve prediction.

• Lots of non-linear methods fitting basis functions: spline functions,
wavelets, support vector machines.

• Neural networks fit complex non-linear functions of predictors.

• Local methods: kernel smoothing and nearest neighbours.

Many of these methods do not provide automatic variable selection or
ranking.

But active research area.
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Bayesian methods

Methods described here are usually fit by optimisation → given one
data set, find the one best solution.

Then may use bootstrap techniques to get an idea of uncertainty of
parameter estimates.

Another approach is to use Bayesian models using MCMC (Markov
Chain Monte Carlo) methods. These explore the parameter space
more fully, enabling estimation of uncertainty in parameters and
predictions.

Obtains more information, coherent inference. But complex
computationally.

Also active research area.
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Bibliography/Software

Further Reading:

The Elements of Statistical Learning (Hastie, Tibshirani and Friedman),
pub. Springer.

Software in R:

glm for linear regression, logistic regression

lm.ridge for ridge regression

glmnet for lasso (linear or logistic regression)

Some of these are standard packages in R, others can be downloaded
from http://cran.r-project.org/
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