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Homework Solution

Define the state space of Y as {0, 1} such that:

Yn :=

{
1, sunny on nth day

0, rains on nth day

Define Xn := Yn−1 + 2Yn. Then we have state space of X is {0, 1, 2, 3}:
Xn Yn−1 Yn

0 0 0
1 1 0
2 0 1
3 1 1

Xn Yn−1 Yn P(Yn+1 = 0|Yn,Yn−1) P(Yn+1 = 1|Yn,Yn−1)

0 0 0 a = P(Xn+1 = 0|Xn = 0) = p00 1− a = P(Xn+1 = 2|Xn = 0) = p02

1 1 0 b = P(Xn+1 = 0|Xn = 1) = p10 1− b = P(Xn+1 = 2|Xn = 1) = p12

2 0 1 c = P(Xn+1 = 1|Xn = 2) = p21 1− c = P(Xn+1 = 3|Xn = 2) = p23

3 1 1 d = P(Xn+1 = 1|Xn = 3) = p31 1− d = P(Xn+1 = 3|Xn = 3) = p33
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state transition diagram

0 1

23

d

b

1− b

1− a

1− c

c

a

1− d

transition matrix

P =


a 0 1− a 0
b 0 1− b 0
0 c 0 1− c
0 d 0 1− d


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1st step arguments duration in state

Remark 1

Recall, lecture 1, Markov processes are one-step away from independence.
I.e. if X is discrete time Markov chain, then

P
(
X0 = i0, . . . ,Xn−1 = in−1

)
= P

(
X0 = i0

) n−1∏
k=1

P
(
Xk = ik

∣∣Xk−1 = ik−1

)
= P

(
X0 = i0

)
pi0 i1 pi1 i2 · · · pin−2 in−1

Proposition 2 (Time spent in a (Markov chain) state is geometric)

Proof7 Given Markov X starts in state i it moves to a different state at
time n with probability

P
(
Xn 6= i ,Xn−1 = · · · = X1 = i

∣∣X0 = i
)

= P
(
Xn 6= i

∣∣Xn−1 = · · · = X1 = X0 = i
)
P
(
Xn−1 = · · · = X1 = i

∣∣X0 = i
)

=
(
1− P

(
Xn = i

∣∣Xn−1 = · · · = X1 = X0 = i
))

(pii )
n−1 [from Remark 1]

= (1− pi i )pn−1
i i 5 / 35



1st step arguments jump probabilities

P
(
Xn 6= i ,Xn−1 = · · · = X1 = i

∣∣X0 = i
)

= (1− pi i )pn−1
i i

But, this is also P(T = n), where T = time spent in state i . I.e. r.v. T has
geometric distribution (1− pi i )pn−1

i i

Corollary 3

For any Markov chain, the average time spent in state i is:

E(T ) =
1

1− pi i

Also: when a process leaves state i , it moves to state j with probability

P
(
Xn = j

∣∣Xn 6= i ,Xn−1 = i
)

=
P
(
Xn = j 6= i ,Xn−1 = i

)
P
(
Xn 6= i ,Xn−1 = i

)
=

P
(
Xn = j 6= i

∣∣Xn−1 = i
)

P
(
Xn 6= i

∣∣Xn−1 = i
) P

(
Xn−1 = i

)
P
(
Xn−1 = i

)
=

pi j(
1− P

(
Xn = i

∣∣Xn−1 = i
)) , j 6= i

=
pi j

1− pi i
, j 6= i
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1st step arguments absorption times

Definition 4 (absorbing state)

(Recall) i is an absorbing state iff pii = 1.

Let C ⊂ S be the set of all absorbing states of a Markov chain X . Then for
some j ∈ S, define [prob. ever visiting j from i ]

θi := P
(
Xn = j , n ≥ 0

∣∣X0 = i
)

=
∑
k∈S

P
(
X1 = k

∣∣X0 = i
)
P
(
Xn = j , n ≥ 0

∣∣X1 = k ,X0 = i
)

=
∑
k∈S

pikP
(
Xn = j , n ≥ 0

∣∣X1 = k
)

θi =
∑
k∈S

pikθk = piiθi +
∑

k∈S\{i}

pikθk

Then, for i 6∈ C, solve for θi :

θi = (1− pii )
−1
∑

k∈S\{i}

pikθk
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1st step arguments absorption times

Let C ⊂ S be the set of all absorbing states of a Markov chain X . Then for
some i ∈ S, define [time to absorption from state i ]

Ti := min
{

n ≥ 0: Xn ∈ C
∣∣X0 = i

}
and define the mean time to absorption Ei := ETi .

Then if i ∈ C ETi = 0 as Ti = 0.
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1st step arguments absorption times

If i /∈ C
Ei = EE

(
Ti |X1

)
[total law expectation]

=
∑
j∈S

E
(
Ti

∣∣X1 = j
)
pij [still condition to X0 = i ]

move from X0 = i to X1 = j

=
∑
j∈S

(
1 + ETj

)
pij [{Ti |X1 = j} = 1 + Tj ]

if j ∈ C, Ti = 1; if not we need to move from j

=
∑
j∈S

(
1 + Ej

)
pij

= 1 +
∑
j∈S

Ejpij = 1 +
∑
j∈S\C

Ejpij

because Ej = 0 if j ∈ C
Etc.
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1st step arguments absorption times

Similarly,

EE
(
T 2
i |X1

)
=

∑
j∈S

E
(
T 2
i

∣∣X1 = j
)
pij

=
∑
j∈S

E(1 + Tj)
2 pij [{T 2

i |X1 = j} = (1 + Tj)
2]

=
∑
j∈S

(
1 + 2Ej + ET 2

j

)
pij

= 1 +
∑
j∈S

(
2Ej + ET 2

j

)
pij

= 1 +
∑
j∈S\C

(
2Ej + ET 2

j

)
pij

I.e., find Ej first and now solve for ET 2
j to find var Tj .
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example

Remark 5

Very useful to calculate certain properties of a Markov chain. See following
two part example. 1st exploits law of total prob.; 2nd uses law of total
expectation. Both yield ‘simple’ difference equations.

Example 6 (gambler’s ruin: prob. of absorption)

Recall Xn = #chips A has after n games.

P (A wins) = p

P (B wins) = 1− p =: q

Probability of ‘absorption’ in state a + b, given chain starts at i is

θi := P
(
Xn = a + b, for some n ≥ 0

∣∣X0 = i
)

Find θi in terms of p, q, a, b.
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example

Solution (part I) [Law of total prob.:] θi = P
(
Xn = a + b, n ≥ 0

∣∣X0 = i
)

=
∑

k : i+k∈S
P
(
X1 = i + k

∣∣X0 = i
)
P
(
Xn = a + b, n ≥ 0

∣∣X0 = i ,X1 = i + k
)

[Markov ppty:]

=
∑

k : i+k∈S
P
(
X1 = i + k

∣∣X0 = i
)
P
(
Xn = a + b, n ≥ 0

∣∣X1 = i + k
)

=
∑
k=±1

P
(
X1 = i + k

∣∣X0 = i
)
P
(
Xn = a + b, n ≥ 0

∣∣X1 = i + k
)

= p P
(
Xn = a + b, n ≥ 0

∣∣X1 = i + 1
)

+q P
(
Xn = a + b, n ≥ 0

∣∣X1 = i − 1
)

= p P
(
Xn−1 = a + b, n ≥ 1

∣∣X0 = i + 1
)

+q P
(
Xn−1 = a + b, n ≥ 1

∣∣X0 = i − 1
)

[time-homog]

and we have the difference equation

θi = p θi+1 + q θi−1 , i = 1, . . . , a + b − 1 (1)

with boundary conditions θ0 = 0, and θa+b = 1.
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example homogenous difference equations

Homogenous 2nd order difference equation:

θi = p θi+1 + q θi−1 , i = 1, . . . , a + b − 1 (2)

with boundary conditions θ0 = 0, and θa+b = 1.
Following the usual (difference equation approach, we ‘try’ a solution of the
form θi = w i .

w i = pw i+1 + qw i−1

w = pw 2 + q

pw 2 − w + q = 0 solution of quadratic form

w =
1±
√

1− 4pq

2p
=

1±
√

1− 4p(1− p)

2p

=
1± (1− 2p)

2p
=

{
1

q/p

There are now (unfortunately) 2 cases that must be considered: distinct
roots (ρ = q/p 6= 1) and repeated roots (ρ = 1).
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example homogenous difference equations

Case 1: ρ 6= 1.

General solution

θi = A11i + A2

(
q

p

)i

from boundary condition

1 = A1 + A2

(
q

p

)a+b

0 = A1 + A2

⇒ 1 = A1 − A1

(
q

p

)a+b

= A1

(
1−

(
q

p

)a+b
)

A1 =
1

1− (q/p)a+b

θi =
1− (q/p)i

1− (q/p)a+b
=

1− ρ2

1− ρa+b
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example homogenous difference equations

Case 2: ρ = 1.

If q/p = 1 then w1 = w2 = 1 and the general solution is

θi = A1 + A2i

Now use boundary conditions to find constants A1 and A2. For

θ0 = 0 = A1

θa+b = 1 = A2(a + b)⇒ A2 =
1

a + b
We obtain

θi = i/(a + b)

.
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example inhomogenous difference equations

Example 7 (gambler’s ruin: expected time of absorption)

Let Ti := time to absorption (state 0 or a + b), given X0 = i . I.e.

Ti := min{n ≥ 0: Xn = 0 or Xn = a + b
∣∣X0 = i}

Find expected absorption time in terms of p, q, a, b.

Solution (part I) [Law of total expectation:]

E(Ti ) = E
(
E
(
Ti

∣∣X1 = j
))

=
∑
j∈S

P
(
X1 = j

∣∣X0 = i
)
E
(
Ti

∣∣X1 = j
)

=
∑
j∈S

pi j E
(
Ti

∣∣X1 = j
)

But

pij =


p, j=i+1

q, j=i-1

0, oth.

Hence
E(Ti ) = p E(Ti |X1 = i + 1) + q E(Ti |X1 = i − 1) 16 / 35



example inhomogenous difference equations

E(Ti ) = p E(Ti |X1 = i + 1) + q E(Ti |X1 = i − 1)

Now recall

{Ti |X1 = j} = absorption time, given X1 = j

= 1 + absorption time, given X0 = j

= 1 + Tj

Hence

E(Ti ) = p E(1 + Ti+1) + q E(1 + Ti−1)

= p (1 + E(Ti+1)) + q (1 + E(Ti−1))

= 1 + p E(Ti+1) + q E(Ti−1) [p + q = 1]

and we have another difference equation

Ei = 1 + p Ei+1 + q Ei−1 , i = 1, . . . , a + b − 1 (3)

with boundary conditions E0 = 0, and Ea+b = 0.
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example inhomogenous difference equations

Now, recall Solution, part I of Example 7:

p Ei+1 + q Ei−1 − Ei = −1 , i = 1, . . . , a + b − 1 (4)

with boundary conditions E0 = 0, and Ea+b = 0.

Remark 8

Note 1st difference equation (Eq. 1) was homogenous: of the form∑
k akyi−k = 0. The above equation is inhomogenous: of the form∑
k akyi−k = xi . Therefore the general solution takes the form

Ei = E
(c)
i︸︷︷︸

complementary solution

+ E
(p)
i︸︷︷︸

particular solution

For the complementary solution, we solve

p Ei+1 + q Ei−1 − Ei = 0

But, this is same form as 1st difference equation (1). Hence complementary
solution unfortunately has 2 cases and the first case (ρ 6= 1) takes form

E
(c)
i = c1 + c2ρ

i (5)
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example inhomogenous difference equations

For the particular solution, we use ‘lucky guess method’ (!): this solution
has to be such that when substitute in p Ei+1 + q Ei−1 − Ei the result is -1
Try putting

E
(p)
i = αi + β

into Eq. 4:

p
(
α(i + 1) + β

)
+ q
(
α(i − 1) + β

)
− αi − β = −1

⇓
pα− qα = −1

Comparing constant (i0) terms gives:

α =
1

q − p
, i.e. E

(p)
i =

i

q − p
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example inhomogenous difference equations

Case 1: ρ 6= 1.

General solution

Ei = E
(c)
i + E

(p)
i = c1 + c2ρ

i +
i

q − p

Using boundary conditions:

i = 0 : E0 = 0 = c1 + c2 ⇒ c2 = −c1

and
i = a + b : Ea+b = 0 = c1(1− ρa+b) +

a + b

q − p

⇒ c1 = − a + b

q − p

1

1− ρa+b

which gives

Ei =
1

q − p

(
i − (a + b)(1− ρi )

1− ρa+b

)
, ρ 6= 1
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example inhomogenous difference equations

Case 2: ρ = 1, i.e. (p = q = 1/2)

.
Eq. (4) is

1

2
Ei+1 +

1

2
Ei−1 − Ei = −1 (6)

For the complementary solution we solve

1

2
Ei+1 +

1

2
Ei−1 − Ei = 0

but this is same form as Eq (1) with ρ = 1. Hence

E
(c)
i = c1 + c2i

For the particular solution, we ‘try’ putting E
(p)
i = αi2 into Eq (6):

1

2

(
α(i + 1)2

)
+

1

2

(
α(i − 1)2

)
− αi2 = −1

Equating constant terms gives α = −1 and we have E
(p)
i = −i2. So, for

ρ = 1 the general solution takes the form

Ei = E
(c)
i + E

(p)
i = c1 + c2i − i2
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example inhomogenous difference equations

General solution for ρ = 1:

Ei = E
(c)
i + E

(p)
i = c1 + c2i − i2

Using boundary conditions:

i = 0 : E0 = 0 = c1

i = a + b : Ea+b = 0 = c2(a + b)− (a + b)2 ⇒ c2 = a + b

Therefore

Ei = (a + b)i − i2 = i(a + b − 1) , ρ = 1
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classification of states recurrence and transience

Remark 9

Knowing whether or not a Markov chain ever returns to a particular state is
an important property worth knowing about. In fact, the state space of a
Markov chain can be partitioned (by an equivalence relation) into states that
are guaranteed to be visited at some point and those that are not. In some
sense, this reveals the underlying structure of the Markov chain in question.

Definition 10

State i is recurrent (aka persistent, G&S p220) if the probability of ever
returning to state i is 1, i.e.

P
(
Xn = i , for some n ≥ 1

∣∣X0 = i
)

= 1

If this probability is < 1 then state i is called transient.
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classification of states recurrence and transience

Example 11

Random walk. Consider a random walk starting at zero with
P
(
Xi+1 = i + 1 | Xi = i

)
= p and P

(
Xi+1 = i − 1 | Xi = i

)
= 1− p = q

It is clear that we cannot return to zero after an odd number of steps so

that p
(2n+1)
00 = 0 for all n. Any given sequence of length 2n from 0 to 0

occurs with probability pnqn, there being n steps down and n steps up. The
number of ways in which we can do this is

(2n
n

)
. Therefore

p2n
00 =

(
2n

n

)
pnqn

and 0 is a transient state,
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classification of states recurrence and transience

Find general transition probabilities for the random walk.
Let Sm be iid rv with

Sm =

{
1 with probability p
−1 with probability q

Then Xn = X0 + S1 + · · · ,Sn, n = 0, 1, . . .
For m ≥ 1 the rv 1

2 (Sm + 1) has Bernoulli distribution with probability of
success p and so Bn = 1

2 (Xn + n) has Binomial distribution with parameters
n and p. Hence

Pr(Xn = k | X0 = 0) = Pr(Bn =
1

2
(n + k)) =

(
n

1
2 (n + k)

)
p

1
2

(n+k)q
1
2

(n−k)

whenever k is such that 1
2 (n + k) is an integer between 0 and n.
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classification of states recurrence and transience

Of interest here is, given we know the transition probabilities, (how) can we
deduce whether a given state is recurrent or transient?

Definition 12

Define fij(n) as the probability that the 1st visit to j from i occurs at time
n ≥ 1. I.e.

fij(n) :=

{
P
(
Xn = j ,X1:n−1 6= j

∣∣X0 = i
)
, n ≥ 1

0 , n = 0

where {X1:n−1} := {Xk , 1 ≤ k ≤ n − 1}.

Definition 13

The probability of ever visiting j from i is:

fij :=
∞∑
n=1

fij(n)

I.e. fjj is probability of ever returning to j .
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classification of states hitting times and return times

Lemma 14

A state j is
recurrent iff fjj = 1

transient iff fjj < 1

‘Proof’ By definition.

Definition 15

Define time to 1st visit to state j (aka 1st hitting time or 1st passage time)
is

Tj := min{n ≥ 1 : Xn = j}

Remark 16

By definition, we have

P
(
Tj = n

∣∣X0 = i
)

= fij(n)

In particular P
(
Tj = n

∣∣X0 = j
)

= fjj(n) is the probability that the 1st return
to j occurs at nth time step.
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classification of states results

Remark 17

So, the classification of a state, i.e. whether it is recurrent/transient can be
determined by Tj or fij(n). The next theorem provides the opportunity to
relate transition probabilities with class.

Theorem 18

Let p∼ij be the generating function of p
(n)
ij and f ∼ij be the generating

function of fij(n). I.e.

p∼ij (s) :=
∞∑
n=0

snp
(n)
ij , f ∼ij (s) :=

∞∑
n=0

snfij(n) , |s| < 1

with the convention p
(0)
ij = δij and fij(0) = 0 Then

p∼ij (s) = δij + f ∼ij (s)p∼jj (s)
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classification of states results

Proof
p

(n)
ij = P

(
Xn = j

∣∣X0 = i
)

=
n∑

k=1

P
(
Xn = j ,Tj = k

∣∣X0 = i
)

[Total prob]

=
n∑

k=1

P
(
Xn = j

∣∣Tj = k,X0 = i
)
P
(
Tj = k

∣∣X0 = i
)

Now, {Tj = k ,X0 = i} = {Xk = j ,X1:k−1 6= j ,X0 = i}. Hence

p
(n)
ij =

n∑
k=1

P
(
Xn = j

∣∣Xk = j ,X1:k−1 6= j ,X0 = i
)

fij(k)

=
n∑

k=1

P
(
Xn = j

∣∣Xk = j
)

fij(k) [Markov]

=
n∑

k=1

P
(
Xn−k = j

∣∣X0 = j
)

fij(k) [Time-homog.]

=
n∑

k=1

p
(n−k)
jj fij(k)
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classification of states results

p
(n)
ij =

n∑
k=1

p
(n−k)
jj fij(k)

Now, multiply both side by sn and sum over n = 1, . . . ,∞. LHS:
∞∑
n=1

snp
(n)
ij = −p

(0)
ij +

∞∑
n=0

snp
(n)
ij = −δij + p∼ij (s)

RHS:
∑∞

n=1

∑n
k=1 snp

(n−k)
jj fij(k). We can use identity

∞∑
n=1

n∑
k=1

bnan−k,k =
∞∑

m=0

∞∑
k=1

bm+kamk [check: ex. for reader!]

to get that the RHS is:
∞∑

m=0

∞∑
k=1

sm+kp
(m)
jj fij(k) =

∞∑
m=0

smp
(m)
jj

∞∑
k=1

sk fij(k) = p∼jj (s) f ∼ij (s)

[Nb, fij(0) = 0].
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classification of states results

Corollary 19

∞∑
n=0

p
(n)
jj

{
=∞, iff j recurrent

<∞, iff j transient

‘Proof’ From Theorem 18, we had p∼jj (s) = 1 + p∼jj (s)f ∼jj (s), i.e.

p∼jj (s) =
1

1− f ∼jj (s)
(7)

Now take limit as s → 1− (from below: recall |s| < 1):

lim
s→1−

p∼jj (s) = lim
s→1−

∞∑
n=0

snp
(n)
jj =

∞∑
n=0

p
(n)
jj

Also note that

lim
s→1−

f ∼jj (s) = lim
s→1−

∞∑
n=0

snfjj(n) =
∞∑
n=0

fjj(n) = fjj

An we have (informally) ∞∑
n=0

p
(n)
jj =

1

1− fjj 31 / 35



classification of states results

∞∑
n=0

p
(n)
jj =

1

1− fjj

I.e., since fjj ≤ 1 (it is a prob.) this converges iff fjj < 1 and diverges iff
fjj = 1. Recall from Lemma 14 that j is transient iff fjj < 1 and recurrent iff
fjj = 1

Corollary 20

If j is transient, then p
(n)
ij → 0, as n→∞,∀ i ∈ S.

Proof From Theorem 18

p∼ij (s) = δij + f ∼ij (s)p∼jj (s)

Take limit

lim
s→1−

∞∑
n=0

snp
(n)
ij = δij + lim

s→1−

∞∑
k=0

skp
(k)
jj

∞∑
m=0

smfij(m)

∞∑
n=0

p
(n)
ij = δij +

∞∑
k=0

p
(k)
jj

∞∑
m=0

fij(m)
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classification of states results

∞∑
n=0

p
(n)
ij = δij +

∞∑
k=0

p
(k)
jj

∞∑
m=0

fij(m)

= δij + fij

∞∑
k=0

p
(k)
jj︸ ︷︷ ︸

[<∞⇔ j transient]

⇒
∑∞

n=0 p
(n)
ij converges, i.e. must have

p
(n)
ij → 0, as n→∞

33 / 35



classification of states results

Recall:
∞∑
n=0

p
(n)
jj

{
=∞, iff j recurrent

<∞, iff j transient

fjj is prob. ever returning to j . Then 1− fjj is prob never returning to j .

Define Nj(n) as # transitions into j up to time n.

In particular, define Nj(∞) as total # transitions into j . Then{
Nj(∞)

∣∣X0 = j
}

is the total number of returns to j .
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classification of states results

Remark 21

For j recurrent

P
(
Nj(∞) = k

∣∣X0 = j
)

=

{
0, k <∞
1, k →∞

For j transient P
(
Nj(∞) = k

∣∣X0 = j
)

is prob. that chain returns to j a
total # of k times and then never returns. I.e.

P
(
Nj(∞) = k

∣∣X0 = j
)

= f k
jj (1− fjj)

I.e. in this case Nj(∞)
∣∣X0 = j ∼ geometric.

For j transient Nj(∞)
∣∣X0 = j ∼ geometric. I.e.

E
(
Nj(∞)

∣∣X0 = j
)

=
fjj

1− fjj
<∞ [j transient⇒ fjj < 1c.f .Lemma(14)]

Conversely, for j recurrent

E
(
Nj(∞)

∣∣X0 = j
)

=∞
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